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ABSTRACT 

Photoplethysmography (PPG) has been widely used in clinical 
applications for monitoring vital signs especially heart rate by pulse 
oximeter. Recent researches have demonstrated the possibility of 
using fingertip video based PPG approach to estimate heart rate by 
smartphones. However, due to the variation of camera sensor 
characteristics in difference smartphones, the conventional fixed 
region-of-interest (ROI) for PPG signal extraction technique is not 
reliable. In this paper, a novel frame adaptive ROI method is 
proposed to detour the color saturation or cut-off distortion in the 
fingertip video capturing process for improving the reliability due to 
variation and limited dynamic range of the camera sensors in 
different smartphone models. Experimental results demonstrate that 
the proposed method can produce good pulsatile waveform and 
achieve high heart rate estimation accuracy using different 
smartphone models as compared with a FDA (U.S. Food and Drug 
Administration) approved commercial pulse oximeter.  

Index Terms— Photoplethysmography (PPG); Pulse oximeter; 
Heart rate; Color saturation; Color cut-off. 

I. INTRODUCTION 
Recent report [1] has shown that self-measurement of vital signs 
is crucial for patients with chronic diseases, myocardial infarction 
or stroke. It is because vital signs such as heart rate, respiration 
rate, and blood oxygen saturation are important for timely 
detection of health conditions [2]. Photoplethysmography (PPG) 
has been widely used in clinical applications of monitoring heart 
rate by pulse oximeter. Basically, PPG is a noninvasive technique 
as human skin is illuminated by the light source and a 
photodetector is used to detect cardiovascular pulse wave that 
propagates through the body [3].  

For most of people, the pulse oximeter is not the best device 
for performing timely self-monitoring of vital signs since they 
may not be willing to purchase and carry this special equipment 
[4]. Nowadays, smartphone has become the most portable, mobile 
and affordable communication device and people bring 
smartphones with them everywhere all the time. Besides its 
portability, mobility, connectivity and high computational power, 
smartphone usually has a built-in digital camera together with a 
light emitting diode (LED) or so called flashlight, as shown in Fig. 
1(a). This hardware configuration is very suitable for reflection 
mode PPG to assess physiological signal using the smartphone 
camera. In which, video is captured by placing the fingertip over 
both camera and flashlight as indicated in Fig. 1(b). 

A common approach of PPG signal extraction in fingertip 
video is to use a predefined region of interest (ROI) in each video 
frame for a particular color channel and then average the pixel 

values within the ROI to convert the 2-dimensional video signal 
into an 1-dimensional signal. In [5], Jonathan used a 10×10-pixel 
region located at the center of each frame as ROI and the green 
channel is supposed to provide a stronger signal than red and blue 
channels. Nokia E63 smartphone model was used in their study 
and they demonstrated the feasibility of using smartphone for 
heart rate measurement by frequency-domain analysis. Similarly, 
Blokhovsky [6] and Scully [7] both used central 50×50-pixel 
region as ROI to generate the PPG signal from fingertip videos. 
Bolkhovsky used the green channel for iPhone4S and red channel 
for Motorola Droid, while Scully used the green channel for 
Motorola Droid. However, Grimaldi [8] reported that the 
distribution of the pixels in the green channel is not uniform for 
different smartphone models such as Samsung, HTC HD2, 
iPhone4 and Nokia. This raised a main concern of the reliability 
and accuracy of PPG signal extraction from fingertip video with 
the use of different smartphone models due to the variation of 
camera characteristics. To improve the reliability, color saturation 
distortion is considered in [9] and PPG signal is calculated as a 
radius of the circle fitting the binarized image of red channel by 
an adaptive threshold. Unfortunately, the use of radius as the PPG 
signal sometimes may not be accurate in some occasions. It is 
because the change of radius could not be obvious and noise may 
be created in the extracted PPG signal.  

       
                                         (a)                                               (b) 
Fig. 1: (a) Camera configuration of smartphone (Model: Galaxy Nexus), and 

(b) Fingertip video capturing for reflection mode PPG using smartphone.  

To tackle the problem of camera characteristic variation in 
different smartphone models, a new frame adaptive ROI 
technique is proposed in this paper to detour the color saturation 
and cut-off distortion in the fingertip video capturing process. 
Thus, signal distortion caused by the limited dynamic range of 
camera sensors can be minimized. This paper is organized as 
follows. In section 2, the problem raised from the color saturation 
and cut-off distortions in fingertip video is discussed. The new 
frame adaptive ROI method for PPG signal extraction is proposed 
in section 3. Experimental results are given in section 4 and 
followed by our conclusion in section 5. 
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II. COLOUR SATURATION AND CUT-OFF DISTORTIONS OF 
FINGERTIP VIDEO 

To improve the PPG signal extraction from fingertip video, we 
have to first understand the main characteristics of color 
saturation and cut-off distortions. Similar to the findings of color 
distortion in [10], due to the limited dynamic range of the camera 
sensors, color saturation and cut-off distortions are often found in 
the fingertip video. It is probably because the fingertip closely 
contact with the smartphone camera with the flashlight turned on, 
as illustrated in Fig. 1(b). It results in some regions may be too 
bright or too dark. Examples of red, green and blue channels of 
fingertip video frames that captured by smartphone cameras of 
Galaxy Nexus and LG Optimus P920 are shown in Fig. 2 and Fig. 
3, respectively. From these figures, we can easily realize some 
regions of the video frames are too bright that over the maximum 
brightness of the camera sensors and saturation distortion is 
caused, i.e. the white regions in Fig. 2(a) and Fig. 3(a) are 
equivalent to the maximum intensity of 255 in red channel. The 
main feature of the saturation regions of video frames is that they 
are capped to the maximum level or 255 for an 8-bit dynamic 
range. Similarly, some regions of the video frames may be too 
dark, for example, the blue and green channels as shown in Fig. 
2(b)-(c), and Fig. 3(b)-(c). This may be due to that human tissue 
in vivo of a fingertip almost covers the whole camera and the 
reflected light other than red is hardly detected and sensed by the 
camera sensors. These too dark regions are considered as cut-off 
distortions since their brightness are lower than the minimum 
sensitivity of the camera sensors. The main feature of the cut-off 
regions is that they are quantized to the minimum level of zero. 

In order to save the computation, the conventional PPG signal 
extraction methods [5-7] use a small region of the video frame, 
e.g. 50×50-pixel ROI at center of the video frame. However, this 
fixed ROI is not reliable for different fingertip position and 
different smartphone models. First column of graphs in Fig. 4 
shows the signals generated by averaging the central 50×50-pixel 
ROI of frames using the RGB color channels of Fig. 2. The 
extracted signal remains constant values of 255 or 0, and 
manifests the problem due to the color saturation or cut-off 
distortion. Second column of graphs in Fig. 4 shows the second 
example of PPG signal extracted from the fingertip video of Fig. 
3. Since not all the central regions are in the color saturation or 
cut-off regions, PPG signals are possible to be generated in green 
and blue channel. However, these extracted signals are very noisy, 
and it is difficult for peak detection in heart rate estimation.  

   
(a)  (b)  (c) 

Fig. 2: Fingertip video frames (640×480) captured by Galaxy Nexus 
smartphone: (a) red channel, (b) green channel, and (c) blue channel. 

   
(a)  (b)  (c) 

Fig. 3: Fingertip video frames (320×240) captured by LG Optimus P920 
smartphone (a) red channel, (b) green channel (magnify by 5 times), and (c) 

blue channel (magnify by 5 times). 
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Fig. 4: Extracted PPG signals using Galaxy Nexus and LG Optimus P920 
smartphone from central 50x50-pixel region of red channel, green channel, 

and blue channel. 

III. FRAME ADAPTIVE ROI FOR PPG SIGNAL EXTRACTION 

Based on the color saturation and cut-off distortion phenomena 
in section 2, pixels of a specified color channel in fingertip video 
can be classified into three types:  
(1) Full-PPG pixel: The temporal pixel intensity variation of the 

PPG signal lies within the dynamic range of the camera 
sensors. Thus, high quality PPG signal can be extracted from 
full-PPG pixel. An example is shown in Fig. 5(a), whereas 
neither saturation nor cut-off distortion are occurred. 

(2) Partial-PPG pixel: The temporal pixel intensity variation of 
the PPG signal does not always lie within the dynamic range 
of the camera sensors. Sometimes the pixel intensities are 
saturated due to too bright, as depicted in an example of Fig. 
5(b), or being cut off. This type of signals can significantly 
degrade the quality of PPG signal since the saturated and cut-
off timeslots of partial-PPG signals are hardly to be same and 
may be varied largely. 

(3) None-PPG pixel: The temporal pixel intensity is in either 
saturated or cut-off region, as shown in Fig. 5(c), and always 
produces constant output. 

 
 (a)  (b)  (c) 

Fig. 5: The signals of (a) a full-PPG pixel, (b) a partial-PPG pixel with 
saturation distortion in some time sessions due to a large off-set, and (c) a 

none-PPG signal with cut-off distortion. 
Based on this model, a PPG signal extracted from a color 

channel of a fingertip video using a specified ROI can be 
expressed as a combination of these three types of pixels: 

!! ! = ! 1! !! !, !, !
(!,!)∈!!

+ !! !, !, !
(!,!)∈!!

+ !! !, !, !
(!,!)∈!!

!(1) 

where c represents the color channel and it can be R (red), G 
(green), or B (blue) channel. !! !  is the extracted PPG signal 
from color channel c by averaging the pixel intensity in the ROI, 
and D is the total number of pixels within the ROI. !! !, !, !  is 
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the pixel intensity of color channel c at pixel position (x,y) for 
frame t. 𝐸 , 𝐸  and 𝐸  are the regions with full-PPG pixels, 
partial-PPG pixels, and none-PPG pixels, respectively.  

Based on Eq. (1), high quality PPG signal can be extracted by 
using full-PPG pixels as ROI only. To determine full-PPG pixels 
as ROI, however, is not efficient and effective, as it needs to scan 
each pixel in temporal domain with sufficient duration for 
identifying full-PPG pixels. Moreover, the determined ROI may 
not be temporally stable due to slightly fingertip movement and 
change of lighting conditions. To tackle these problems, frame 
adaptive ROI is proposed, which uses full-PPG pixels and partial-
PPG pixels that are not in saturation or cut-off levels to define the 
adaptive ROI in each frame. In the proposed method, red channel 
is used for PPG signal extraction, and the adaptive ROI only 
consist of full-PPG and partial-PPG pixels in the red video frame, 
which can be expressed as:  

𝑅𝑂𝐼(𝑡) = {(𝑥, 𝑦)|0 < 𝐼ோ(𝑥, 𝑦, 𝑡) < 255}                    (2)     
where ROI(t) denotes the ROI at frame t. Thus, the PPG signal for 
R channel at frame t can be calculated as 

𝑃(𝑡) =    1
|𝑅𝑂𝐼(𝑡)|  𝐼ோ(𝑥, 𝑦, 𝑡)                            (3)    

(௫,௬)∈ோைூ(௧)
 

where   |𝑅𝑂𝐼(𝑡)| is number of pixels within the ROI(t). Fig. 6(a) 
shows the results of extracted PPG signals using Eq. (3) by 
averaging the full-PPG signal of Fig. 5(a) and the partial-PPG 
signal of Fig. 5(b) with exclusion of the saturation sessions. As 
the partial-PPG signal has a large offset, the generated PPG signal 
is greatly deformed due to offset in the unsaturated time sessions 
of the partial-PPG signal as Fig. 6(a).  

To avoid the waveform deformation due to different offsets, 
the first order difference of the full-PPG signals and partial-PPG 
signals can be used to generate high quality PPG signal. It is 
because the first order differences of both full-PPG and partial-
PPG signals are very similar in unsaturation or non-cut-off time 
sessions. To obtain the correct PPG signal waveform, frame 
adaptive ROI for PPG extraction is used and described as: 
𝑃(𝑡) = 𝑃(𝑡 − 1) + 1

|𝑅𝑂𝐼(𝑡) ∩ 𝑅𝑂𝐼(𝑡 − 1)| 

∙  ൫𝐼௦(𝑥, 𝑦, 𝑡) − 𝐼௦(𝑥, 𝑦, 𝑡 − 1)൯      (4)  
(௫,௬)∈ோைூ(௧)∩ோைூ(௧ିଵ)

 

where t ≥   1 and 𝑃(0) is the first sample of the extracted PPG 
signal from the first frame of fingertip video, which is given by 

𝑃(0) =    1
|𝑅𝑂𝐼(0)|  𝐼ோ(𝑥, 𝑦, 0)                                        (5)  

(௫,௬)∈ோைூ()
 

Basically, the sample of the extracted PPG signal is obtained by 
adding previous extracted PPG sample P(t-1) with the average 
pixel intensity differences of the current frame pixels and the 
previous frame pixels within the intersection of the adaptive 
ROIs. Fig. 6(b) shows the extracted PPG signal using Eq. (4) and 
Eq. (5) from the full-PPG signal of Fig. 5(a) and partial-PPG 
signal of Fig. 5(b). In Fig. 6(b), the red dotted line is the partial-
PPG signal and green dotted line is the full-PPG signal. The 
waveform of the extracted PPG is not affected by the offset from 
the partial-PPG signal. With this frame adaptive ROI, high quality 
PPG signal can be extracted. Its main advantage is that it can 
adapt to the change of ROI due to fingertip movement or other 
conditions such as background lighting or flashlight variations.  

The extracted PPG signal from the fingertip video comprises a 
pulsatile physiological waveform, and a lower frequency 
component [11]. To extract the pulsatile waveform that related to 
heart rate, a 88-order equiripple finite impulse response (FIR) 

filter with bandpass frequencies ranging from 0.7 to 3.5 Hz is 
used to obtain the pulsatile signal. Fig. 7(a) shows an example of 
pulsatile PPG signal extracted by proposed method, which is 
shown for comparing with PPG signal in Fig. 7(b) that obtained at 
the same time by a FDA approved pulse oximeter EDAN M3 
[12]. From Fig. 7(a), we can observe that the pulsatile PPG 
extracted by the proposed methods can maintain the 
characteristics of pulsatile waveform, systolic peak, dicrotic notch 
and diastolic peak, which is very similar to Fig. 7(b). These 
characteristics are very important for diagnosing the heart related 
disease based on the PPG signal [1]. 

   
(a)       (b) 

Fig. 6:  PPG signals generated by (a) averaging the full-PPG signal of Fig. 
8(a) and the partial-PPG signal of Fig. 8(b) with exclusion of the saturation 
sessions, and (b) the proposed frame adaptive ROI with these two signals.  

 
(a) 

 
(b) 

Fig. 7: PPG signal extraction by (a) proposed method, (b) PPG signal from 
EDAN M3.  

It is difficult to objectively measure the performance of the 
proposed frame adaptive ROI PPG signal extraction using 
waveforms comparison. However, the major application of 
fingertip video based PPG is for heart rate estimation. The 
accuracy of heart rate estimation is good for objective evaluation 
by comparing the results from pulse oximeter at the same time 
during the fingertip video capturing. To obtain the heart rate from 
the extracted PPG signal after the bandpass FIR filter, local peak 
detection method is used, which aims at finding the systolic peaks 
in the PPG signal as the red dots in Fig. 7(a). The systolic peak is 
the local maximum point for one cardiac cycle, which can be 
detected by finding the maximum value during one cardiac cycle 
of the PPG signal. After the peak detection, average heart rate can 
be calculated by average time differences of two systolic peaks. 
Using the systolic peaks for the calculation of heart rate can 
provide continuous and instant heart rate, as it requires a short 
period of the PPG signal. 

IV. EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed methods, the 

FDA approved vital signs monitor EDAN M3 [12] with PPG 
based heart rate monitoring function is used to obtain the 
reference measures. Left-hand index finger of volunteer is used 
for fingertip video capture by smartphone camera, while the right-
hand index finger is used for EDAN M3 PPG measurement. Five 
smartphone models are used for our evaluation. They are 
Samsung Galaxy Nexus, LG Optimus P920, Samsung Galaxy S2, 
Samsung Galaxy Tablet 7.0, and Motorola Atrix. 
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PPG pulsatile signal is extracted for heart rate estimation using 
20-second fingertip videos that captured from ten volunteers by 
different smartphones and analyzed by three well-known methods 
of Jonathan’s method [5], Scully’s method [7], Lamonaca’s 
method [8], and the proposed methods. As Jonathan’s method 
uses the frequency domain for heart rate estimation, the duration 
of captured video is kept at 20 seconds for maintaining 
consistence of all methods. 

Table 1 shows the average heart rate and standard deviation 
(SD), i.e. (mean, SD), of different methods compared with the 
results from EDAN M3. For Galaxy Nexus smartphone, the green 
and blue channels are almost cut-off at the center of fingertip 
video frame. That is why the heart rate cannot be estimated by 
Jonathan’s and Scully’s methods as in Table 1. Table 2 shows the 
root-mean-square distortion (RMSD) of the estimated heart rates 
between different methods and the pulse oximeter. Jonathan’s 
method performs well for Galaxy S2 with relatively lower RMSD 
compared with other smartphones. Inside the ROI, Scully has 
higher percentage of full-PPG pixels, and lower RMSD compared 
with Jonathan’s method. Lamonaca’s method has similar average 
RMSD to Scully’s method, and can handle the saturation problem 
for red channel. However, its performance highly depends on the 
accuracy of the changing of radius for representation of the PPG 
signal. For some smartphone models, this change is not obvious 
and does not have an acceptable RMSD performance. From the 
last row of Table 2, we can find that the proposed methods can 
achieve lowest RMSD among all the compared methods. 
Moreover, the average RMSD is around 1.9, which is just around 
one-third of the Scully’s method.  

 Nexus LG Optimums Galaxy S2 
EDAN M3 (79.21, 12.33) (79.48, 13.92) (75.01, 13.12) 
Jonathan NA (76.84,  8.91) (72.12, 13.43) 
Scully NA (77.84,   9.52) (73.69, 13.09) 
Lamonaca (79.03, 12.48) (79.62, 11.91) (72.81, 11.02) 
Proposed (77.60, 12.04) (78.42, 13.61) (73.11, 12.69) 
 Galaxy Tablet Atrix Average of all 

smartphone 
EDAN M3 (79.96, 12.30) (72.46,   9.40) (76.15, 11.69) 
Jonathan (82.35, 16.03) (71.85, 10.96) (75.31, 11.56) 
Scully (83.05, 12.52) (74.90,   9.52) (77.66, 10.47) 
Lamonaca (80.37, 12.81) (73.17,   8.86) (75.74, 11.17) 
Proposed (78.30, 12.53) (70.81,   8.92) (74.75, 11.52) 

Table 1: (Mean, SD) of heart rate for different smartphones. 

 Nexus Optimums Galaxy S2 Galaxy Tablet Atrix Average 
Jonathan NA 12.42  4.69  6.08  6.55  7.81  
Scully NA 7.94  3.48  4.99  4.46  5.77  
Lamonaca 8.40  5.75  4.28  3.09  4.83  5.61  
Proposed 2.31  1.39  2.02  2.19  2.07  1.92  
Table 2: RMSD of heart rate for different smartphones compared with the 

pulse oximeter EDAN M3. 

 

  
Fig. 8: Bland-Altman plots comparing agreement between the average 

estimated heart rate and the pulse oximeter EDAN M3.  

Fig. 8 shows the Bland-Altman plots [13] of average estimated 
heart rate for different methods compared with measured results 
by the pulse oximeter EDAN M3. It compares two clinical 
measurements to show the errors, with the solid line representing 
the bias (difference between means) between the pulse oximeter 
and the compared methods. The two dash lines stand for 95% 
limits of agreement. Jonathan’s method has the largest 95% limits 
of agreement -17.1 bpm and 15.5 bpm. While Lamonaca’s and 
Scully’s methods have similar 95% limits of agreement, which 
are -10.1 bpm and 13.1 bpm, and -12.0 bpm and 11.3 bpm. For 
the proposed methods, the 95% limited of agreement is between -
4.1 bpm and 1.2 bpm, which shows that the proposed methods 
can achieve higher reliability in heart rate estimation among all 
the methods using different devices against the pulse oximeter 
EDAN M3, since the heterogeneous characteristics of cameras in 
different smartphone model are considered. 

V. CONCLUSION 
In smartphone fingertip video based PPG application, quality 

of PPG signal is strongly influenced by the heterogeneous 
characteristics of cameras in different smartphone models. To 
improve the reliability and accuracy of PPG signal extraction, 
new frame adaptive ROI is proposed, which can detour the color 
saturation and cut-off distortion in the fingertip video. In which, 
the first order difference of the full-PPG signals and partial-PPG 
signals are used to generate high quality PPG signal for avoiding 
waveform deformation due to different offsets. Experimental 
results demonstrate that the proposed methods outperform the 
three well-known fingertip video heart rate estimation methods, 
and have a higher reliability for heart rate estimation for different 
smartphones.  
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