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a b s t r a c t

Nowadays, Deep Neural Networks have been applied to many applications (such as classification,
denoising and inpainting) and achieved impressive performance. However, most of these works pay
much attention to describe how to construct the relative framework but ignore to provide a clear and
intuitive understanding of why their framework performs so well. In this paper, we present a general-
purpose no-reference (NR) image quality assessment (IQA) framework based on deep neural network
and give insight into the operation of this network. In this NR-IQA framework, simple features are
extracted by a new multiscale directional transform (shearlet transform) and the sum of subband
coefficient amplitudes (SSCA) is utilized as primary features to describe the behavior of natural images
and distorted images. Then, stacked autoencoders are applied as ‘evolution process’ to ‘amplify’ the
primary features and make them more discriminative. Finally, by translating the NR-IQA problem into
classification problem, the differences of evolved features are identified by softmax classifier. Moreover,
we have also incorporated some visualization techniques to analysis and visualize this NR-IQA frame-
work. The resulting algorithm, which we name SESANIA (ShEarlet and Stacked Autoencoders based No-
reference Image quality Assessment) is tested on several database (LIVE, Multiply Distorted LIVE and
TID2008) individually and combined together. Experimental results demonstrate the excellent perfor-
mance of SESANIA, and we also give intuitive explanations of how it works and why it works well. In
addition, SESANIA is extended to estimate quality in local regions. Further experiments demonstrate the
local quality estimation ability of SESANIA on images with local distortions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Visual quality measurement is a vital yet complex work in
many image and video processing applications. According to the
dependency of reference images, the objective image quality
assessment (IQA) methods are divided into three types: full-
reference (FR), reduced-reference (RR) and no-reference (NR). In
FR-IQA and RR-IQA methods, the whole reference images or partial
information of the reference images are assumed to be available.
Since information about original image are available, state-of-the-
art FR-IQA methods, such as IFC [1], VIF [2] and FSIM [3], can
achieve a very high correlation with human perception. However,
in many practical applications the availability of the full or partial
reference image’s information may be very expensive or even

impossible. Because of these drawbacks, NR-IQA (or blind IQA)
method has recently received a great deal of attention.

Most of the conventional NR-IQA algorithms can be classified
into three types as (1) Distortion-specific, (2) Natural scene statistics
(NSS), and (3) Training-based. For the first type, the distortion-
specific based NR-IQA algorithms usually calibrate some specific
distortions, such as JPEG [4], JPEG2000 [5]. Since this kind of NR-
IQA method usually implies some prior information about distor-
tions, it is very hard to generalize them to other new distortion
types. For the second type of NSS based approaches, these NR-IQAs
depend on the fact that natural scenes belong to a small set in the
space of all possible signals and most distortions that are prevalent
in image/video processing systems destroy the specific features of
natural scenes. Resent works about this type algorithms focused on
developing advanced statistical models to describe the properties of
natural images, and then the blind measurement of NR-IQA is
achieved by measuring the variation in terms of NSS. For example,
Lu et al. [6] improved the NSS model by contourlets. Moorthy et al.
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[7] proposed BIQI, which extracted features of NSS in the wavelet
domain. Saad et al. [8] proposed BLIINDS-II that applied a NSS
model of discrete cosine transform coefficients. Mittal et al. [9]
proposed BRISQUE that promotes extracting NSS features from the
spatial domain. For the third type of training-based NR-IQA algo-
rithms, they usually rely on a number of features extracted from
images. In which a regression model is learned based on these fea-
tures and labels to predict image quality. Resent works about this
type algorithms focused on using advanced machine learning
methods to extract effective features to represent natural images
and distorted images. For example, Li et al. [10] developed a NR-IQA
algorithm using a general regression neural network. Ye et al.
presented a NR-IQA framework based on unsupervised feature lear-
ning framework in [11] and a NR-IQA method based on Convolu-
tional Neural Networks in [12].

In this paper, a new NR-IQA with use of both NSS and Train-
ing-based approaches is proposed, which is named as SESANIA
(ShEarlet and Stacked Autoencoders based No-reference Image
quality Assessment). The proposed algorithm is a general-purpose
NR-IQA, which evaluates the image quality without incorporating
any prior knowledge about distortion types. Different from our
previous works [13], SESANIA does not directly use the property of
NSS model in shearlet domain to construct a predictor, but utilizes
the sum of subband coefficient amplitudes (SSCA) as primary feat-
ures to describe the behavior of natural images and distorted ima-
ges. Besides, training and learning methods are also adopted thro-
ugh the entire framework to achieve this new NR-IQA. The main
idea of SESANIA is based on the finding that the statistical prop-
erty of most natural images in shearlet domain is relatively cons-
tant. Nevertheless, distorted images usually contain more or less
spread discontinuities in all directions. That is, real-world image
distortions disturb the natural image statistical property and disc-
riminate it from natural images to distorted images. Shearlets are
apt at precisely detecting and locating these discontinuities or
singularities. Therefore, these variations in statistical property can
be easily described by shearlets and applied to describe image
quality distortion.

Specifically, for natural images, the SSCA in different scales has
relatively constant relationship in shearlet domain. However, this
constant relationship will be disturbed if a natural image is dist-
orted by some common distortions. Motivated by this idea, SSCA
can act as a primary feature descriptor to describe an image. Thus,
natural images and distorted images can be distinguished by these
primary features. Recently, deep neural networks have received a
great deal of attention and achieved great success on various
applications, such as denoising [14,15], inpainting [15], classifica-
tion [16] and natural language processing [17]. In this work, we
explore applying stacked autoencoders as ‘evolution process’ to
‘amplify’ the primary features and make them more discrimina-
tive. Through this evolution process, the discriminative parts of
the primary features are exaggerated. Finally, by translating the
NR-IQA problem into classification problem, the differences of
evolved features can be easily identified by Softmax classifier. In
the implementation process, SESANIA does not incorporate any

prior knowledge about distortions, which makes it suitable to
many distortions and easy to extend.

The remainder of the paper is organized as follows. Section 2
introduces the detailed implementation and related techniques
about SESANIA. In Section 3, experimental results and a thorough
analysis of this NR-IQA framework are presented. Finally, conclu-
sion and future works are given in Section 4.

2. Methodology

The proposed framework of using deep neural network for NR-
IQA is illustrated in Fig. 1. The major components in this frame-
work include: (1) SSCA extraction in shearlet domain, (2) feature
evolution using stacked autoencoders, (3) evolved feature identi-
fication using softmax classifier, and (4) quality score calculation.
More details will be described in the following sub-sections.

2.1. Shearlet transform

The proposed NR-IQA is based on the shearlet transform [18–24].
This multiscale transform is a multidimensional edition of the trad-
itional wavelet transform [25–27], and is capable for addressing anis-
otropic and directional information at different scales. When the
dimension n ¼ 2, the affine systems with composite dilations are
the collections of the form:

SHϕf ða; s; tÞ ¼ o f ; ϕa;s;t4 ; a40; sAR; tAR2 ð1Þ

where the analyzing factor ϕa;s;t is called shearlet coefficient, which
is defined as
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. Aa is the anisotropic dilation matrix and Bs is the

shear matrix. The analyzing functions associated to the shearlet tran-
sform are anisotropic and are defined at different scales, locations
and orientations. Thus, shearlets have the ability to detect directional
information and account for the geometry of multidimensional func-
tions, which overcome the limitation of the wavelet transform.

Shearlets have a lot of very good mathematical properties [19].
For examples, shearlet is well localized (which means they are
compactly supported in the frequency domain and have fast decay
in the spatial domain), highly directional sensitivity and optimally
sparse.

In summary, shearlets form a tight frame of well-localized
waveforms, at various scales and directions, and are optimally spa-
rse in representing images with edges. With these good properties,
shearlets can provide more additional information about distor-
ted images than the traditional wavelets and is suitable to NR-
IQA work.

Fig. 1. Overview of the SESANIA framework.
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2.2. Feature extraction

Usually, the performance of NR-IQA model is highly related to
the representativeness of the features that are used for image
quality prediction, which means the prediction accuracy is as good
as the choice of features extracted. In this section, we will design
features based on the different statistical characteristics between
natural images and distorted images. Natural images indicate
those images from the natural environment and they form an
extremely tiny subset of all possible scenes. Natural images are not
random patterns, but show a number of consistent statistical prop-
erties. One of the properties that has received considerable atte-
ntion by many authors is that natural image spectra follow a

power law, which is defined as

Sðf Þ � AsðθÞ
f 2�ηðθÞ ð3Þ

where Sðf Þ denotes the image spectra, AsðθÞ is called the ampli-
tude scaling factor, 2�ηðθÞ is the frequency exponent and η clu-
sters around zero for natural images [28–32]. However, when nat-
ural images are distorted by some distortions, this property will be
disturbed. We illustrate one instance of how the statistics of shear-
let coefficients changes as a natural image is distorted by differ-
ent distortions. Fig. 2 shows the shearlet coefficients of a natural
image and its five distorted versions in one subband. It can be
clearly seen that the process of different distortion changes the

Fig. 2. Shearlet coefficients of a natural image and its five distorted versions in one subband. (a) Original natural image. (b) JPEG2000 compression. (c) JPEG compression.
(d) Gaussian white noise. (e) Gaussian blur. (f) Rayleigh fast-fading channel simulation.

Fig. 3. Histograms of shearlet coefficients in Fig. 2. (a) Logarithmic histogram of original shearlet coefficients. (b) Histogram of processed shearlet coefficients (log 2ð coef
�� ��Þ).
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shearlet coefficients in different ways, which differentiates the
natural images from distorted images. We further calculate the
histograms of the shearlet coefficients in Fig. 2 and plot them in
one coordinate. Fig. 3(a) plots the logarithmic histogram of ori-
ginal shearlet coefficients. We can see that blur and compression
processes change the histogram into sharper peaked histogram,
and noise changes it into lower peaked histogram. Fig. 3(b) shows
the histogram in a different way, which means before calculating
histogram, shearlet coefficients are preprocessed by log 2ð coef

�� ��Þ.
We can also see from Fig. 3(b) that blur and compression processes
shift the histogram peak to the left side. On the contrary, noise
shifts the histogram peak to the right side. Since the shearlet coe-
fficient histograms of distorted and pristine images differ signifi-
cantly, we can exploit these statistical differences in the design of
features.

Inspired by several feature extraction methods, such as histo-
grams of oriented gradients (HOG) [33] and its extension histo-
grams of shearlet coefficients (HSC) [34], we can also use norm-
alized sum of subband coefficient amplitudes (SSCA) to express
this property in the shearlet domain, which is defined as

PFða; sÞ ¼
∑
t

SHϕf ða; s; tÞ
�� ��

max ∑
t

SHϕf ða; s; t
�� �

j
� � ð4Þ

where, SHϕf ða; s; tÞ is the shearlet transform of an image and a is
scale parameter, s is direction parameter and t is time shift.

Fig. 4 plots the mean SSCA for grayscale images in logarithmic
coordinates (log2 of). Fig. 4 is generated by all the 29 original
images and their associated distorted versions in laboratory for
image and video engineering (LIVE) database [35] (detailed infor-
mation about LIVE will be given in Section 3). Distortions in LIVE
include JPEG2000, JPEG, Gaussian blur (GB), fast fading (FF) and
Gaussian white noise (GWN). In order to provide statistical results,
every original image and distorted image are randomly sampled
several times by the size of 256�256. Totally 12,000 sampled blo-
cks are obtained and 2000 for each type. Shearlet transform with
4 scales and 6 directions for each scale is applied to each of
the sampled blocks, and SSCA is calculated. The horizontal axis in
Fig. 4 indicates the number of subbands and each scale is divided
by the gray dashed line. The vertical axis represents the mean of
SSCA of the 2000 sampled blocks for each type in logarithmic coo-
rdinates.

It can be seen from Fig. 4 that common distortions disturb image
statistics andmake statistical property vary from that of natural images
in shearlet domain. SSCA in fine scales (subbands from 7 to 24) are
affected by distortions and become unnatural. SSCA in coarse scales

(subbands from 1 to 6) are still less affected. Because of blurring,
ringing and blocking artifact existed in JPEG2000, JPEG, GB and FF, fine
scale coefficients decrease, and average energy of distorted images in
fine scales become smaller than the original image, which is reflected
as the decreasing of SSCA in fine scales. On the contrary, for GWN, bec-
ause much high frequency components are added, the average energy
of distorted image become larger than the original image, which is
reflected as the increasing of SSCA in fine scales. Besides, SSCA in fine
scales increase or decrease monotonously with the reduction in image
quality.

2.3. Feature evolution

The SSCA extracted from images can serve as simple features to
distinguish natural images and distorted images. However, an int-
uitive idea is before sending this primary feature into classifier,
whether we can design a system to ‘amplify’ the difference betw-
een natural image features and distorted image features. Recent
works about deep neural networks [36–40] provide us some ideas
to solve this problem. In this paper, we propose to use stacked
autoencoders to serve as an amplifier to increase the distance
between natural image features and distorted image features and
make them more discriminative. A stacked autoencoder is a neural
network consisting of multiple layers of sparse autoencoders in
which the outputs of each layer is wired to the inputs of the suc-
cessive layer. Usually, two steps are implemented to obtain good
parameters for a stacked autoencoder. First, each layer is treated as
a sparse autoencoder and is trained individually to predetermine
the encoding weights. Second, after complete the predetermine
process, the decoders in each layer is discarded and fine-tuning with
backpropagation are used to tune the parameters of all layers. The
training process about stacked autoencoders can be found in [41].

In this work, feature extraction and feature evolution process
are shown in Fig. 5. In this process, the primary features are rep-
resented by a vector which contains SSCA from RGB channel with
normalization. The primary features are evolved in stacked auto-
encoders and the final evolved features are sent to Softmax clas-
sifier (which will be discussed in next section). To visualize the
variation of features in each layer, after predetermine process, the
decoders can be used as ‘reconstructors’ to reproduce the previous
layer features using features in other layers behind this layer. Thus,
both forward and backward directions of the feature evolution
process are visualized.

2.4. Classification and quality evaluation

In the last sub-section, we apply the stacked autoencoders as
an amplifier to get the evolved features and the evolved features
are more discriminative. In this sub-section, we translate the NR-
IQA into classification problem and use Softmax classifier to ide-
ntify the image quality through final evolved features. In order to
create labeled data to train the Softmax classifier and fine-tuning
the stacked autoencoder, we can first classify images into several
different classes based on their MOS (Mean Opinion Score). The
class labels are created based on Table 1. Even though we create
labels for images, our goal is not an absolute classification, but to
utilize the output probability of the classification as an indication
of the amount of each score in the combining weights. Therefore,
there are several ways to create image labels according to how
many classes we want to create. The interval boundaries in Table 1
are based on the cumulative histogram of MOS in LIVE database.
We make sure that the number of images in each interval is rou-
ghly equal.

Now, we have a training set fðxð1Þ; yð1ÞÞ; … ; ðxðmÞ; yðmÞÞg of m
labeled data, where the input features are xðiÞ, which is the final

Fig. 4. Mean SSCA versus subband enumeration index for natural images and
different distorted images in LIVE IQA database. ORI: original natural image.
JPEG2K: JPEG2000 compression. JPEG: JPEG compression. GWN: Gaussian white
noise. GBLUR: Gaussian blur. FF: Rayleigh fast-fading channel simulation.

Y. Li et al. / Neurocomputing 154 (2015) 94–109 97



evolved features from the last layer of stacked autoencoder.
yðiÞAf 1; 2; … ; K g is the label of a training image.

Given an image feature xðiÞ, we want to use Softmax classifier to
predict the probability that pðyðiÞ ¼ kjxðiÞÞ for each value of
k ¼ 1; …; K . Thus the output of a Softmax classifier in this
problem is a K dimensional probability vector, which is defined as

PθðxðiÞÞ ¼ eθ
T
j x

ðiÞ

∑K
l ¼ 1e

θTl xðiÞ
ð5Þ

where θ are the parameters of Softmax classifier, which can be
obtained by training dataset. K is the number of class. As previously
mentioned that our work is not a pure classification problem, a
mapping is needed to convert the hypothesis PθðxðiÞÞ into quality
scores. This mapping can be done by multiplying a combining
weights ωARK , which is a row vector. Thus, the final quality score
of an image is calculated by

Qi ¼ ω� PT
θðxðiÞÞ ð6Þ

where the combining weights ω are learned by calculating the least
square solution of this over determined equation upon the trai-
ning set.

Several ways for creating image labels are provided in Table 1.
Now, we discuss the relationship between quality prediction perf-
ormance and number of class. To describe the quality prediction
performance, we choose linear correlation coefficient (LCC) scores
and Spearman rank order correlation coefficient (SROCC) as the

Table 1
The relationship between image MOS and its label.

Class number

2 MOS o65 4¼65
Class 1 2

3 MOS o45 45–75 475
Class 1 2 3

4 MOS o45 45–64 65–80 480
Class 1 2 3 4

5 MOS o35 35–54 55–74 75–80 480
Class 1 2 3 4 5

6 MOS o35 35–44 45–64 65–74 74–80 480
Class 1 2 3 4 5 6

7 MOS o25 25–34 35–44 45–54 55–64 65–74 4¼75
Class 1 2 3 4 5 6 7

Fig. 6. Plot of median LCC, SROCC and classification accuracy versus number of
class. Logistic means the final layer of the stacked autoencoder is a logistic
regression.

Fig. 5. Feature extraction and evolution process. Primary features are concatenated SSCA from RGB channels and normalization is performed after concatenation. The final
evolved features are sent to Softmax classifier (Green circle). The red circle indicates sigmoid function. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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evaluation criteria. Fig. 6 shows how LCC, SROCC and classification
accuracy changes with the number of class. Fig. 6 is generated
using all images in LIVE database and we report the median LCC,
SROCC and classification accuracy over 100 trials. Logistic means
the final layer of the stacked autoencoder is a logistic regression
which outputs the normalized MOS directly. Therefore, there is no
classification accuracy value for it. We can see that even through
the classification accuracy decreases with the increasing of class
number, the LCC and SROCC raise.

3. Experiments and related analysis

In order to effectively calibrate, train, test and compare the
proposed NR-IQA algorithm. The following three IQA databases
were used.

(1) LIVE IQA database. This IQA database contains 29 high-resolution
24-bits/pixel RGB original images distorted using five types of
distortions at different distortion levels. These original images are

distorted using the following distortion types: JPEG2000, JPEG,
white Gaussian noise in the RGB components, Gaussian blur in
the RGB components, and bit errors in JPEG2000 bit streamwhen
transmitted over a simulated fast-fading Rayleigh channel. Bes-
ides, mean opinion score (MOS) and the standard deviation betw-
een subjective scores were computed for each image. MOS for
LIVE is in the range 0 to 100. Higher MOS indicates higher image
quality.

(2) LIVE multiply distorted (MLIVE) IQA database [42]. This IQA
database extends one type distorted images to two types of
multiply distorted images. A subjective study was conducted on
15 natural images and their distorted versions. This study was
conducted in two parts to obtain human judgments on images
corrupted under two multiple distortion scenarios: (a) Image
storage where images are first blurred and then compressed by a
JPEG encoder. (b) Camera image acquisition process where
images are first blurred due to narrow depth of field or other
defocus and then corrupted by white Gaussian noise to simulate
sensor noise. Differential mean opinion score (DMOS) associated
with distorted images are given, which is in the range 0 to 100.
Different from MOS, lower DMOS indicates higher image quality.

Fig. 7. Visualization of fine tuning process. (a) Features at first epoch. (b) Features at 15 epochs. (c) Features at 60 epochs. (d) Features at 125 epochs. (e) Features at 250
epochs. (f) Features at 400 epochs. (g) Softmax classifier boundaries after 400 iterations. (h) 3D view of features after 400 iterations. (i) 3D view of Softmax classifier
boundaries. For (a)–(g), the neutron number of last layer is 2. For (h) and (i), the neutron number of last layer is 3.
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(3) TID2008 database [43,44]. This IQA database contains 25
reference images and 1700 distorted images. These 1700 dist-
orted images are obtained using 17 types of distortions for
each reference image and every distortion has 4 levels. Mean
Opinion Scores (MOS) for this database were computed for
each image, which is in the range 0 to 9. Higher value indicates
higher visual quality of the image. The 17 types of distortions

include: Additive Gaussian noise (WN), Additive noise in color
components (WNC), Spatially correlated noise (SCN), Masked
noise (MN), High frequency noise (HFN), Impulse noise (IN),
Quantization noise (QN), Gaussian blur (GB), Image denoising
(IDN), JPEG compression (JPEG), JPEG2000 compression (JP2K),
JPEG transmission errors (JPEGTE), JPEG2000 transmission
errors (JP2KTE), Non eccentricity pattern noise (NEPN), Local

Fig. 8. Visualization of feature evolution process. (a) Primary features. (b) Layer 100 output features. (c) Layer 64 output features. (d) Layer 36 output features. (e) Layer 16
output features. (f) Layer 4 output features.

Fig. 9. Visualization of primary features and reconstructed primary features. (a) Primary features. (b) Reconstructed primary features using layer 49. (c) Reconstructed
primary features using layer 4. (d) Two principle components of primary features. (e) Two principle components of reconstructed primary features using layer 49. (f) Two
principle components of reconstructed primary features using layer 4. Parts (a)–(c) show the randomly selected 100 test features. Parts (d)–(f) show all the 2000 test
features.
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block-wise distortions of different intensity (LBD), Intensity
shift (IS) and Contrast change (CC). In this paper, we test
SESANIA on the first 13 distortion types.

3.1. Parameters of SESANIA

Fourier based shearlet transform is applied and the RGB
channel of an image is decomposed into 4 scales (exclude appr-
oximation component) and every scale has 10 directions. The
number of primary features is 120. Weight decay parameter λ is
3e�8. Sparsity parameter ρ is 0.1 and weight of sparsity penalty
term β is 5. For Softmax classifier, weight decay parameter λ is also
3e�8, and the class number is 7. Combining weights ω is learned
by calculating the least square solution of overdetermined equa-
tion upon the training subset. These parameters are fixed in the
following experiments.

3.1.1. Forward direction visualization
In this section, we will present some intuitive visualization

about how primary features changes in the deep neural network.
A total of 23 natural images and their distorted versions in LIVE
database are randomly selected as the training set. The remaining
as the test set. Our network is trained on randomly sampled
256�256 patches taken from large images. Since the training
images in LIVE have homogeneous distortions, we can assign each
patch the same quality score as its source image’s MOS [12]. We
have sampled 2000 patches for each distortion on the training set
and totally 10,000 patches are obtained as training data. 400
patches are sampled for each distortion on the test set and totally
2000 test patches are obtained.

3.2. Visualization of fine tuning process

In deep neural network, fine tuning strategy is usually adopted
to greatly improve the performance of a stacked autoencoder. We
first constructed a 120-100-81-64-49-36-25-16-9-2 autoencoder
to provide an intuitive visualization of how features change in the
fine tuning process. Fig. 7(a)–(f) visualizes the progression of
training features during fine tuning process. It can be clear seen
that with the increasing of iteration times, features are becoming
much more distinctive and easier to separate. At the beginning of
the iteration, we can see in Fig. 7(a) that features representing
different quality images are mixed together, which is very hard to
separate by a linear classifier. However, after several iterations,
features indicating the same quality images are clustered and they
are distributed along a quadrant arc (shown in Fig. 7(f)). Thus, a
linear classifier can easily classify these features into different
quality groups. Fig. 7(g) shows the Softmax classifier boundaries
after 400 iterations. We can see that Softmax classifier divides the

Fig. 10. Box plot of mean distance over 100 iterations for 9 different autoencoders
and primary features.

Fig. 11. Median LCC and SROCC over 100 iterations for 9 different autoencoders and primary features from 5 groups. (a) Median LCC. (b) Median SROCC. Horizontal axis
means the number of layers.

Table 2
Median LCC and SROCC correlations for 1000 iterations of experiments on the three databases individually and combined together. (Italicized algorithms are NR-IQA
algorithms.)

LCC SROCC

LIVE MLIVE TID2008 LþT LþMþT LIVE MLIVE TID2008 LþT LþMþT

PSNR 0.8069 0.7967 0.7633 0.7860 0.7864 0.8069 0.7257 0.7831 0.8321 0.8237
SSIM 0.8002 0.7138 0.6425 0.7574 0.7469 0.9278 0.6983 0.7308 0.8591 0.8332
VIF 0.9574 0.8459 0.8824 0.9336 0.9034 0.9541 0.8956 0.8821 0.9415 0.9163
FSIM 0.7810 0.8383 0.8715 0.7938 0.7925 0.9548 0.8818 0.9187 0.9428 0.9311
BLIINDS-II 0.9164 0.8203 0.8876 0.8648 0.7673 0.9124 0.8353 0.8528 0.8661 0.7623
BRISQUE 0.9424 0.8882 0.8715 0.8770 0.8234 0.9395 0.8948 0.8611 0.8780 0.8183
SESANIA 0.9476 0.8384 0.9069 0.8914 0.8475 0.9340 0.8362 0.8936 0.8844 0.8449
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space into different non-overlapping areas and distinguishes diff-
erent features based on their locations in the space. We also
changed the last layer neutron number into 3 and repeat the expe-
riment again. Fig. 7(h) and (i) shows the output training features
and classifier boundaries after 400 iterations. The 3D results are
very similar to 2D version. Besides, we can also notice that after
fine tuning, the distance between good quality features and bad
quality features are maximized. In Fig. 7(f), good quality features
are clustered at the bottom right corner of the space, but bad
quality features are clustered at the top left corner. In this way, the
distance between the best quality feature and the worst quality
feature is the diagonal of the space, which is maximized distance
in this space. Similar situation also occurs in 3D space.

3.3. Visualization of feature evolution process

Next, we use a 120-100-81-64-49-36-25-16-9-4 autoencoder
to visualize the primary features and the evolved features in sev-
eral layers, which are shown in Fig. 8. A total of 70 image patches
are randomly selected from 2000 test patches. They are divided
into 7 groups based on their MOS, and each group has 10 images.
Every row in the feature image represents one group. The first row
represents best quality images (Class 7) and the last row repre-
sents worst quality images (Class 1). Detailed information about
these 70 images is listed in Table A1 in the Appendix. It can be
seen that the primary features in Fig. 8(a) are not very distinguish-
able. However, after evolution, the output features in the last layer
are much easier to differentiate. In Fig. 8(f), different quality feat-
ures reveal different patterns and one can even differentiate the
good quality features from the bad quality features by human eyes.
Besides, we can also notice from Fig. 8(f) and Table A1 that images
with the same quality label tend to reveal similar patterns, which

are not relevant to specific distortion types. This property also
demonstrates that SESANIA is a general-purpose NR-IQA method.

3.3.1. Backward direction visualization
In this section, we use another line of thought to demonstrate

that the evolved features are more distinguishable than the pri-
mary features. In Section 2.3, we propose to utilize the decoders as
‘reconstructors’ to reproduce the previous layer features using
features in other layers behind this layer. In this way, output fea-
tures of every hidden layer can be converted into the primary
space again. We use the 120-100-81-64-49-36-25-16-9-4 autoenc-
oder again to evolve the primary features of 2000 test patches. The

Fig. 12. Box plot of LCC and SROCC distributions of algorithms across 1000 trials of experiments on the combined database using LIVE, MLIVE and TID2008. (a) Box plot of
LCC distribution. (b) Box plot of SROCC distribution.

Table 3
Median LCC and SROCC correlations for 1000 iterations of experiments on the LIVE IQA database. (Italicized algorithms are NR-IQA algorithms.)

LCC SROCC

JP2K JPEG GWN GB FF ALL JP2K JPEG GWN GB FF ALL

PSNR 0.8669 0.8351 0.9516 0.8268 0.8665 0.8069 0.8395 0.8088 0.8838 0.8309 0.8348 0.8069
SSIM 0.9469 0.9097 0.9754 0.9077 0.9092 0.8002 0.9301 0.9712 0.9604 0.9445 0.9723 0.9278
VIF 0.9447 0.9692 0.9766 0.9702 0.9754 0.9574 0.9162 0.9500 0.9576 0.9709 0.9721 0.9541
FSIM 0.9034 0.7711 0.8912 0.8838 0.8316 0.7810 0.9370 0.9721 0.9574 0.9804 0.9741 0.9548
BIQI 0.8086 0.9011 0.9538 0.8293 0.7328 0.8205 0.7995 0.8914 0.9510 0.8463 0.7067 0.8195
DIIVINE 0.9220 0.9210 0.9880 0.9230 0.8680 0.9170 0.9319 0.9483 0.9821 0.9210 0.8714 0.9116
BLIINDS-II 0.9386 0.9426 0.9635 0.8994 0.8790 0.9164 0.9323 0.9331 0.9463 0.8912 0.8519 0.9124
BRISQUE 0.9229 0.9734 0.9851 0.9506 0.9030 0.9424 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395
SESANIA(S) 0.9537 0.9732 0.9806 0.9749 0.9195 0.9476 0.8862 0.9293 0.9309 0.9410 0.8807 0.9340
SESANIA(N) 0.9122 0.9034 0.9587 0.9476 0.9147 0.8705 0.8779 0.9362 0.9381 0.8862

Table 4
Median LCC and SROCC correlations for 1000 iterations of experiments on the LIVE
multiply distorted IQA database. (Italicized algorithm is NR-IQA algorithms.)

LCC SROCC

Part 1
(GBþJPEG)

Part 2
(GBþGWN)

Part 1
(GBþJPEG)

Part 2
(GBþGWN)

PSNR 0.7813 0.8088 0.7176 0.7346
SSIM 0.8125 0.7714 0.7744 0.7338
VIF 0.8590 0.8472 0.8808 0.8870
FSIM 0.8340 0.8385 0.8571 0.8760
BLIINDS-

II
0.8594 0.8593 0.8539 0.8677

BRISQUE 0.9043 0.8854 0.8947 0.8896
SESANIA

(S)
0.8625 0.8639 0.8423 0.8713

SESANIA
(N)

0.8506 0.8545 0.8567 0.8623
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reconstructed primary features are obtained using every hidden
layer output features. To visualize the effect of evolution process,
principle components analysis (PCA) is applied to each recon-
structed primary features and the first two principle components
are reserved. Fig. 9(a)–(c) presents the original primary features
and reconstructed primary features of randomly selected 100 test
images using lay 49 and lay 4. Fig. 9(d)–(f) shows the correspond-
ing two principle components. Compared with Fig. 9(d), in (f),
principle components of features representing different image
quality are separated. However, those representing same image
quality are clustered together.

In addition, we also use 100-81-64-49-36-25-16-9-4 as neuron
number in each hidden layer and increase one hidden layer each
time to create 9 autoencoders. For example, the first autoencoder
is 120-100 and has only one hidden layer 100, the second one is
120-100-81 and the last one has all the nine hidden layers. We
calculate the distance of primary feature and last layer recon-
structed primary feature between good quality image (Class 7) and
bad quality image (Class 1 and Class 2) using Eq. (7).

Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fclass7 � Fclass1;2
� �2q

ð7Þ

Feature distances are obtained from 100 train-test iterations. In
each iteration, we randomly select 23 natural images and their

distorted versions as the training set and the remaining as the test
set, and the mean distance is calculated. Training set and test set
are randomly sampled as previously described. Fig. 10 shows the
boxplot of the mean distance of 100 iterations for those 9 auto-
encoders and primary features. It can be seen that with the
increasing of hidden layer, the mean distance increases first and
then decreases.

3.3.2. Effects of layer number and neuron number
Several parameters are involved in the design of SESANIA. In

this section, we will mainly focus on examining how layer number
and neuron number in each hidden layer affect the performance of
the network on the LIVE database. Other parameters are adopted
as previous discussion. Similar to distance calculation in the last
section, we construct five group neuron numbers and create
9 autoencoders for each group by increasing one hidden layer
each time. The neuron number in each hidden layer are the same
in the first three groups, they are 100, 49 and 16, respectively. We
decrease the neuron number for the fourth group and increase the
neuron number for the fifth group. The fourth group is 100-81-64-
49-36-25-16-9-4 and the fifth group is 169-225-324-361-400-
441-484-529-579. Totally 10 layers are obtained for each group
including the primary features. We test each autoencoder 100

Table 5
Median LCC and SROCC correlations for 1000 iterations of experiments on the TID2008 database. (Italicized algorithm is NR-IQA algorithms.)

LCC

WN WNC SCN MN HFN IN QN GB IDN JPEG JP2K JPEGTE JP2KTE

PSNR 0.9454 0.9267 0.9624 0.8900 0.9727 0.8355 0.9093 0.9376 0.9418 0.8580 0.8928 0.6796 0.8415
SSIM 0.7878 0.8073 0.7925 0.8518 0.8753 0.6991 0.8071 0.9029 0.9382 0.9362 0.8296 0.8403 0.7979
VIF 0.9130 0.9261 0.9064 0.9393 0.9583 0.8295 0.9006 0.9424 0.9475 0.9512 0.9139 0.8861 0.8450
FSIM 0.7975 0.8331 0.7929 0.8614 0.8491 0.6288 0.7942 0.9013 0.9441 0.9451 0.9564 0.8616 0.7730
BLIINDS-II 0.8234 0.8060 0.9178 0.7523 0.9504 0.9181 0.8729 0.9653 0.9597 0.9794 0.9278 0.8914 0.8920
BRISQUE 0.8915 0.8608 0.9228 0.8202 0.9684 0.9437 0.9101 0.9500 0.9481 0.9811 0.9327 0.8977 0.8800
SESANIA(S) 0.9144 0.8568 0.9204 0.8690 0.9079 0.8831 0.9015 0.9751 0.9807 0.9531 0.9378 0.9012 0.9074
SESANIA(N) 0.7868 0.8244 0.8483 0.8732 0.9187 0.6697 0.7445 0.9404 0.9054 0.8924 0.9398 0.8457 0.7256

SROCC
PSNR 0.9038 0.8977 0.9003 0.8785 0.9238 0.8402 0.8891 0.9338 0.9233 0.8617 0.8165 0.7835 0.8150
SSIM 0.7985 0.8015 0.8003 0.8105 0.8376 0.6980 0.8876 0.9098 0.9368 0.9124 0.8617 0.8316 0.8090
VIF 0.8958 0.9008 0.8917 0.9109 0.8887 0.7920 0.8917 0.9534 0.9383 0.8917 0.9549 0.8541 0.8191
FSIM 0.8439 0.8406 0.8296 0.8650 0.8909 0.6977 0.8692 0.9308 0.9624 0.8842 0.9654 0.8737 0.8180
BLIINDS-II 0.7792 0.8071 0.8872 0.6917 0.9173 0.9083 0.8499 0.9519 0.9083 0.9398 0.9414 0.8838 0.8767
BRISQUE 0.8537 0.8707 0.8857 0.7575 0.9248 0.9323 0.8883 0.9289 0.9278 0.9353 0.9444 0.8902 0.8638
SESANIA(S) 0.9128 0.8315 0.9049 0.8372 0.8927 0.9101 0.8951 0.9629 0.9587 0.9311 0.9440 0.8842 0.8719
SESANIA(N) 0.8049 0.8327 0.8504 0.8676 0.9100 0.6907 0.7598 0.9431 0.8871 0.8712 0.9381 0.8335 0.7397

Fig. 13. Visualization of testing features in combined database. (a) Testing features from database mixed by LIVE and TID2008. (b) Testing features from database mixed by
LIVE, MLIVE and TID2008.
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times and report the median LCC scores and median SROCC scores
between the predicted scores and the true MOS. When testing
different autoencoder, we keep the 100 training set and test set
the same. Fig. 11 shows the test results, in which first layer means
primary features are sent to Softmax classifier directly without
passing through evolution process. Some conclusions can be
drawn from this result. (1) Feature evolution process can signifi-
cantly improve the performance. (2) The proposed network is not
very sensitive to neuron number in each hidden layer. (3) The
proposed network is sensitive to the number of hidden layer. With
the increasing of hidden layer number, the performance of the
network increases first, then holds relatively constant. All these
five groups achieve the best performance when the totally layer
number is 3.

3.3.3. Performance evaluation
In this section, we test SESANIA on LIVE, MLIVE and TID2008

database individually and combined together, and compare it with
the state-of-the-art full-reference and no-reference approaches.
Four FR-IQA methods include: peak-signal-to-noise ratio (PSNR),
structural similarity index (SSIM) [45], visual information fidelity
(VIF) and feature similarity index (FSIM). Four general purpose NR-
IQA methods include: BIQI, DIIVINE [46], BLIINDS-II and BRISQUE.
BIQI and DIIVINE use a representation of images in the wavelet
domain and extract image features to train two stages of the
algorithm. First, they train a nonlinear SVM for classification. Then,
a nonlinear SVR is trained for regression within each class. In their
implementation procedure, these two algorithms assume the
number of distortion types is already known and do not accom-
plish the general-purpose IQA. Since these two algorithms are only
trained and tested on LIVE database, we do not extend them to
adapt to other databases. We refer to the results from Fig. 11 and

construct a 120-100-81 autoencoder as the feature evolution pro-
cess in the following experiments.

3.4. Testing on the whole database

We first test SESANIA using images of all the distortions with-
out providing a distortion type. Five groups of experiment are con-
ducted. The first three group experiments use these three data-
bases individually. The fourth group experiment combined LIVE
and TID2008 together and the fifth group experiment combined
three databases together. For each group experiment, we ran-
domly select 80% of reference images and their distorted versions
as the training set, 20% as the test set. SESANIA is trained on
randomly sampled 256�256 patches taken from large images in
training set and each patch has the same quality score as its source
image’s MOS. One thousand randomly chosen training and test

Fig. 15. Primary feature extraction process for local quality estimation.

Fig. 14. Scatter plots of the predicted MOS versus subjective MOS on the test sets. (a) LIVE database. (b) MLIVE database. (c) TID2008 database. (d) Combined database
(LIVEþTID2008). (e) Combined database (LIVEþMLIVEþTID2008).
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sets were obtained, and the prediction of the quality scores was
run over the 1000 iterations. To unify the MOS scores in three
different databases. Subjective scores in Multiply Distorted LIVE

are converted by MOS¼ 100�DMOS. Subjective scores in TID2008
are converted by MOS¼MOS�10þ15. Image labels are obtained
based on Table 1 (7 classes). LCC scores and SROCC scores between

Fig. 17. Synthetic building images and local quality estimation results. (a) Original image contents in red boxes are replaced by its GBlur distorted versions. (b) Local quality
estimation result of (a). (c) Original image contents in different color boxes are replaced by its five different distorted versions. (d) Local quality estimation result of (c).
Brighter pixels indicate higher quality. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Local quality estimation results on Building image and its GBlur distorted versions in LIVE database. (a) Original image. (b) MOS is 71.13. (c) MOS is 59.03. (d) MOS is
43.29. Brighter pixels indicate higher quality.
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the predicted scores and the true MOS are computed for each of
the 1000 iterations. For FR-IQA methods, training set are used to fit
a non-linear logistic function, then testing on the test set. Table 2
reports the median LCC and SROCC over 1000 iterations. To vis-
ualize the statistical significance of the comparison, we also show
box plots of the distribution of the LCC and SROCC values for each
of the 1000 experimental trials, and the experiments are con-
ducted on the three databases combined together. The plots are
shown in Fig. 12(a) and (b), respectively. It can be seen that the
performance of SESANIA outperforms the traditional FR-IQA app-
roach PSNR and SSIM, and is comparable to the state-of-the-art
NR-IQA and FR-IQA approaches.

3.5. Testing on each distortion type

Next, we conduct distortion-specific experiments and non-
distortion-specific experiments on LIVE, MLIVE and TID2008. In
distortion-specific experiments, we train and test on each of the
distortions in the three databases. In non-distortion-specific exp-
eriments, we separate the relative test distortion set, and mix tog-
ether all the other images of the three databases as training set.
Testing results of three databases are listed in Tables 3–5, respec-
tively. SESANIA(S) indicates the distortion-specific experiments
and SESANIA(N) denotes the non-distortion-specific experiments.
It can be seen that SESANIA achieves comparable testing results and
approaches the performance of the reliable FR-IQA methods and
state-of-art general purpose NR-IQA methods. For some distortion
types, it also slightly outperforms these NR-IQA methods.

We also use a 120-100-81-4 autoencoder to visualize the output
features of combined database. Fig. 13(a) shows the testing features
from database mixed by LIVE and TID2008. Fig. 13(b) shows the
testing features from database mixed by all the three databases.
They are generated using the same way as Fig. 8, and their true
information is also listed in Tables A2 and A3. Similar to Fig. 8(f),
testing features in combined database also reveal the same pattern
when they have the same quality label in spite of their distortion
types. However, due to the variety of distortion types, the differ-
ences among different quality patterns in combined database are
not that clear compared to Fig. 8(f). Scatter plots of the predicted
MOS using SESANIA versus subjective MOS on the test sets are
shown in Fig. 14. Fig. 14(a)–(c) shows the results for each individual
database. Fig. 14(d)–(e) shows the results for the combined data-
bases. In addition, the LCC and SROCC for this run are also listed on
the top of each figure.

3.5.1. Local quality estimation
As described in Section 2.1, shearlet is well localized in the

spatial domain. Thus, SESANIA can be easily extended to detect
quality of local regions. Instead of pooling all the subband coeffi-
cients, for local quality estimation purpose, every subband is div-
ided by overlapped small blocks, and the sum pooling is conducted
only on each small blocks. Fig. 15 shows the extended primary
feature extraction process for local quality estimation. To simplify
the calculation, we estimate local quality on gray-scale images. We
construct a 40-36-25 autoencoder for the purpose of feature evo-
lution, and the autoencoder is trained using 256�256 Gy-scale
image patches. We scan 32�32 blocks with a stride of 16 for each
subband.

Fig. 16 shows the local quality estimation results on Building
image and its GBlur distorted versions in LIVE database. It can be
clear seen that, most regions of the original image exhibit high

quality (Fig. 16(a)). On the contrary, most regions of the distorted
image show low quality (Fig. 16(d)). In addition, with the decreas-
ing of image quality, local quality estimation also reveal mono-
tonously decreasing results.

To better examine the local quality estimation power of our
model, we also test it on the synthetic Building image. We first
replace some of the original image contents by its GBlur distorted
versions and test whether the modified model can identify the
distorted regions. Fig. 17(a) shows the synthetic image and Fig. 17
(b) shows the local quality estimation result. We can see that for
this single distortion replacement, our model can identify the
distortion regions easily. Then, we increase the difficulty and
replace some of the original image contents by its five different
distorted versions. Fig. 17(c) shows the synthetic image and
Fig. 17(d) shows the local quality estimation result. Compared
with single distortion replacement, the performance on multi-
distortion replacement decreased. It is because when training the
neural network using a variety of distorted image patches, its
identification ability will increase. However, at the same time, it
will also become more sensitive. Thus, the model will assume the
local patterns on the window to be blackness distortion and give
low scores on that area.

4. Conclusion

In this paper, a general purpose NR-IQA algorithm SESANIA is
proposed, which is developed based on the shearlet transform and
stacked autoencoders. We have extracted simple primary features
using shearlet transform, and evolved the primary features using
stacked autoencoders to make them more discriminative. By
transforming the NR-IQA problem into classification problem, the
difference between features can be easily distinguished by Soft-
max classifier. SESANIA is tested on LIVE database, LIVE Multiply
Distorted database and TID2008 database individually and com-
bined together. It generates image quality predictions well corre-
lated with human perception, and is highly comparative to the
state-of-the-art FR-IQA methods and general purpose NR-IQA
algorithms. In addition, we conduct several experiments to give
an intuitive visualization about the working process of SESANIA,
and analyze how this algorithm works and why it works well.
Furthermore, we also demonstrate that SESANIA can be easily
extended to estimate quality in local regions.

Future work will involve extending the general idea of SESANIA
for video-QA and stereo-QA.
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Appendix

Image information about Figs. 8, 13(a) and (b) are provided in
the following tables. The information is recorded as Database_Dis-
tortion_ImageName_MOS. L, M and T represent LIVE, MLIVE and
TID2008, respectively.
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Table A2
Image information of Fig. 13(a).

L_JP_house_79 T_8_GB_womanhat_6.2 L_JP_manfishing_79 T_GWC_sails4_6.2 T_HFN_door_7.0 L_J2_plane_82 L_J2_plane_81 T_GWC_woman_6.6 L_GW_statue_85 L_FF_womanhat_85
T_ID_plane_5.7 T_JP_sails2_5.1 T_J2_wall_5.2 T_GB_beach_5.6 T_GWL_caps_5.1 T_GWL_bikes_5.0 T_IN_sails3_5.3 T_GWC_rapids_5.8 T_GWL_sails2_5.2 T_HFN_beach_5.4
T_QN_flower_4.2 T_JPTE_lighthouse1_4.4 T_SCN_door_4.8 T_QN_sails3_4.0 T_GWL_rapids_5.0 T_JPTE_wall_4.1 T_SCN_caps_4.4 T_HFN_parrots_4.8 T_GWL_building_4.3 T_GWC_ocean_4.8
T_ID_flower_4.0 L_JP_house_45 T_SCN_caps_4.0 T_GWL_woman_4.0 T_ID_sails4_3.3 L_FF_monarch_46 L_GB_sail2_54 T_SCN_lighthouse1_3.4 T_QN_building_3.5 T_SCN_caps_3.1
T_ID_ocean_2.0 T_QN_door_2.9 L_J2_paintedhouse_43 T_GB_sails4_2.2 T_JP_parrots_2.3 T_J2_door_2.9 T_SCN_sails1_2.8 T_JPTE_caps_2.3 T_J2_beach_2.8 T_GB_house_2.3
T_J2_beach_1.3 T_ID_wall_1.2 L_GB_house_33 L_JP_buildings2_34 L_J2_ocean_34 L_FF_sail1_28 T_J2_womanhat_1.8 L_GW_caps_33 T_JP_house_1.4 L_GB_house_33
T_J2K_sails4_0.1 L_GB_ocean_23 T_J2_ocean_0.0 T_J2_house2_0.2 T_J2_door_0.0 T_J2_parrots_0.2 T_J2_beach_0.1 T_JP_stream_0.9 T_J2_house2_0.2 T_J2_sails2_0.0

Table A1
Image information of Fig. 8.

L_FF_buildings2_85 L_JP_sail1_78 L_J2_woman_79 L_J2_rapids_85 L_GW_caps_77 L_JP_buildings_85 L_J2_light-
house2_85

L_FF_stream_85 L_GB_dancers_85 L_GB_sail1_77

L_GB_stream_68 L_J2_coinsinfoun-
tain_72

L_GW_build-
ings2_68

L_GB_house_74 L_JP_sail2_660 L_GW_churchand-
capitol_68

L_GB_carnival-
dolls_68

L_JP_studentsculp-
ture_73

L_J2_churchandca-
pitol_65

L_JP_mo-
narch_71

L_GB_woman_62 L_GW_parrots_61 L_GB_build-
ings2_59

L_GW_woman-
hat_63

L_FF_sail4_63 L_GB_cemetry_58 L_FF_statue_57 L_GW_house_64 L_GB_cemetry_58 L_GW_sail4_55

L_GB_sail2_54 L_JP_studentsculp-
ture_53

L_FF_carnival-
dolls_48

L_GW_sail2_52 L_GW_sail4_48 L_GW_house_55 L_J2_carnival-
dolls_51

L_GB_sail2_47 L_JP_flowerso-
nih35_49

L_JP_flowerso-
nih35_49

L_JP_bikes_37 L_JP_caps_40 L_FF_sail4_42 L_J2_statue_39 L_GB_woman_40 L_GB_sail1_37 L_JP_bikes_44 L_FF_painted-
house_38

L_JP_parrots_40 L_FF_light-
house_36

L_JP_carnivaldolls_34 L_GB_statue_34 L_GW_woman-
hat_32

L_JP_painted-
house_26

L_GW_mo-
narch_34

L_GW_caps_33 L_GW_build-
ings2_28

L_J2_studentsculp-
ture_32

L_GB_sail3_34 L_GW_woman-
hat_32

L_GB_churchandcapi-
tol_18

L_FF_churchandca-
pitol_23

L_J2_manfish-
ing_16

L_J2_carnival-
dolls_23

L_GB_light-
house_16

L_FF_churchandca-
pitol_25

L_FF_churchandca-
pitol_25

L_J2_stream_23 L_FF_churchandca-
pitol_25

L_GB_mo-
narch_24
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