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Abstract—The state-of-the-art general-purpose no-reference 
image or video quality assessment (NR-I/VQA) algorithms usually 
rely on elaborated hand-crafted features which capture the 
Natural Scene Statistics (NSS) properties. However, designing 
these features is usually not an easy problem. In this paper, we 
describe a novel general-purpose NR-IQA framework which is 
based on deep Convolutional Neural Networks (CNN). Directly 
taking a raw image as input and outputting the image quality 
score, this new framework integrates the feature learning and 
regression into one optimization process, which provides an end-
to-end solution to the NR-IQA problem and frees us from 
designing hand-crafted features. This approach achieves excellent 
performance on the LIVE dataset and is very competitive with 
other state-of-the-art NR-IQA algorithms. 

Keywords-no-reference image quality assessment; convolutional 
neural networks; network in network 

I.  INTRODUCTION 
Nowadays, with the rapid development of multimedia and 

network technology, images and videos are much easier to be 
generated and transmitted by many different devices, and shared 
by many social media, such as Facebook, Twitter, YouTube, and 
Instagram. Since a large number of video contents are produced 
every day for entertainment or education of human viewers, it is 
of prime importance to guarantee that the perceived visual 
quality of these videos is still maintained at an acceptable level 
at the end-user after the production and distribution chain. To 
achieve this goal, effective image and video quality assessment 
algorithms are needed and have recently attracted considerable 
research attention. 

Visual quality measurement is a vital yet complex work in 
many image and video processing applications. IQA can be 
completed using two types of methods, which are subjective and 
objective IQA methods. Subjective IQA methods rely on the 
opinions of a large number of viewers, which makes them 
expensive to implement and impractical in real applications. 
Although subjective IQA methods are cumbersome in real 
applications, they are usually adopted to design a subjective 
score for each image or video in IQA database, such as the mean-
opinion-score (MOS) in each IQA database. Objective IQA 
methods refer to designing algorithms to automatically predict 
the visual quality of an image or a video which is consistent with 
human perception. According to the dependency of reference 
images or videos, objective IQA methods are usually divided 
into three types: full-reference (FR), reduced-reference (RR) and 
no-reference (NR). 

FR-IQA and RR-IQA metrics assume that the whole 
reference signal or partial information of the signal is available, 
and do a comparison between reference signal and tested signal. 
Since information about original signal can be used as reference, 

state-of-the-art FR-IQA methods can achieve a high correlation 
with human perception. Some state-of-the-art FR-IQA 
algorithms include IFC [1], VIF [2] and FSIM [3].  

NR-I/VQA metrics exploit only the tested signal and have no 
need of any information about reference signal. Because of this 
advantage, NR-IQA algorithms have much wider applicability 
and received a great deal of attention. Previous researchers have 
attempted to develop distortion-specific NR-IQA algorithms. 
These algorithms calibrate some specific distortions, such as 
JPEG [4], JPEG2000 [5], H.264/AVC [6]. Although these 
methods work well for the specific distortions, it is not easy for 
them to be generalized to other new distortion types. Thus, these 
approaches are inferior to the state-of-the-art approaches. 
Nowadays, many researchers have paid much effort to 
investigate NSS based general-purpose NR-IQA algorithms. 
Some successful examples of such kind of NR-IQA approaches 
include DIIVINE [7], BLIINDS-II [8] and BRISQUE [9]. 
Compared with the NSS based NR-IQA approach, nowadays, 
training-based NR-IQA is a new trend. With the development of 
feature learning methods, training-based NR-IQA approaches 
learn discriminative features directly from raw image patches 
without using hand-crafted features. These methods deal with 
small image patches (such as 32  32) and the whole image 
quality score is the average score of small patches. The 
representative works about this type of NR-IQA work include 
CORNIA [10] and CNN NR-IQA [11]. CORNIA aims at 
training image representation kernels directly from raw image 
pixels using unsupervised feature learning and CNN NR-IQA 
integrates feature learning and regression into one optimization 
process using traditional Convolutional Neural Networks. 

Recently, deep learning has gained researchers’ attention and 
achieved great success on various computer vision tasks. 
Specifically, recent studies have shown that deep CNN 
significantly improves the performance on various vision tasks, 
such as object detection, image classification, and segmentation. 
These accomplishments are attributed to the ability of deep CNN 
to learn the rich mid-level image representations. Besides, one 
of CNN’s advantages is that it can take raw images as input and 
incorporate feature learning into the training process. With a 
deep structure, the CNN can effectively learn complicated 
mappings while requiring minimal domain knowledge. In this 
way, there is no need to put so much energy into designing 
elaborate hand-crafted features. Inspiring from the advancement 
in deep learning, we raise a question that can we take the 
advantage of deep CNN to achieve NR-IQA? Instead of using 
the shearlet transform to extract features in our previous NR-
I/VQA works, such as SHANIA [12], SESANIA [13] and 
SACONVA [14], can we generate image quality score directly 
from the deep CNN just using the raw images? To address these 
questions, we propose a deep CNN model that can learn image 



representations and image quality scores at the same time. 

Le Kang et al. are the pioneers to apply CNN to general-
purpose NR-IQA [11]. Although they proposed a very 
meaningful framework and achieved excellent experimental 
results, there are still some limitations. For example, the CNN 
they used is the traditional CNN which is somewhat out of date. 
Besides, the CNN only contains one convolution layer which is 
too shallow compared with the state-of-the-art deep CNN. In 
addition, in order to obtain enough labeled training data, they 
train the network on 32  32 patches taken from large images. 
For training, they assign each patch a quality score as its source 
image’s ground truth score (MOS) because they assume that the 
training images in the experiments have homogeneous 
distortions. However, the MOS for each image is obtained by 
human opinion which is based on the perception of the whole 
image. The 32  32 patch is too small and the given label may 
not be accurate. 

In this paper, we propose to use deep CNN and some state-
of-the-art training techniques to deal with the NR-IQA problem 
and also made a prospect to the future research about NR-IQA. 
The remainder of this paper is organized as follows. Section II 
introduces the detailed structure about the deep CNN we used. 
In section III, experimental results and the analysis of this 
framework are presented. Finally, conclusion is given in section 
IV. 

II. METHODOGY 
Fig. 1 shows the proposed NR-IQA framework which is 

based on deep CNN. Our method includes three main steps. The 
first step is the supervised pre-training on the large-scale 
ImageNet dataset [15]. The second step is the network 
modification. The third step is fine-tuning the new network for 
NR-IQA purpose. In the first step, we construct an original deep 
CNN model. This model is a Network in Network (NIN) model 
trained on ImageNet dataset which contains more than 1.2 
million images categorized into 1000 object classes. Through 
this pre-training step, we obtain relatively good initial weights 
which is much better than randomly initialized weights. In the 
second step, we modify this original model and make it suitable 
for NR-IQA. We retain the pre-trained NIN from the 1st layer to 
the 26th layer. Five new layers are concatenated following the 
26th layer which is shown in the blue box in Fig. 1. In this way, 
the modified new network can directly outputs image quality 
scores. Now, in the new network, layer 1 to layer 26 already have 
good initial weights. Only layer 27 and layer 29 are randomly 
initialized and their parameters can be easily tuned by fine-
tuning process. In the third step, only a small number of labeled 
data can make this new network work for NR-IQA purpose. 
Detailed information about this deep CNN is illustrated in the 
following sub-sections. 

A. Network Architecture 
The proposed network consists of 31 layers. Given a color 

image, we first sample 224  224 image patches from the 
original image, and then perform a global contract normalization 
in each channel by subtracting the mean image of ImageNet 
database for each patch. These patches are the input of this 
network. We use this deep CNN to estimate the quality score for 
each patch and average the patch scores to obtain a quality 

Figure 1. The proposed deep CNN based NR-IQA framework. 
 

estimation for the whole image. Some state-of-the-art structures 
and training techniques are adopted in this deep CNN such as 
Multi-Layer Perceptron (MLP) convolution layer, Global 
Average Pooling (GAP) layer and Dropout. Instead of traditional 
sigmoid or tanh neurons, the activation function we used in this 
deep CNN is Rectified Linear Units (ReLU). [15] demonstrated 
that in a deep CNN that ReLUs enable the network to train 
several times faster compared to using tanh units. The last layer 
is a sigmoid function with a one dimensional output that 
provides the image quality score. 

B. Network In Network 
The convolution filter in CNN is a Generalized Linear Model 

(GLM) for the underlying data patch. In [16], Lin et al. argue 
that the level of abstraction is low with GLM, which means the 
learned features by traditional CNN filters is variant to the 
variants of the same concept. Therefore, a more potent nonlinear 
function approximator should be used to replace the GLM in 
order to enhance the abstraction ability of the local model. To 
achieve this goal, Lin et al. propose to replace the GLM with a 
“micro network” structure which is a general nonlinear function 
approximator and instantiate it using MLP. 



MLP convolution layers: the mlpconv maps the input local 
patch to the output feature vector with a MLP consisting of 
multiple fully connected layers with nonlinear activation 
functions. The MLP is shared among all local receptive fields. 
The feature maps are obtained by sliding the MLP over the input 
in a similar manner as CNN and are then fed into the next layer. 
The mlpconv layers can be easily implemented using one 
traditional convolution layer followed by several convolution 
layers with 1  1 convolution kernel and ReLU activation 
function. The red box in Fig. 1 shows the MLP convolution 
layers we used in our experiment. 

Global average pooling: the traditional fully connected 
layers are prone to overfitting, thus hampering the generalization 
ability of the overall network. In contrast, GAP itself is a 
structural regularizer, which natively prevents overfitting for the 
overall structure. The green box in Fig. 1 shows the GAP layer 
we used in our experiment. 

The overall structure of the NIN is the stacking of multiple 
MLP convolution layers, on top of which lie the GAP and the 
sigmoid layer. The NIN we used contains four mlpconv layers. 
Within each mlpconv layer, there is a three-layer perceptron. 

C. Learning 
As discussed previously, three main steps are involved when 

training this deep CNN. They are pre-training using large-scale 
ImageNet dataset, network modification and fine-tuning using 
target dataset. In this section, we will mainly discuss how to 
conduct the fine-tuning process and testing process. 

We resize the original color image into 448  448 and fine-
tuning our network on 224  224 patches taken from large color 
images. Similar with [11], we assign each patch a normalized 
quality score as its source image’s normalized MOS.  In [11], 
the author takes small patches (32  32) as input and gets a 
much larger number of training samples. Since our network 
already has good initial weights, we can fine-tune it using a small 
number of training samples. For example, when conducting the 
experiments, we randomly select 60% of reference images and 
their distorted versions as the training set. For LIVE IQA 
database, there are about 600 training images for each training 
process. The stride of patch sampling is 112. Thus, each image 
is sampled into 9 overlapping patches. Therefore, there are about 
5400 image patches for each training process. Compared with 
the large size of our network, the number of training data is 
relatively small. During the test stage, instead of sampling 
several image patches and run deep CNN several times. We 
directly use the 448  448 as the input and run the deep CNN 
only once. The output of the large image is a 8  8 feature map 
which is equal to run the deep CNN on 64 image patches. We 
average the 8  8 feature map for each image to obtain the final 
quality score. 

III. EXPERIMENTS AND RELATED ANALYSIS 
We implemented our deep CNN and conducted the 

experiments using torch7, which is a scientific computing 
framework with wide support for machine learning algorithms 
[17]. Torch7 is easy to use and efficient since it is implemented 
using LuaJIT which is an easy and fast scripting language. In the 
first step of training, we use pre-trained original deep CNN 
model from the Caffe CNN library [18] and export it as torch7 

model. LIVE IQA database is used in the experiments. LCC 
(Linear Correlation Coefficient) and SROCC (Spearman Rank 
Order Correlation Coefficient) are used as the measurements. 

Parameters of the network: the parameters of the network we 
used is shown in Fig. 1. When training, the batch size is 2, the 
learning rate is 1e-4, the learning rate decay is 1e-7, the weight 
decay is 5e-5, the momentum is 0.9, and the max epoch for 
training is 300. 

LIVE IQA database [19]: this IQA database contains 29 
high-resolution 24-bits/pixel RGB original images distorted 
using five types of distortions at different distortion levels. These 
original images are distorted using the following distortion 
types: JPEG2000, JPEG, white Gaussian noise in the RGB 
components, Gaussian blur in the RGB components, and bit 
errors in JPEG2000 bit stream when transmitted over a 
simulated fast-fading Rayleigh channel. Besides, MOS and the 
standard deviation between subjective scores were computed for 
each image. MOS for LIVE is in the range 0 to 100. Higher MOS 
indicates higher image quality. 

A. Performance Evaluation 
As previously mentioned, our deep CNN is implemented 

using the torch7 framework. With torch7, we are able to easily 
run the algorithm on a GPU to speed up the process without 
much optimization. Our experiments are performed on a PC with 
Intel Core i7-4790 CPU and NVDIA GTX750Ti GPU. We 
report median LCC and SROCC obtained from 10 train-test 
iterations where in each iteration we randomly select 60% of 
reference images and their distorted versions as the training set, 
20% as the validation set, and the remaining 20% as the test set. 
The reason why we just conduct 10 train-test iterations instead 
of 100 in [15] is that it takes longer time for training process. 
Although the number of training patch is small, it still needs 
relatively long time to train since the network we used is deep 
and complicated and the size of training patch is relatively large. 
Stochastic Gradient Descent (SGD) is applied to train the 
network and it takes about 3.5 minutes for one epoch. The max 
epoch for training is 300. Therefore, it takes about 17.5 hours to 
complete one training process. If we adopt 100 train-test 
iterations, we need at least 73 days to complete the experiment 
which is unacceptable. Compared with training process, testing 
process is much faster. We need only 50 ms to process one image 
which makes the real-time application possible. 

Table I shows the experimental results on LIVE database. In 
the table, CNN refers to the algorithm proposed in [11] and 
DeepCNN refers to the proposed algorithm. For the FR-IQA 
methods, 80% of the data is used for estimation parameters of a 
logistic function and 20% is used for testing. For the hand-
crafted feature based NR-IQA methods, 80% of reference 
images and their distorted versions are used for training purpose 
and 20% as the test set. For training based methods (CNN and 
DeepCNN), the percentage of training images is reduced to 60%. 
We can see that the overall performance of our DeepCNN 
approaches the state-of-the-art CNN. It also outperforms CNN 
in some specific distortion types. In addition, compared with 
NR-IQA algorithms using hand-crafted features, we can clearly 
see the advantages of CNN and DeepCNN which utilize fewer 
training data and achieve better performance. To see how 
performance improves, we record the LCC and SROCC every 



ten epochs for both training patches and testing images. Fig. 2 
show the results for one training process. We can see that the 
performance for both training patches and testing images reveal 
raising tendency with the increase of the epochs. In Fig. 3, we 
visualize the averaged outputs from the 29th layer (before GAP) 
using testing images with different classes. The image class is 
generated based on Table II and the class number is 6. Since the 
mean value of these feature maps is directly used as the input of 
the sigmoid function, we can clear see that the mean feature map 
of high quality images tends to be larger activations and that of 
low quality images tends to be smaller activations. This is 
explicitly enforced by GAP. In Fig. 4, we show the output of the 
deep CNN on a testing image (Bike) and all of its distorted 
versions and the image information of Fig. 4 is provided in Table 
III. We can also see that the output of the deep CNN is only 
relevant to the MOS and not sensitive to the distortion type, 
which further demonstrates that the proposed NR-IQA algorithm 
is general-purpose. 

B. Discussion 
Although the proposed deep CNN already achieves 

acceptable performance for NR-IQA, there is still a huge 
potential to improve. For example, the GPU we used is 
GTX750Ti which contains only 640 CUDA cores and already a 
little out of date. Better GPU can be used to significantly 
increase the training process, such as GTX980Ti (2816 CUDA 
cores) or GTX Titan Z (5760 CUDA cores). Besides, recently 
multi-GPU architecture is also a new trend to speed up the 
training process. In addition, with the improvement of the 
hardware, we can further decrease the patch sampling stride and 
create more training patches, and average more patch scores 
when predicting the whole image score. In this way, the 
performance can be further improved. Furthermore, since we 
have demonstrated that the NR-IQA problem can be 
successfully solved by deep CNN, the NR-IQA performance can 
be further advanced with the help of the rapid developing deep 
learning techniques. 

IV. CONCLUSION 
In this paper, we have developed a general-purpose NR-IQA 

algorithm based on deep CNN. Three steps are included when 
training this network, which are supervised pre-training on the 
large-scale ImageNet dataset, the network modification and 
fine-tuning for NR-IQA purpose. Through this algorithm, the 
feature learning and regression are combined as a complete 
optimization process, which frees us from designing elaborated 
hand-crafted features. This new algorithm generates image 
quality predictions well correlated with human perception, and 
achieves acceptable performance on standard IQA dataset. In 
addition, we also discussed how to further improve the 
performance of the proposed algorithm. 
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Figure 2. LCC and SROCC versus epochs for both training patches and testing 
images. 

 

 
Figure 3. Averaged outputs from the 29th layer (before GAP) using testing 
images with different classes. The image class is generated based on Table II 
and the class number is 6. Since for the training patch, the output size of the 29th 
layer is 6  6, we further sampled the testing image output of this layer (13  
13) into 64 patches and calculate the average of these patches. 

 

 
Figure 4. The output of the deep CNN on a testing image (Bike) and all of its 
distorted versions.  

(a) 

(b) 
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TABLE I. MEDIAN LCC AND SROCC CORRELATIONS ON THE LIVE IQA DATABASE. (ITALICIZED ALGORITHMS ARE NR-IQA ALGORITHMS.) 

 LCC  SROCC 
JP2K JPEG GWN GB FF ALL JP2K JPEG GWN GB FF ALL 

PSNR 0.8669 0.8351 0.9516 0.8268 0.8665 0.8069 0.8395 0.8088 0.8838 0.8309 0.8348 0.8069 
SSIM 0.9469 0.9097 0.9754 0.9077 0.9092 0.8002 0.9301 0.9712 0.9604 0.9445 0.9723 0.9278 
VIF 0.9447 0.9692 0.9766 0.9702 0.9754 0.9574 0.9162 0.9500 0.9576 0.9709 0.9721 0.9541 

FSIM 0.9034 0.7711 0.8912 0.8838 0.8316 0.7810 0.9370 0.9721 0.9574 0.9804 0.9741 0.9548 
BIQI 0.8086 0.9011 0.9538 0.8293 0.7328 0.8205 0.7995 0.8914 0.9510 0.8463 0.7067 0.8195 

DIIVINE 0.9220 0.9210 0.9880 0.9230 0.8680 0.9170 0.9319 0.9483 0.9821 0.9210 0.8714 0.9116 
BLIINDS-II 0.9386 0.9426 0.9635 0.8994 0.8790 0.9164 0.9323 0.9331 0.9463 0.8912 0.8519 0.9124 
BRISQUE 0.9229 0.9734 0.9851 0.9506 0.9030 0.9424 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395 
SHANIA 0.9135 0.9380 0.9731 0.9790 0.9413 0.9412 0.8611 0.8918 0.9582 0.9674 0.9169 0.9033 
SESANIA 0.9537 0.9732 0.9806 0.9749 0.9195 0.9476 0.8862 0.9293 0.9309 0.9410 0.8807 0.9340 

CNN 0.953 0.981 0.984 0.953 0.933 0.953 0.952 0.977 0.978 0.962 0.908 0.956 
DeepCNN 0.973 0.955 0.981 0.984 0.955 0.956 0.945 0.941 0.964 0.969 0.907 0.935 

 
TABLE II. THE RELATIONSHIP BETWEEN IMAGE MOS AND ITS LABEL. 

MOS < 35 35-44 45-64 65-74 75-80 > 80 
Class 1 2 3 4 5 6

 
TABLE III. IMAGE INFORMATION OF FIGURE 4. (DISTORTION_MOS) 

ORI_85.00 FF_85.00 GB_85.00 GWN_85.00 JPG_85.00 JPG2K_80.14 JPG2K_77.92 
GWN_77.77 GB_77.76 FF_77.45 JPG2K_77.15 GWN_74.71 JPG_74.56 JPG2K_73.95 

GB_70.05 JPG_69.60 GB_69.52 FF_64.41 GWN_62.01 JPG2K_60.25  JPG2K_56.25 
FF_55.32 FF_53.31 JPG_50.94 GWN_50.64 GWN_45.54 JPG_44.06 JPG_43.98 
GB_43.28 JPG_43.18 JPG_36.77 GWN_28.13 JPG2K_28.09 FF_25.97 JPG2K_25.72 
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