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Abstract In theory, multi-hypothesis motion compensa-

tion prediction (MHMCP) can enhance the prediction quality

of motion compensation prediction. Traditional MHMCP

methods use fixed weightings for the linear combination of

the multiple signal sources which may not be optimum.

Moreover, MHMCP requires the transmission of more than

one motion vector, which will increase the side information to

be transmitted. We discovered that using estimated distortion

ratio, a weighting pair can be estimated adaptively for the

linear combination of two signal blocks to form a prediction

block with a lower distortion. The proposed MCP method

does not require the transmission of additional side infor-

mation yet has a better prediction accuracy than conventional

motion compensation prediction. In addition, the proposed

method has relatively low algorithmic decision overhead. It

can be implemented in hardware easily to support the reali-

zation of real time high-quality video coding.

Keywords Video coding � Real time � Motion

compensation prediction � Multi-hypothesis � Motion

estimation

1 Introduction

By the Multi-Hypothesis MCP (MHMCP) theory, arbitrary

number of prediction signals can be linearly combined to

improve the performance of MCP [1, 2]. Bi-directional pre-

diction for B-frames is one of the applications of MHMCP in

which two prediction signals, one from the reference frame

before and the other from the reference frame after the

B-frame, are superimposed to form a prediction signal with

better prediction quality. MHMCP requires the estimation of

multiple motion vectors. The best prediction performance

can be obtained when all the motion vectors are jointly

estimated but this requires very high computation complex-

ity. Suboptimal solutions can speed up the process [3]. In [4],

it is reported that MHMCP can work together with variable

block size MCP and multiple-reference frame MCP to

enhance the efficiency of a rate-constrained coding scheme.

Experimental results in [4] show that two jointly estimated

prediction signals can achieve up to 30 % bit-rate reduction

in coding. In [5], two-hypothesis MCP is used to boost the

error resiliency in an error-prone environment. In [6], three-

hypothesis MCP is used to reduce the error propagation as

well as achieving rate-distortion gain.

In [4], the weighting coefficients applied to the multiple

signal sources converge to 1/n, where n is the number of

signal sources. That means an averaging is applied to the

multiple signal sources. The same averaging is also used

for the linear combination of the multiple signals found by

template matching in [7]. In both [6] and [8], fixed opti-

mum weighting combinations for the multiple signal

sources are found by empirical methods. However, we are

not sure whether fixed weightings can obtain optimum

prediction performance for MHMCP because the charac-

teristics and conditions of the signal sources can differ a

lot. The second problem of MHMCP is that it requires the

transmission of more than one motion vector. As the

residual data of MCP are nowadays getting smaller and

smaller due to the advance in MCP technology, the

increase in the number of motion vectors is very unfavor-

able. Moreover, most MHMCP methods proposed have

very high computational complexity, which is unfavorable,

especially for real time video coding applications.
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From the analysis of the linear combination of two inter-

frame signal blocks, we found that the optimum weighting

pair is correlated to the distortion ratio of the blocks. We

also found that correlation exists for the estimated version

of the distortion ratio too. Using a method similar to

template matching, we can find the base signal block

without the transmission of the respective motion vector.

Combining these two methods, we propose an adaptive

superimposed inter-frame search (ASIS) algorithm which

has better prediction performance than conventional

motion compensation prediction while eliminating the

drawbacks of MHMCP.

2 Analysis of superimposition of inter-frame signals

In natural video sequences, local minima exist in the

distortion error surface of block-matching motion esti-

mation (BMME). This means that several prediction

blocks can be found in the reference frame with similar

distortion values. In other words, these prediction blocks

with different MVs may all resemble the current block,

with pixel differences here or there over the block. In

conventional BMME, only one prediction block with the

lowest distortion value is selected. Although this predic-

tion block with the lowest distortion value can roughly

represent the displacement of the current block in the

previous frame, the other prediction blocks can also tell us

how the current block should look like. Therefore, we can

refine the prediction signal block with the lowest distor-

tion value by superimpose it with another prediction sig-

nal block, with different weightings applying to these

different signal sources.

Consider an example shown in Figs. 1 and 2. Figure 1 is

the current frame and the current block to be encoded is

highlighted in the red dotted box. Figure 2 is the previous

frame, which is also the reference frame in which the

current block will find the best match using BMME. The

object on the upper-right corner of both frames is an illu-

minating object, which for example can be the sun. The

triangle and the rectangle are moving towards each other,

with the luminous of the rectangle becoming dimmer due

to its increased distance from the illuminating object. The

pixel luminous values are from 0 to 255, with 255 being the

brightest and 0 being the darkest. Figure 3 shows the pixel

luminous values of the reference frame.

If conventional block-matching motion estimation is

used, the best match is the one with the lowest distortion

value. In this example, the best match is the one indicated

by the yellow dotted box in the reference frame in Fig. 3.

Using sum of absolute differences (SAD) as the distortion

measurement, the SAD of this best-matched block is 4,590.

The pixel differences are shown in Fig. 4.

Consider another matching indicated by the green dotted

box in Fig. 3, the SAD is 10,200 as shown in Fig. 5. In

conventional BMME, this matching is not used because it

is not the lowest distortion matching. However, if we

superimpose the best-matched block with this block line-

arly, with the pixel values of each of the block being

halved, we can obtain a superimposed block with a SAD

value of 2,295. This superimposed block, thus, has lower

distortion value than the best-matched block found by

conventional motion compensated prediction. Figure 6

shows this superimposed block and Fig. 7 shows the pixel

Fig. 1 Current frame and current block

Fig. 2 Previous reference frame

Fig. 3 Two block-matchings on the reference frame

J Real-Time Image Proc

123



Fig. 4 Pixel differences

between the matching indicated

by the yellow dotted box in

Fig. 3 and the current block

Fig. 5 Pixel differences

between the matching indicated

by the green dotted box in

Fig. 3 and the current block
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differences between this superimposed block and the cur-

rent block.

We perform experiments to analyze the prediction

quality of superimposition of inter-frame signals. First, we

need to define the conventional block-matching motion

estimation process. Consider the nth image frame Fn of size

W 9 H of a video sequence with pixel value FnðsÞ for each

pixel location s = (x, y), in which x and y are integers such

that 0� x\W and 0� y\H. The pixel value of the

reconstructed reference frame is denoted as ~FnðsÞ. The nth

image frame is segmented into K non-overlapping blocks,

Bi;n

� �K

i¼1
. In single reference frame conventional block-

matching motion estimation, each block is predicted from

the previous reconstructed frame ~Fn. The motion vector

(MV), vi;n ¼ ðu; vÞi;n; specifying a spatial displacement for

motion compensation of ith block in Fn, is determined by

block-matching process as

vi;n ¼ arg min
d

BDMBi;n
fFnðsÞ; ~Fn�1ðs� dÞg; ð1Þ

where BDM (block distortion measure) calculates the

difference or distortion between two blocks and the 2D

displacement vector d is limited to have finite vector

component within a search area. A commonly used BDM is

SAD (sum of absolute difference), which is defined as

SADBfFðsÞ;GðsÞg ¼
X

s2B

jFðsÞ � GðsÞj ð2Þ

If all the candidate positions in the search area are

searched, it is the exhaustive search. Exhaustive search

guarantees the finding of the lowest distortion candidate

block in the search area. To analyze the prediction quality

of superimposition of inter-frame signals, we superimpose

the lowest distortion candidate block found by

conventional block-matching ME with another candidate

block in the same reference frame. Therefore, in our new

algorithm, each current block first performs a conventional

exhaustive search using Eq. 1. The first motion vector vi;n

is determined and the candidate block pointed by this

motion vector is called the base signal block or base block.

Then, a second exhaustive search is performed, in which

each candidate block is superimposed with the base block

and the distortions between the current block and the

superimposed blocks are calculated. The second motion

vector ri;n ¼ ðe; f Þi;n; which points to the candidate signal

block forming the lowest distortion superimposed block, is

determined by

ri;n ¼ arg min
d

BDMBi;n
fFnðsÞ; ð ~Fn�1ðs� vÞÞ � wbase

þ ð ~Fn�1ðs� dÞ � wcandidateg ð3Þ

where wbase is the weighting applied to the lowest distor-

tion block (base block) found in the first exhaustive search,

wcandidate is the weighting applied to the candidate signal

blocks in the second exhaustive search, and wbase ?

wcandidate = 1.

The weightings wbase and wcandidate can be regarded as

the signal strengths given to the base signal block and the

candidate block, respectively. For example, if wbase = 0.7

and wcandidate = 0.3, we can interpret the superimposed

signal block as a linear combination of the lowest distortion

block with signal strength of 70 % and a candidate signal

block with signal strength of 30 %. Since we do not know

yet which weighting pair can achieve the best prediction

quality, we perform experiment using the following

Algorithm 1:

Step 1 Perform block matching between the current

block and the candidate blocks in the search

window based on Eq. 1. The candidate block with

the lowest distortion and its MV are found. They

are the base block and the base MV, respectively

Step 2 Based on Eq. 3, perform block matching between

A) the current block and B) the weighted

combinations of candidate blocks in the search

window and the base block found in Step 1. The

superimposed block with the lowest distortion

together with the weighting used and the MV are

found

Experiment is performed using 81 sets of weightings

wbase and wcandidate:

wbase wcandidate

0.0000 1.0000

0.0125 0.9875

0.0250 0.9750

0.0375 0.9625

Fig. 6 The superimposed block
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Table a continued

wbase wcandidate

0.0500 0.9500

0.0625 0.9375

0.0750 0.9250

0.0875 0.9125

0.1000 0.9000

0.1125 0.8875

. .

. .

. .

0.9000 0.1000

0.9125 0.0875

0.9250 0.0750

0.9375 0.0625

0.9500 0.0500

0.9625 0.0375

0.9750 0.0250

0.9875 0.0125

1.0000 0.0000

The difference between each weighting pair is 0.0125.

At each candidate position, 81 block-matchings are per-

formed between the current block and the candidate block,

using the 81 weighting pairs. That means at each search

position, different signal strengths are applied to the can-

didate block signal and the base block signal. We want to

find out the optimum signal strength balance between the

two sources.

Table 1 shows the average SAD per block and the

average PSNR per frame achieved using the above algo-

rithm compared with that achieved using conventional

motion prediction. The sequences are in size CIF

(352 9 288) and 4CIF (704 9 576). 100 and 50 frames are

used for the CIF and 4CIF sequences, respectively. The

block size is 16 9 16 pixels. The search window size is

±16 pixels. Fractional-pixel motion estimation is imple-

mented with quarter-pixel (1/4-pixel) accuracy. Different

from a real video codec that uses reconstructed reference

frames, in these experiments, original frames are used as

reference frames. Bit-rate is not available in these simu-

lation experiments.

We can observe that two inter-frame prediction signals

can be linearly combined to form a signal with lower dis-

tortion and thus increase the overall prediction quality.

However, we have to solve two problems in real coding.

The first is that the decoder side needs to know which is the

best weighting pair being used for the superimposition.

Second, the decoder needs to know where to find the two

inter-frame prediction signals. That means two MVs are

Fig. 7 Pixel differences

between the superimposed

block (Fig. 6) and the current

block
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Table 1 Average SAD per block and average PSNR per frame of Algorithm 1

Akiyo (CIF) Coastguard (CIF) Foreman (CIF) Mobile (CIF) Mother (OF)

Algorithm 1

Average SAD per block 113.72 1,029.91 533.00 1,186.51 291.46

Exhaustive search

Average SAD per block 132.43 1,140.81 602.03 1,329.97 334.22

Algorithm 1

Average PSNR (dB) per frame 46.16 31.58 35.71 28.11 42.69

Exhaustive search

Average PSNR (dB) per frame 44.93 30.88 34.79 27.52 41.55

PSNR increment 1.23 0.70 0.92 0.58 1.14

Sean (CIF) Stefan (CIF) City (4CIF) Crew (4CIF) Harbor (4CIF)

Algorithm 1

Average SAD per block 332.66 1,082.08 844.20 865.69 1,005.51

Exhaustive search

Average SAD per block 370.11 1,197.33 938.85 1,017.22 1,124.01

Algorithm 1

Average PSNR (dB) per frame 42.32 28.21 33.66 35.57 32.49

Exhaustive search

Average PSNR (dB) per frame 41.13 27.44 32.69 34.50 31.54

PSNR increment 1.19 0.77 0.97 1.07 0.95

Fig. 8 Best wcandidate selected

versus average distortion ratio

(DR) using Algorithm 1
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required to be transmitted. Moreover, we need to tell the

decoder the value of the optimal weighting pair being

selected. This overhead information requires extra bits to

be transmitted, thus affecting the overall bit-rate perfor-

mance. Although there might be a chance that the better

prediction gain can compensate the overhead bit require-

ment, we take another approach to address these two

problems. We want to solve them without extra overhead

information being sent. Then, we can obtain pure predic-

tion gain.

First, we address the problem of instructing the decoder

side the best weighting pair being used. We found that the

best weighting pair selected has high correlation with both

the distortion ratio (DR) and the estimated distortion ratio

(EDR) of the base block and the candidate blocks. This will

be discussed in Sect. 3. Second, we address the problem of

using more than one MV. By finding the block with the

lowest ESAD, we can obtain an approximation of the base

block without exhaustive search and so eliminate the use of

more than one MV. This will be discussed in Sect. 4.

3 Distortion ratio

We hypothesize that the optimum weighting pair is related

to the distortions of the base blocks and the candidate

blocks. To find the relationship of the distortions of the

base blocks, we define:

DR ¼ SADcandidate

SADbase + SADcandidate

ð4Þ

where DR is the distortion ratio, SADcandidate is the sum of

absolute differences (SAD) between a candidate block and

the current block, SADbase is the sum of absolute differ-

ences (SAD) between a base block and the current block.

Algorithm 1 stated in the last section is repeated. For each

superimposed block with the lowest distortion, the distor-

tion ratio is calculated and the optimum weighting pair

wbase and wcandidate selection is recorded. The average value

of the distortion ratios of each weighting pair is shown in

Fig. 8 (wcandidate is to represent the weighting pairs as

wbase = 1 - wcandidate).

Fig. 9 Calculation of estimated

sum of differences (ESAD)
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We can see that there is an inverse relationship between

the best wcandidate selected and the average distortion ratio.

The higher the wcandidate selected, the lower the average

distortion ratio, and vice versa. If, for example, the dis-

tortion of a base block is high and that of a candidate block

is low, it means the semblance of the base block with the

current block is lower than the semblance of the candidate

block with the current block. In that case, applying a higher

weighting to the candidate block and applying a lower

weighting to the base block in the superimposition can

form a lower distortion prediction block. In short, the best

weightings that can form a better prediction block can be

deduced from the distortions of the base signal block and a

candidate block pointed by a MV.

However, the decoder side does not know the SADcan-

didate (SAD between a candidate block and the current

block) and SADbase (SAD between a candidate block and

the base block) because current blocks only exist on the

encoder side but not on the decoder side. We hypothesize

that the neighboring pixels of the current block have sim-

ilar motion and structure as the current block. Using the

neighboring pixels of the current block, we try to estimate

SADcandidate and SADbase. The estimated SADcandidate and

Fig. 10 Best wcandidate selected

versus average estimated

distortion ratio (EDR) using

Algorithm 1

Fig. 11 ESAD with different R numbers
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estimated SADbase are ESADcandidate and ESADbase,

respectively. Figure 9 illustrates how ESADcandidate and

ESADbase are calculated.

The concept of estimated sum of differences (ESAD)

calculation is a bit similar to template matching (TM) [6,

7]. In TM, the neighboring pixels of the current block are

Fig. 12 Best wcandidate selected

versus EDR_R2 using

Algorithm 1

Fig. 13 Best wcandidate selected

versus ERD_R3 using

Algorithm 1
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used as a template to find a good prediction for the current

block. Both ESAD and TM exploit the spatial correlation

between the current block and its neighboring pixels. In

Sect. 4, we will also use template matching to find the base

block, instead of using full search as in Algorithm 1. We

will discuss TM in more details in Sect. 4. Here, we first

concentrate on the use of ESAD to estimate the distortion

ratio (DR).

We calculate the EDR using ESADcandidate and ESAD-

base using Eq. 5:

EDR =
ESADcandidate

ESADbase + ESADcandidate

ð5Þ

Algorithm 1 is repeated, with the average EDR recorded

instead of the original distortion ratio. Figure 10 plots the

best wcandidate selected versus average EDR. It shows that

the best weighting pair also has an inverse relationship with

the average EDR similar to that inverse relationship with

the distortion ratio. ESADcandidate and ESADbase can also

be calculated using more neighboring pixels to the current

block. Figure 11 shows that the number of neighboring

pixels used in ESAD calculation can be increased. The

fixed inverse-L shaped area increases with the number of

rows of pixels used. If the current block size is N ? N, the

number of rows of pixels used in ESAD calculation is R,

then the total number of pixels in ESAD calculation will be

R 9 (N ? N ? R). For example, if N = 16, R = 2, the

total number of pixels used is equal to 2 9 (16 ?

16 ? 2) = 68.

For simplicity, ESAD calculated with R = 2 is named

as ESAD_R2, ESAD calculated with R = 3 is named as

ESAD_R3, ESAD calculated with R = 4 is named as

ESAD_R4, and so on. ESAD_R2, ESAD_R3, and

ESAD_R4 are shown in Fig. 11. They are calculated,

respectively, and their plots against the best weighting are

shown in Figs. 12, 13 and 14. From observation, the results

using ESAD_R2, ESAD_R3, and ESAD_R4 are similar. In

the coming sections, we will determine the optimum

R number (that is the optimum number of pixels used in

ESAD calculation) by analyzing their variances.

4 Base block calculation using lowest ESAD

From the analysis in the last section, we can see that pre-

diction quality can be improved by superimposing two

inter-frame prediction signals, and the best weighting pair

selected has a relationship with the estimate distortion ratio

(EDR). In the experiments with Algorithm 1 in the last

section, the base signal block is found using conventional

exhaustive search. A MV indicating the displacement of

this base signal block in the reference frame is needed in

the decoder side. Including the MV for the displacement of

the candidate block, in total two MVs are required to be

transmitted. To eliminate the use of two MVs, we select

Fig. 14 Best wcandidate selected

versus EDR_R4 using

Algorithm 1
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another base block which has a displacement known by the

decoder side.

Inter-frame prediction using template matching (TM)

has been studied in many research works, for example [7,

9–11]. A group of neighboring pixels of the current block is

used as a template. Matchings between this template and

the templates of the candidate blocks in the reference frame

are performed. Certain matching criteria define the candi-

date block(s) suitable to be used for prediction. TM has the

advantage that no additional MV or side information is

Table 2 Average Base Block SAD using different numbers of pixels in ESADcandidate calculation

Num of rows (R) Num of pixels in ESAD calculation Akiyo (CIF) Coastguard (CIF) Foreman (CIF) Mobile (CIF) Mother (CIF)

1 33 170.01 1,314.20 791.52 1,597.16 480.96

2 68 165.40 1,250.30 771.94 1,480.15 459.76

3 105 165.08 1,239.33 770.16 1,453.42 456.09

4 144 165.48 1,236.54 773.58 1,436.14 449.34

5 185 166.86 1,234.90 777.81 1,423.74 445.04

6 228 167.71 1,236.20 783.34 1,421.05 442.26

7 273 168.26 1,236.05 789.18 1,418.94 441.85

8 320 168.69 1,239.20 795.27 1,418.56 442.43

9 369 168.97 1,242.76 804.84 1,418.38 441.64

10 420 169.13 1,246.92 812.46 1,419.44 441.49

Num of rows (R) Num of pixels in ESAD calculation Sean (CIF) Stefan (CIF) City (4CIF) Crew (4CIF) Harbor (4CIF)

1 33 484.98 1,327.70 1,153.48 1,304.74 1,403.67

2 68 465.27 1,276.80 1,083.99 1,262.12 1,328.98

3 105 456.36 1,264.19 1,064.11 1,241.63 1,303.64

4 144 449.98 1,264.02 1,055.07 1,231.50 1,290.20

5 185 449.87 1,265.87 1,053.07 1,224.85 1,282.83

6 228 447.75 1,274.64 1,053.19 1,220.82 1,277.68

7 273 446.93 1,286.64 1,055.30 1,218.90 1,276.90

8 320 446.32 1,292.87 1,058.49 1,217.16 1,274.52

9 369 446.70 1,303.05 1,063.96 1,217.57 1,273.20

10 420 446.74 1,318.06 1,069.42 1,217.58 1,273.89

Bold means the lowest value in that column

Table 3 Average SAD per block and average PSNR per frame of Algorithm 2

Akiyo (CIF) Coastguard (CIF) Foreman (CIF) Mobile (CIF) Mother (CIF)

Algorithm 2

Average SAD per block 114.37 1,045.27 546.68 1,197.13 298.86

Exhaustive search

Average SAD per block 132.43 1,140.81 602.03 1,329.97 334.22

Algorithm 2

Average PSNR (dB) per frame 46.06 31.47 35.43 28.04 42.49

Exhaustive search

Average PSNR (dB) per frame 44.93 30.88 34.79 27.52 41.55

PSNR increment 1.13 0.59 0.64 0.52 0.94

Sean (CIF) Stefan (CIF) City (4CIF) Crew (4CIF) Harbor (4CIF)

Algorithm 2

Average SAD per block 335.73 1,097.86 855.80 896.92 1,023.51

Exhaustive search

Average SAD per block 370.11 1,197.33 938.85 1,017.22 1,124.01

Algorithm 2

Average PSNR (dB) per frame 42.22 28.08 33.47 35.34 32.27

Exhaustive search

Average PSNR (dB) per frame 41.13 27.44 32.69 34.50 31.54

PSNR increment 1.09 0.64 0.78 0.84 0.73
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needed to be sent to the decoder side. The disadvantage is

that the prediction quality of the initial prediction block

found by TM is not as good as that of the prediction block

pointed by a MV found by full search or other search

algorithms. Moreover, the computational complexity of the

decoder side will also be increased. One of the methods of

Fig. 15 Best wcandidate selected

versus average estimated

distortion ratio EDR_R1 using

Algorithm 2

Fig. 16 Best wcandidate selected

versus average estimated

distortion ratio EDR_R2 using

Algorithm 2

J Real-Time Image Proc

123



performing TM is to find the lowest SAD value between

the template of the current block and the templates of the

candidate blocks. It is the same as finding the candidate

block with the lowest ESADcandidate. Because we assume

that ESAD is a close approximation to the real SAD, we

replace the first exhaustive search step in Algorithm 1 with

Fig. 17 Best wcandidate selected

versus average estimated

distortion ratio EDR_R3 using

Algorithm 2

Fig. 18 Best wcandidate selected

versus average estimated

distortion ratio EDR_R4 using

Algorithm 2
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this TM, that is, finding the candidate block with the lowest

ESAD.

We substitute the base block in Algorithm 1 with the

candidate with the lowest ESAD. The flow of this Algo-

rithm 2 is summarized as follows:

Step 1 For each candidate block, calculate ESADcandidate

as depicted in Fig. 9

Step 2 Select the candidate block with the lowest

ESADcandidate as base block

Step 3 Based on Eq. 3, perform block matching between A)

the current block and B) the weighted combinations

of candidate blocks in the search window and the

base block found in Step 2. The superimposed block

with the lowest distortion together with the

weighting used and the MV are found

We need to determine the number of rows (R) of neigh-

boring pixels to be used in the lowest ESADcandidate calcu-

lation in the first step of Algorithm 2. Experiment is

Fig. 19 Variance of EDR values using different numbers of rows of pixels in Foreman

Fig. 20 Variance of EDR values using different numbers of rows of pixels in Akiyo
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conducted to measure the average SAD value of the base

block found using different numbers of pixels in ESADcan-

didate calculation. Block size is 16 9 16 pixels. Ten different

numbers of rows are tested. The results are shown in Table 2.

The numbers in bold font highlight the lowest average SAD in

each test sequence. Using more number of rows (R) in the

lowest ESADcandidate calculation does not yield a lower dis-

tortion base block in the most test cases. We can observe that

R = 3, that is the number of pixels in ESADcandidate calcu-

lation for the base block equals 105, yields a lower distortion

base block for most sequences. Consider that a lower dis-

tortion base block is more favorable because a lower distor-

tion base block resembles the one found by exhaustive full

search as in Algorithm 1, we select R = 3 in the ESADcandidate

calculation for finding the base block.

The prediction quality achieved using Algorithm 2 is

shown in Table 3. We can observe that the quality

improvement is lower than that achieved by Algorithm 1.

This is reasonable because in Algorithm 2, the base block

is calculated using TM, where in Algorithm 1 the base

block is found using conventional exhaustive search.

However, Algorithm 2 only requires the transmission of

one MV to the decoder side.

Figure 15 plots the best wcandidate selected versus average

EDR, using Algorithm 2. We can see that there is a clear trend

of increasing EDR with decreasing wcandidate selected.

Fig. 21 Variance of EDR values using different numbers of rows of pixels in Stefan

Fig. 22 Best fit exponential

equation for the dataset of best

wcandidate selected versus

average EDR_R2 using

Algorithm 2 in the

section. 0.7 \ Average

EDR_R2 \ 1
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Experiments using different numbers of rows (R) of

neighboring pixels in ESADcandidate and ESADbase in the

EDR calculation are conducted. Average EDR_R2,

EDR_R3, and EDR_R4 are the average EDR values of

using 2 rows, 3 rows, and 4 rows of neighboring pixels in

ESADcandidate and ESADbase, respectively. They are plotted

against the best wcandidate selected in Figs. 16, 17, 18. We

can see that all of them have a clear trend of increasing

EDR with decreasing wcandidate selected.

We have to determine which number of rows (R) of

neighboring pixels is most suitable for the EDR calcula-

tion. We do this by measuring the variances of the EDR

values using different R numbers. Figure 19 plots the

variances of the EDR values using R from 1 to 10, in test

sequence Foreman. Figures 20 and 21 are the results in test

sequences Akiyo and Stefan. From Figs. 19–21, it can be

seen that the variances are the lowest with R = 2 or R = 3.

This result is consistent in sequences with different motion

contents. Consider that R = 2 has lower computational

complexity because it uses fewer numbers of neighboring

pixels in the EDR calculation, we select R = 2, that is

using two rows of neighboring pixels of the base block and

the candidate blocks, to calculate the EDR values.

5 Adaptive superimposed inter-frame search algorithm

In Sect. 3, we propose the use of neighboring pixels of the

current block to calculate the EDR. It is found that there is

a strong correlation between the EDR and the best

weighting in the superimposition of two signal blocks. In

Sect. 4, we further reduced the use of two MVs into one.

We find that R = 2, that is using two rows of adjacent

pixels to calculate EDR, can provide a robust prediction of

the optimum weightings to be used in the superimposition

of the base block and the candidate block.

In a close analysis of the best wcandidate selected versus

average estimated distortion ratio EDR_R2 using Algo-

rithm 2 as shown in Fig. 22, we find that in the section

average EDR_R2 larger than 0.7, there is a clear expo-

nentially tread of decreasing best wcandidate selected ver-

sus average EDR_R2. We can obtain a best fit

exponential function for this section. The exponential

function has a R-squared value of 0.919, which shows

that the correlation is quite high. To remove the sample

noise, samples formed by \0.5 % of the total blocks are

removed. In the section average EDR_R2 smaller than

0.7, although we can also find best fit functions for the

sample points, they cannot help us to predict an optimum

wcandidate from a EDR_R2 because the sample points are

too much vertically lined-up. Based on this analysis, we

obtain an optimum wcandidate function, which is shown in

Fig. 23.

For our experiments using CIF and 4CIF sequences,

with prediction block size in 16 9 16 pixels, the optimum

wcandidate prediction function is:

wcandidate ¼
1; EDR 2 ½0; 0:7�
470:74e�10:82�EDR; EDR 2 ð0:7; 1:0�

�
ð6Þ

When EDR_R2 is smaller than or equal to 0.7, wcandidate

is equal to 1. That means wbase equals to 0. The base block

is not superimposed with the candidate block. This is

original block matching. For EDR_R2 larger than 0.7,

wcandidate is calculated using the exponential function.

Weighted superimposition is performed according to the

weighting pair obtained. Based on this model, we propose

an adaptive superimposed inter-frame search algorithm

(ASIS) algorithm.

Fig. 23 Optimum wcandidate

prediction function
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ASIS combines two methods: (1) use the lowest

ESADcandidate to find the base block, and (2) use optimum

wcandidate prediction function in Eq. 6 to estimate the

weighting to be used in the superimposition of the base

block and the candidate block. The flow of ASIS is sum-

marized as follows:

Step 1 For each candidate block, calculate ESADcandidate

Step 2 Select the candidate block with the lowest

ESADcandidate as base block. ESADbase is set as

this lowest ESADcandidate

Step 3 At each candidate position, calculate the EDR

using ESADcandidate and ESADbase. Calculate the

weighting pair wcandidate and wbase based on the

EDR and the function in Eq. 6. Superimpose each

candidate block with the base block to form the

Fig. 24 Block scheme of ASIS
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superimposed candidate blocks, using the

weighting pairs calculated.

Step 4 Perform SAD block matching between A) the

current block and B) the superimposed candidate

blocks. The superimposed candidate block with

the lowest distortion and the MV are found.

The block scheme of ASIS is depicted in Fig. 24. It can

be observed that the algorithmic overhead of ASIS is not

very complex.

6 Experimental results

The rate-distortion improvement brought by MHMCP is

studied in-depth in many research works, for example

[4–6], and thus will not be repeated in this paper. We do

not want to restrict our proposed MHMCP in any particular

coding scheme. Instead, we want to show that our method

can estimate the optimum weighting pair adaptively

and efficiently. Therefore, we measure the prediction

Table 4 Average SAD per block and average PSNR per frame of proposed ASIS

Akiyo (CIF) Coastguard (CIF) Foreman (CIF) Mobile (CIF) Mother (CIF)

ASIS

Average SAD per block 121.95 1,080.59 580.76 1,261.79 318.38

Exhaustive search

Average SAD per block 132.43 1,140.81 602.03 1,329.97 334.22

ASIS

Average PSNR (dB) per frame 45.44 31.19 34.88 27.73 41.91

Exhaustive search

Average PSNR (dB) per frame 44.93 30.88 34.79 27.52 41.55

PSNR increment 0.51 0.31 0.09 0.21 0.36

Sean (CIF) Stefan (CIF) City (4CIF) Crew (4CIF) Harbor (4CIF)

ASIS

Average SAD per block 352.52 1,148.14 894.97 967.80 1,065.83

Exhaustive search

Average SAD per block 370.11 1,197.33 938.85 1,017.22 1,124.01

ASIS

Average PSNR (dB) per frame 41.61 27.66 32.95 34.80 31.87

Exhaustive search

Average PSNR (dB) per frame 41.13 27.44 32.69 34.50 31.54

PSNR increment 0.48 0.22 0.26 0.31 0.33

Table 5 Comparison of prediction quality of ASIS with conventional exhaustive search

Akiyo

(CIF)

Coastguard

(CIF)

Foreman

(CIF)

Mobile

(CIF)

Mother

(CIF)

% of blocks with better prediction quality than exhaustive

search

40.7 79.8 63.3 74.0 65.1

% of blocks with same prediction quality as exhaustive search 58.9 19.8 34.5 24.6 33.4

% of blocks with worse prediction quality than exhaustive

search

0.4 0.4 2.1 1.4 1.5

Sean (CIF) Stefan (CIF) City (4CIF) Crew (4CIF) Harbor (4CIF)

% of blocks with better prediction quality than exhaustive search 75.5 71.4 78.8 47.7 73.4

% of blocks with same prediction quality as exhaustive search 23.8 26.2 20.4 50.6 25.8

% of blocks with worse prediction quality than exhaustive search 0.7 2.4 0.8 1.8 0.8
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performance of our proposed optimal weighting estimation

method using the simplest objective measurements, namely

the average SAD per block and the average PSNR per

frame. Because no side information will be transmitted in

our proposed algorithm, the gain will be pure prediction

improvement.

Table 4 shows the average SAD per block and average

PSNR per frame achieved by ASIS and conventional

exhaustive search using sequences of different motion

contents and of different resolutions. We can see that in all

sequences ASIS has lower SAD per block and higher

PSNR per frame than conventional exhaustive search. The

average PSNR improvement is 0.31 dB. In our algorithm,

SAD is used as the distortion measurement and the

superimposed block with the lowest SAD is selected

because SAD has a lower computational complexity. If

mean square error (MSE) is used, the PSNR improvement

can be enhanced because PSNR is calculated in MSE.

Although the prediction improvement is lower than that in

Algorithms 1 and 2, ASIS does not require the transmission

of extra side information like most other MHMCP algo-

rithms. This prediction improvement will be a pure gain.

We also measure the number of blocks (excluding

frame-boundary blocks) that ASIS achieves better, same, or

worse prediction (lower SAD) than conventional exhaus-

tive search. The percentages are shown in Table 5. We can

see that a much higher percentage of blocks can be better

predicted using the proposed ASIS algorithm. In average,

67 % of the blocks achieve better prediction quality using

ASIS, while in average only 1.2 % of the blocks have

worse prediction quality than exhaustive search. The phe-

nomenon that ASIS has a worse prediction than conven-

tional exhaustive search in some few cases is reasonable.

First, the weighting used in the superimpositions is esti-

mated using the EDR, which may not be the best weighting

for the superimposition. Second, the EDR is calculated

using the neighboring pixels. When the neighboring pixels

are not correlated with the current block, the prediction

accuracy of our proposed algorithm will be affected.

7 Conclusion

In this research work, we discovered that distortion ratio is

highly correlated to the best weighting used in the multi-

hypothesis motion compensation prediction. A method

using the neighboring pixels to estimate the distortion ratio

is developed. A novel motion compensation prediction

algorithm called adaptive superimposed inter-frame search

algorithm (ASIS) is proposed. This algorithm has better

prediction quality than conventional exhaustive search

without additional MV or side information. Therefore, the

prediction quality gain will be a pure gain.

The algorithm is also very robust as it works well in

video sequences of different motion contents and resolu-

tions. Moreover, the algorithmic decision overhead of the

proposed method is very low compared with other multi-

hypothesis motion compensation prediction methods. It can

be implemented in hardware for real time high-quality

video coding applications. We believe this work opens a

new and high potential path in motion prediction research.
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