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ABSTRACT 
Remote imaging photoplethysmography (RIPPG) can achieve 
contactless human vital signs monitoring. Though the remote 
operation mode brings a great convenience for RIPPG applications, 
the RIPPG signal quality is limited by the remote nature. 
Improving the RIPPG signal quality becomes an essential task in 
the clinical application of RIPPG. Since the region of interest 
(ROI) of the RIPPG transforms from a point to an area, there is a 
new approach to improving the RIPPG signal quality through 
refining the ROI. In this paper, we propose a dynamic ROI for 
RIPPG, which can automatically select the skin regions 
corresponding to good quality RIPPG signals. First, a fixed ROI is 
divided into non-overlapped blocks. Then two features are 
proposed to perform no-reference quality assessment for RIPPG 
signals from different blocks. After that, K-means clustering 
operates in a two dimensional feature space. A dynamic ROI can 
be selected for a video segment based on the clustering result, 
updated every two seconds. Nineteen healthy subjects were 
enrolled to test the proposed ROI selection method on both the 
facial region and the palmar region. Experimental results of heart 
rate measurement show that the proposed dynamic ROI method for 
RIPPG can effectively improve the RIPPG signal quality, 
compared with the state-of-the-art ROI methods for RIPPG. 

Index Terms— No-reference quality assessment (NRQA), 
photoplethysmography (PPG), region of interest (ROI), remote 
imaging. 
 

1. INTRODUCTION 
Photoplethysmography (PPG) is an electro-optic technique which 
can non-invasively measure the tissue blood volume pulse (BVP) 
underneath the skin [1]. The conventional contact PPG (CPPG) 
needs dedicated light sources and contact probes to detect the 
reflection/transmission light intensity variation from the tissue due 
to BVP. Recently, the emerging remote imaging PPG (RIPPG) 
technique can get rid of contact probes and dedicated light sources. 
Fig.1 illustrates the working principles of the CPPG and the 
RIPPG. 

        
                   (a)                                                  (b) 

Fig. 1. The illustration of the working principle of PPG: (a) CPPG, (b) 
RIPPG. 

 
The cardiac pulsation information can be accessed remotely by 

the RIPPG, and only a digital camera and ambient light are needed 
[2], [3]. For RIPPG, ambient light is used as the light source and 

the digital camera acts as a photoelectric converter. The digital 
camera focuses on a region of interest (ROI) of the human skin. A 
sequence of the skin images is recorded in the video format. 
Hemoglobin in blood can absorb light. And the hemoglobin 
concentration varies quasi-periodically with BVP. Hence BVP 
underneath the skin surface can modulate the light absorption by 
the skin along with cardiac cycles, expressing as tiny color 
variation of the skin. This tiny color variation can be detected by 
digital cameras. From the frame sequence of the video, the PPG 
signal can be accessed by video/signal processing techniques 

The development from the CPPG to the RIPPG brings new 
challenges. First, the signal-to-noise ratio (SNR) of a RIPPG signal 
is much lower than that of a CPPG signal. Without the aid of 
contact probes and dedicated light sources, the ambient light is 
used as the light source for the RIPPG. Actually, ambient light is 
regarded as a noise source in the CPPG application. Besides, there 
is a certain distance between the digital camera and the subject. 
These changes from the CPPG to the RIPPG limit the SNR of a 
RIPPG signal. Second, the motion artifacts problem is much more 
serious for the RIPPG, compared with the CPPG [5]. When the 
subject has a motion, the ROI used by the RIPPG will also move 
correspondingly. Ambient light is not distributed with a spatially 
homogeneous intensity in most environments. The ambient light 
intensity and the digital camera’s response on the ROI will vary 
with the movements of the ROI. Since the light intensity and the 
camera’s response on the ROI act as the signal source for the 
RIPPG, the true RIPPG signal will be disturbed by the subject’s 
motions. This is the reason why the motion artifacts problem is 
serious for the RIPPG.  

The low SNR and high motion artifacts severely impair the 
RIPPG signal quality. Hence almost all researches on the RIPPG 
paid attention to improving the RIPPG signal quality. The 
approaches can be classified into three categories: the chrominance 
based method, the adaptive bandpass filter based method, and the 
ROI based method. The chrominance based method aims to extract 
the RIPPG signal through a linear combination of RIPPG signals 
from different color channels. The representative chrominance 
based methods consist of independent component analysis (ICA) 
[3] and the skin tone based method [4]. The adaptive bandpass 
filter based method focuses on refining RIPPG signals in the 
frequency domain by using RIPPG signal characteristics. 
Continuous wavelet transform is used to denoise and refine peaks 
for the RIPPG in [6]. In [7], auto-regressive model is utilized to 
perform the spectral analysis for the RIPPG.  

The ROI based method targets on locating a good ROI on the 
skin region under measurement. Hence the selected ROI can 
provide a RIPPG signal with higher quality, compared with the 
whole facial or palmar region in the field of view. In order to 
improve the SNR of the RIPPG signal, all the pixels in a defined 
skin region will be averaged to calculate the RIPPG signal. 
Different regions of the skin carry RIPPG signals of different 
qualities, due to the difference in hair density, epidermis thickness, 
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capillary density, facial features, etc. Therefore, the regions which 
can provide relatively clear RIPPG signals should be selected as 
the ROI. While the regions which contain low quality RIPPG 
signals should be discarded. In [3], the whole face detected by the 
cascade classifier is chosen as the ROI. The forehead and cheeks 
regions can provide better RIPPG signals compared with other 
regions on the face, so the forehead or cheeks regions are chosen as 
the ROI in [2] and [8]. In [6] and [9], skin detection is utilized to 
mask the skin region and discard the non-skin region on the face in 
each frame because the non-skin region rarely contains the RIPPG 
information. And the dynamic skin mask is treated as a dynamic 
ROI for the RIPPG. In order to refine the ROI selection, the whole 
face region is divided into non-overlapped blocks in [10]. By far, 
the ROI selection for RIPPG still focuses on picking some regions 
which have good potential to provide good quality RIPPG signals, 
such as the forehead, the cheeks, and the skin region masked by 
skin detection. Though the block division method in [10] is more 
adaptive than the fixed ones, it still needs manual thresholding. 
There is a lack of an effective method to assess the RIPPG signal 
quality for the ROI selection.  

This paper focuses on improving the RIPPG signal quality 
through a dynamic ROI (DROI) approach. The chrominance based 
method and the adaptive bandpass filter based method are not 
discussed in this paper. We want to investigate whether the RIPPG 
signal quality can be improved through refining ROI as a dynamic 
map. This dynamic map can indicate skin regions providing good 
quality RIPPG signals.  

The rest of the paper is organized as follows. In section 2, we 
introduce two features, which can perform no-reference quality 
assessment of RIPPG wave segments. The DROI method is 
proposed in section 3. Experimental results are shown in section 4. 
Finally, a conclusion is drawn in section 5. 
 

2. NO-REFERENCE QUALITY ASSESSMENT OF 
RIPPG SIGNALS 

In order to determine a DROI, features for assessing the RIPPG 
signal quality are needed. There are three requirements for the 
feature selection. First, the features can directly index the RIPPG 
signal quality. Second, the quality assessment should be of no-
reference type, because there is no ground truth. Third, the features 
can be extracted from a short RIPPG wave segment (≤10 s), 
otherwise the ROI cannot be adaptively updated in time. 
According to above requirements, the cross correlation (CC) 
coefficient of consecutive wave segments and the SNR of a wave 
segment are utilized as features to assess the RIPPG signal quality. 

 
2.1. Cross correlation of consecutive wave segments 
A normal PPG signal is stable over time and consistent in the 
morphology. The PPG signal shape in the current heartbeat is quite 
similar to that of the previous heartbeat. However, a distorted or 
low-SNR PPG signal will not be consistent in morphology [11]. 
The shape of the distorted PPG wave varies from beat to beat. 
Hence the CC coefficient between consecutive wave segments of a 
clear PPG signal will be much higher than that of a distorted PPG 
signal. The CC coefficient is calculated as (1). 
 

ߛ = max
௨

ቆ
∑ [݂(݊) − ݂௨̅][݃(݊ − (ݑ − ݃̅௨]

ඥ∑ [݂(݊) − ݂௨̅]ଶ∑ [݃(݊ − (ݑ − ݃̅௨]ଶ
ቇ						(1) 

 
where ݂(݊) and ݃(݊) are two RIPPG signal segments, ݑ is a shift 
between ݂(݊) and ݃(݊), ߛ is the CC coefficient, ݂௨̅ is the mean of 
segment ݂(݊) in the overlap region during shifting, and ݃̅௨ is the 

mean of segment ݃(݊) in the overlap region during shifting. In this 
paper, the length of each RIPPG wave segment is 2 seconds. The 
shift is limited within ±0.5 seconds. The maximum CC coefficient 
at a certain shift ݑ will be chosen as the CC coefficient between the 
two consecutive wave segments. There is a set of typical RIPPG 
signals shown in Fig.2. Fig. 2(a) is a RIPPG wave collected from a 
5×5 pixels region on the subject’s cheeks, which is a normal 
RIPPG signal. Fig. 2(b) is a RIPPG wave collected from a 5×5 
pixels region on the subject’s lips at the same time. Since the lip 
skin cannot provide a good RIPPG signal, there are distortions in 
the wave shown in Fig. 2(b). Fig. 2(c) shows the CC coefficients 
between consecutive wave segments (2s) for the normal RIPPG 
wave and the distorted RIPPG wave given above. The distorted 
RIPPG wave can be distinguished from the normal RIPPG wave 
by CC coefficients as shown in Fig. 2(c). 
 

   
                          (a)                                                       (b) 

 
           (c) 

Fig. 2. Typical RIPPG waves and the CC coefficients of consecutive wave 
segments: (a) Normal RIPPG wave, (b) Distorted RIPPG wave, (c) CC 

coefficients of consecutive wave segments. 
 

2.2. SNR of a wave segment 
Since the normal PPG signal is quasi-periodical, a clear dominant 
peak and harmonic peaks will appear in the spectrum of the normal 
PPG signal, as shown in Fig. 3. A clear dominant peak in the 
spectrum means a high SNR of the RIPPG signal, which 
corresponds to a high RIPPG signal quality. When the RIPPG 
signal is unstable or distorted, its corresponding SNR will 
decrease. So we select the SNR of a RIPPG wave segment as 
another feature to distinguish between the normal RIPPG signals 
and the distorted ones. The SNR of a RIPPG wave segment used in 
this paper is defined as (2). 
 

ܴܵܰ =
ܵ( ு݂ோ)

∑ ܵ(݂)ೞೌ/ଶ
ୀ − ܵ( ு݂ோ)

																									(2) 

 
where ܵ(݂) is the spectral density function of a RIPPG wave 
segment from a block, ܵ( ு݂ோ) is the spectral density at heart rate 
(HR) frequency ு݂ோ, and ௦݂ is the sampling rate of the 
RIPPG signal. Actually, there is no reference CPPG signal to 
provide ு݂ோ. Therefore, ு݂ோ is estimated from the fixed ROI first, 
because averaging in the fixed ROI (the whole face/palm) can 
provide a stable estimation of ு݂ோ in the frequency domain. Then 
the SNR for each block can be calculated using the estimated ு݂ோ 
from the fixed ROI. In this paper, the window size for calculating 
the SNR of a RIPPG wave segment is 10 seconds, and the window 
will be shifted forward by 2 seconds every 2 seconds. Fig. 4 shows 
SNR values for the sample RIPPG waves used in Fig. 2. The SNR 
feature can distinguish the normal RIPPG wave segments from the 
distorted ones effectively.  
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                               (a)                                                     (b) 

Fig. 3. A typical CPPG wave and its normalized spectrum: (a) CPPG wave, 
(b) Normalized spectrum. 

 
Fig. 4. The SNR values for the sample normal and distorted RIPPG waves. 
 

3. METHODOLOGY 
Based on no-reference quality assessment of the RIPPG signal, a 
DROI method for RIPPG is proposed, as illustrated in Fig. 5.  

 
Fig. 5. The flow chart of the proposed dynamic ROI method for RIPPG. 

 
A video clip for illustrating the proposed DROI method for RIPPG 
is provided at (http://youtu.be/lklryLa9xQQ). Detailed descriptions 
for each module are given in the following subsections. 
 
3.1. Non-overlapped blocks division 
First, a fixed ROI is selected on a skin region. Then the fixed ROI 
is divided into ܯ ×ܰ non-overlapped blocks. Each block is 
defined as a square. The height of the fixed ROI will be divided 
into 25 equal parts, and the side length of each square block is 1/25 
height of the fixed ROI. Averaging of pixel values in the green 
channel is performed in each of the ܯ ×ܰ blocks along the time 
axis. Thus, ܯ ×ܰ raw RIPPG signals can be obtained. After the 
averaging operation, the ܯ ×ܰ raw RIPPG signals are processed 
using a bandpass filter with cutoff frequencies of 0.75-4 Hz. So 
ܯ × ܰ RIPPG signals can be accessed from the ܯ ×ܰ blocks, 
respectively. In this paper, all RIPPG signals are extracted from the 
green channel of videos because the PPG signal gets the highest 
SNR in the green region of the light spectrum [12]. The cutoff 
frequencies of the bandpass filter corresponds to a HR range of 45-
240 beats per minute (bpm).  

Next, each RIPPG signal from different blocks is temporally 
segmented every 2 seconds along the time axis. The CC 
coefficients and the SNR values are calculated for the ܯ ×ܰ 

RIPPG wave segments within a 2-second time window, and the 
two features are updated every 2 seconds. At the same time, 
motion detection is utilized to discard unreliable blocks within the 
same 2-second time window. The unreliable blocks usually contain 
hairs, lines or facial features. Motion detection is performed for 
each block within each temporal segment, as shown in (3). 
 

,݅)ܦ ݆) = max
௫,௬∈
௧∈ௌ௧

ቆ
,ݔ)ܲ݀ ,ݕ (ݐ

ݐ݀ ቇ , 	1 ≤ ݅ ≤ ,ܯ 1 ≤ ݆ ≤ ܰ		(3) 

 
where ܲ(ݔ, ,ݕ ,ݔ) is the pixel value at the position of (ݐ  in a (ݕ
block at the time ݐ in a temporal segment, ܦ(݅, ݆) is the maximum 
temporal derivative of pixel value in the pipeline defined by a 
spatial block and a temporal segment. Based on the motion 
detection result ܦ(݅, ݆), a motion mask can be produced 
accompanying each feature map. 
 
3.2. K-Means clustering on the feature map 
The left ܯோ × ோܰ blocks belong to the reliable region, which 
correspond to the clear human skin. After reliable blocks are 
determined, a two dimensional feature map can be obtained for the 
fixed ROI in a 2-second frame sequence. Each point on the feature 
map consists of a pair of the CC coefficient and the SNR for a 
reliable block in this fixed ROI within a 2-second time window. 
Null values are assigned to the points corresponding to unreliable 
blocks. This feature map can describe the spatial distribution of 
RIPPG signal quality on a fixed ROI within a 2-second time 
window. K-means clustering is performed on each feature map 
[13]. The skin region providing good quality RIPPG signals, which 
are the blocks corresponding to the cluster with higher means of 
the CC coefficient and the SNR, will be mapped as the DROI as 
shown in Fig. 6. The DROI can be updated every 2 seconds. A 
RIPPG signal can be obtained by averaging the pixel values in the 
DROI sequence. 
 

       
                                   (a)                                                      (b) 

Fig. 6. K-means clustering on a feature map: (a) K-means clustering in a 
two dimensional feature space, (b) The clustering result mapped onto the 

fixed ROI (Red blocks - DROI, Blue blocks - Discarded ROI, Transparent 
blocks - Unreliable blocks). 

 
3.3. Averaging in the DROI and overlap-add 
Due to the update of the DROI every 2 seconds, there will be 
discontinuities in the RIPPG signal at transitions of the DROI. In 
order to remove these discontinuities, an overlap-add operation is 
adopted. The temporal segmentation of ܯ ×ܰ RIPPG signals is 
shifted forward along the time axis by 1 second. A second DROI 
sequence is generated using the shifted temporal segmentation 
windows. A second RIPPG signal can be obtained by averaging the 
pixel values using the second DROI sequence. The two RIPPG 
signals have staggered discontinuities every 1 second. Each of the 
two RIPPG signals will be multiplied by repeated triangle 
windows, with an interval of 2 seconds. The final RIPPG signal 
results as the sum of these overlapping pieces, with an overlap of 1 
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second.  
 

4. EXPERIMENTAL RESULTS 
In total, 19 healthy volunteers (13 males, 6 females) in the ages of 
23 to 34 years participated in the study. A low-cost webcam 
(Logitech C270) was used as the imaging device. Frame rate is 30 
fps. All videos were recorded in color space (24-bit RGB) with a 
resolution of 640×480. A 1-minute long video was recorded for 
each subject. The subject was asked to raise the right hand, keep 
steady, and sit in front of the webcam at a distance of 
approximately 75cm during the video capture. A CPPG (HRS-
06UF Heart Sensor) was contacted to the subject’s index finger to 
record the BVP wave for reference. The proposed DROI method 
for RIPPG is tested on both the facial region and the palmar region. 
RIPPG signals are accessed from the two regions using the 
proposed DROI method and different benchmark methods [3], [6], 
[8], [10]. For the facial region, the complete fixed ROI (CFROI) is 
a fixed ROI located by Viola-Jones (VJ) face detector in the initial 
frame of a video as the outer rectangle on the face in Fig. 7 [14]. 
And the partial fixed ROI (PFROI) on the facial region consists of 
two fixed ROIs on the cheeks as the two dotted inner rectangles on 
the face in Fig. 7. For the palmar region, the CFROI is manually 
selected as a rectangle over the palm as shown in Fig. 7. There is 
no research about the optimal ROI on the palm for RIPPG, so the 
PFROI method was not tested on the palmar region. The ICA 
based RIPPG method [3], the HR map based ROI method [10], the 
skin mask based ROI method [6], and the proposed DROI method 
are all implemented by the use of the CFROIs on the face and the 
palm. 

 
Fig. 7. Fixed ROIs on the facial region and the palmar region. 

 
Then HR measurement was performed using these RIPPG 

signals and the reference CPPG signals of the 19 subjects. Bland–
Altman analysis is utilized as the main method to analyze the 
agreement between the RIPPG and the CPPG [15]. The 
measurement bias and 95% limits of agreement between the 
RIPPG and the CPPG will be calculated to check the accuracy of 
the RIPPG. 95% limits of agreement is bias ±1.96 standard 
deviation of the differences, which shows how far apart HR 
measurements by the RIPPG are more likely to be for most 

individuals. Pearson’s correlation coefficients (PCC) and the 
corresponding p-values are calculated to measure the linear 
dependency between the RIPPG and the CPPG [16]. In addition, 
root mean square error (RMSE) between HR values accessed by 
the CPPG and the RIPPG is also utilized to measure the accuracy 
of the RIPPG. 

For the facial region, the statistic results using Bland–Altman 
analysis for different RIPPG methods are given in Table 1. The 
boxplot of RMSE of HR measurements using different RIPPG 
methods is shown in Fig. 8(a). 

For the palmar region, the statistic results using Bland–Altman 
analysis for different RIPPG methods are given in Table 2. The 
boxplot of RMSE of HR measurements using different RIPPG 
methods is shown in Fig. 8(b). 

It can be observed that the proposed DROI based RIPPG 
obtains the best performance on both the facial region and the 
palmar region, compared with the benchmark methods. 

 

 
                               (a)                                                         (b) 
Fig. 8. The boxplot of RMSE of HR measurements using different RIPPG 

methods (a) on the facial region and (b) on the palmar region. 
 

5. CONCLUSION 
Due to the difference in the operation mode between the CPPG and 
the RIPPG, the ROI transforms from a point for the CPPG to an 
area for the RIPPG. Thus, ROI selection becomes a new problem 
for the RIPPG application. With the aid of two features, SNR and 
CC, for no-reference quality assessment of RIPPG signals, a 
dynamic ROI can be obtained based on K-means clustering. The 
experimental results approve the effectiveness of the proposed 
DROI method for RIPPG. In addition to improving the RIPPG 
signal quality, the proposed DROI method can also reveal the 
spatial distribution of the RIPPG signal quality on some skin 
region. Furthermore, this DROI method can be flexibly applied on 
different skin regions, including the facial region and the palmar 
region. Since the proposed DROI method for RIPPG is able to vary 
the ROI along with the subject’s physical variation and the 
environmental variation, we believe that this DROI method can 
enhance the adaptability of the RIPPG in practice. 
 

TABLE 1 
THE PERFORMANCES OF DIFFERENT RIPPG METHODS IN HR MEASUREMENT ON THE FACIAL REGION 

Statistic CFROI PFROI ICA HR map Skin mask DROI 
Bias (bpm) −0.7 −0.7 −0.8 −0.7 −0.9 −0.7 

Limits of agreement Upper limit (bpm) 8.2 7.4 6.2 7.9 8.2 5.0 
Lower limit (bpm) −9.5 −8.8 −7.8 −9.4 −9.9 −6.4 

PCC 0.924 0.934 0.951 0.928 0.921 0.967 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 
TABLE 2 

THE PERFORMANCES OF DIFFERENT RIPPG METHODS IN HR MEASUREMENT ON THE PALMAR REGION 
Statistic CFROI ICA HR map Skin mask DROI 
Bias (bpm) −0.7 −0.9 −0.6 −0.5 −0.6 

Limits of agreement Upper limit (bpm) 6.0 8.4 5.9 7.5 3.8 
Lower limit (bpm) −7.4 −10.2 −7.0 −8.6 −4.9 

PCC 0.954 0.915 0.957 0.933 0.980 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 
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