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Many trait-specific countermeasures to face spoofing attacks have been developed for security of face
authentication. However, there is no superior face anti-spoofing technique to deal with every kind of
spoofing attack in varying scenarios. In order to improve the generalization ability of face
anti-spoofing approaches, an extendable multi-cues integration framework for face anti-spoofing using
a hierarchical neural network is proposed, which can fuse image quality cues and motion cues for live-
ness detection. Shearlet is utilized to develop an image quality-based liveness feature. Dense optical flow
is utilized to extract motion-based liveness features. A bottleneck feature fusion strategy can integrate
different liveness features effectively. The proposed approach was evaluated on three public face anti-
spoofing databases. A half total error rate (HTER) of 0% and an equal error rate (EER) of 0% were achieved
on both REPLAY-ATTACK database and 3D-MAD database. An EER of 5.83% was achieved on CASIA-FASD
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1. Introduction

Face recognition has been wildly applied in user authentication
systems due to the non-intrusive and natural interaction of face
biometrics [1-3]. A high security requirement for face authentica-
tion is urgent, because only a photography, video replay, or 3D-
mask can easily spoof a face recognition system to access secure
information illegally [4]. Photos and videos of a valid user can be
easily obtained, especially through social network. Hence the face
anti-spoofing module is indispensable to a face authentication
system besides the face recognition module. Recently, many atten-
tions have been paid to countermeasures to facial spoofing attacks.
A variety of face anti-spoofing algorithms were proposed based on
different approaches [5]. Several public face anti-spoofing
databases were established [6-8]. And competitions on counter-
measures to facial spoofing attacks boosted the development in
face liveness detection [9].

Face image quality, facial motions, and scenic motions provide
different liveness cues for face anti-spoofing. Various hand-
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engineered features have been proposed to describe liveness cues
from the image quality-based or motion-based aspects, such as
local binary pattern (LBP) and histogram of optical flow (HOOF)
[10,11]. In this paper, shearlet transform is explored to discrimi-
nate between real faces and fake faces as an image quality descrip-
tor. In contrast with the popularly used LBP, which is a local
texture pattern feature, shearlet transform is more effective in
representing distributed discontinuities, providing multi-scale
and multi-directional anisotropic descriptions in images as direc-
tional wavelets [12]. On the aspect of motion cues, raw optical flow
magnitude (OFM) is directly fed into an autoencoder neural net-
work to learn motion-based liveness features in the cropped facial
region and the whole scene, respectively. Compared with previous
motion-based features, no motion hypothesis or statistic model is
utilized to set motion priors in this paper. Therefore, the proposed
motion-based liveness feature can achieve more generalization
across face anti-spoofing databases with different scenic settings.

Due to varying attack scenarios and environment conditions,
there is no absolutely superior face anti-spoofing technique. The
combination of liveness features from the image quality-based
and motion-based visual cues provides a promising direction to
enhance the generalization and stability of a face anti-spoofing
classifier. All the state-of-the-art face spoofing countermeasures
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take advantage of the feature fusion or score fusion approach, such
as spatial-temporal texture descriptor [13], winning algorithms in
the 2nd competition on countermeasures to 2D face spoofing
attacks [9], and the complementary countermeasures [14]. Cur-
rently, a direct concatenation of feature vectors at feature level
or a fusion at score level is wildly utilized. There are few attentions
paid on developing a fusion strategy of different liveness features
from multiple visual cues. In this paper, a feature fusion framework
for integrating features from multiple categories of liveness cues is
proposed using a neural network approach. The autoencoder neu-
ral network adopted is not only a supervised classifier but can also
generate the bottleneck feature, which is a compressed sparse rep-
resentation of the raw input for the neural network [15]. The bot-
tleneck feature can represent raw inputs more effectively in a
reduced dimension with a unit-scaled amplitude [16]. Hence, the
liveness bottleneck features learned from different visual cues
can be concatenated without scaling. The fused bottleneck features
can be fed into a succeeding neural network to perform the final
liveness detection. This hierarchical neural network can integrate
liveness features from multiple visual cues and learn a comple-
mentary countermeasure to face spoofing attacks. Considering
user-friendliness and convenience, the challenge-response and
multimodality approaches are not discussed in this paper [17],
because a face anti-spoofing method transparent to users is pur-
sued here.

Compared to previous work, the contributions of this paper can
be summarized as:

(1) Shearlet transform is utilized to perform face image quality
assessment, providing a better image quality descriptor than
the popularly used LBP.

(2) Motion-based liveness features are automatically learned
using the neural network from raw optical flow information
in the cropped facial region and the whole scene, respec-
tively. With the pursuit of the generalization of the
motion-based feature, no motion assumption or scenic
model for face anti-spoofing is adopted.

(3) A feature fusion framework for integrating the image
quality-based and the motion-based liveness cues is pro-
posed using a hierarchical neural network. A higher face
anti-spoofing classification accuracy is achieved by the pro-
posed approach compared with the state-of-the-art
methods.

The remainder of the paper is organized as follows. A brief liter-
ature review of the state-of-the-art face anti-spoofing methods is
given in Section 2. The proposed feature fusion framework is
explained in details in Section 3. Three public face anti-spoofing
databases utilized in this paper are introduced in Section 4. Exten-
sive experiments are conducted on the three public databases, and
the corresponding results are reported in Section 5. Finally, a con-
clusion is drawn in Section 6.

2. Related work

Existing face anti-spoofing methods can be mainly classified
into four categories: extra hardware-aided, image quality-based,
motion-based, and multi-cues integration-based.

2.1. Extra hardware-aided

In addition to 2D images captured by regular cameras in the vis-
ible spectrum, extra hardware can provide other valuable informa-
tion to distinguish between genuine faces and fake faces. Zhang
et al. [18] selected two groups of light-emitting diodes (LED) with

working spectra at 850 nm and 1450 nm as active light sources.
Two corresponding photodiodes can detect the discriminant reflec-
tance between real faces and fake materials. Lagorio et al. [19] cap-
tured 3D scanned points of face surfaces using an optoelectronic
stereo system. 3D curvatures computed from acquired scanned
data can distinguish between genuine faces and 2D spoofing medi-
ums. Sun et al. [20] collected images in the visible spectrum and
the infrared spectrum from a face simultaneously, with the combi-
nation of a visible camera and a thermal camera. Canonical corre-
lation analysis of a pair of visible/thermal images using patched
cross-modality was performed to detect face liveness. All the
hardware-aided methods mentioned above obtained good perfor-
mance on their private evaluation databases. However, the com-
mercial applications of hardware-aided face anti-spoofing
methods will be limited by requirements of setting up extra
hardware.

2.2. Image quality-based

Spatial liveness information is extracted from static face
images, with the expectation that fake face images displayed by
spoofing mediums (paper, LCD screen, mask, etc.) will have image
quality different from that of natural real face images, including
sharpness, local artifacts, textureness, and statistical properties in
some transform domains [21]. High frequency components of fake
face images are much reduced in the Fourier spectrum compared
with the cases of real face images [22]. Zhang et al. [7] transformed
face images into a series of frequency bands using multiple differ-
ence of Gaussian (DoG) filters. Genuine and fake face images pos-
sess discriminant distributions in the DoG domain, and an overall
equal error rate (EER) of 17% was achieved on the CASIA-FASD
database. Micro-texture difference was observed between real
and fake face images due to their surface differences [10]. LBP is
a successful texture operator to describe micro-texture informa-
tion. Block-based multi-scale LBP codes can obtain half total error
rates (HTER) of 13.87%, 18.21%, and 0.95% on the REPLAY-ATTACK,
CASIA-FASD, and 3D-MAD databases, respectively [6,8]. A parame-
terization combining 25 general image quality measures was pro-
posed to perform the fake biometric detection, including face, iris,
and fingerprint biometrics [21], and a comparable result with that
of LBP can be achieved on the REPLAY-ATTACK database. Menotti
et al. [23] extracted deep representations of raw face images
through optimizing a deep convolutional neural network (CNN).
This deep learning approach can gain a HTER of 0.75% on the
REPLAY-ATTACK database

2.3. Motion-based

Motion patterns on the face or suspicious motion cues in the
scenario are valuable temporal liveness information. Based on
the region examined, motion-based face anti-spoofing can be
grouped into two sub-categories, face motion-based and scene
motion-based.

2.3.1. Face motion-based

Eye-blinking is a typical face motion cue wildly utilized in early
work [24]. A human face is a non-rigid 3D object, exhibiting differ-
ent optical flow trajectories compared with a 2D photo face. Koll-
reider et al. [25] assumed that the correlation between different
facial components’ motions is discriminant between real faces
and photography faces. Bao et al. [26] proposed a motion model
to describe the optical flow field of planar objects, and a divergence
from this mode was assumed to exist in a real face’s motion.
Bharadwaj et al. [11] utilized Eulerian motion magnification to
amplify subtle facial motions in a specialized frequency band.
Macro- and micro-facial expressions presented by real faces can
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be exaggerated and distinguished from distorted motion patterns
on fake faces using the HOOF descriptor. A HTER of 1.25% was
achieved on the REPLAY-ATTACK database.

2.3.2. Scene motion-based

The motion correlation between the user and background can
indicate the presence of a spoofing attack. Kim et al. [27] supposed
that the face and body region has low consistency with the back-
ground and the extracted background should not change in a pre-
set authentication environment. Anjos et al. [28] utilized optical
flow correlation between the user head and the background scene
to detect photo face spoofing attacks, and a HTER of 1.49% was
achieved on the PHOTO-ATTACK database. In practice, varying sce-
narios will be presented to face authentication systems, especially
with mobile internet apps. One pre-defined face motion-based or
scene motion-based model is not suitable for a wide variety of
authentication environments.

2.4. Multi-cues integration-based

Liveness features relying on a single cue are not effective for
every kind of face spoofing attack. The combination of complemen-
tary multi-cues from different aspects can solve several attack-
specific sub-problems simultaneously. Hence the state-of-the-art
results were achieved by the multi-cues integration-based
approaches. Pereira et al. [13] utilized 3D-LBP based dynamic tex-
ture feature to describe the static facial texture and local facial
motions at the same time. An EER of 10% and a HTER of 7.6% were
achieved on the CASIA-FASD and REPLAY-ATTACK databases,
respectively. Komulainen et al. [14] integrated the LBP-based tex-
ture feature and the motion correlation between the face and the
background regions at score level. A HTER of 5.11% was obtained
on the REPLAY-ATTACK database. In the 2nd competition on coun-
termeasures to 2D face spoofing attacks [9], both the CASIA team
and the LNMIIT team fused the LBP-based texture feature and
motion features at feature level, and they both achieved perfect
discrimination on the REPLAY-ATTACK database.

3. The proposed approach

The proposed multi-cues integration-based face anti-spoofing
approach combines liveness features from three aspects: the
shearlet-based image quality feature (SBIQF), the optical flow-
based face motion feature, and the optical flow-based scene
motion feature, as shown in the flow chart Fig.1, where x,; repre-
sents the ith element in the input vector of the kth sub-network

for a cue, h{" is the learned ith primary feature activation in the

ki
hidden layer of the kth sub-network, h§2> is the learned ith primary
feature activation in the second hidden layer of the integration
neural network, and P(y = C|x) is the probability of the C class
(real/fake) with input x.

Firstly, a SBIQF vector is extracted from a normalized face
image. Face coordinates are determined using Viola-Jones face
detector and aligned with eyes-location [29]. A bottleneck repre-
sentation for the SBIQF is obtained using the first sub-network in
Fig. 1. Secondly, a face video is collected using the same face coor-
dinates and normalization process as in the previous step. Dense
optical flow is calculated between face frames with a fixed interval.
An average OFM map describing the facial motion patterns is
obtained with averaging the OFM information through the face
video. And this average face OFM map is fed into the second sub-
network to extract a bottleneck representation. Thirdly, an average
scene OFM map is calculated from the scene video, which is the
raw video where the face video is extracted. The scene OFM map
is utilized as the input for the third sub-network to obtain a bottle-

neck representation. Lastly, all the three bottleneck representa-
tions from three different liveness cues are concatenated as a
fused bottleneck feature, which is further fed into the subsequent
neural network for liveness detection. The liveness status is finally
determined using a two-class softmax classifier. As shown in Fig. 1,
the three sub-networks before hidden layer II are locally connected
with inputs from three different visual cues, respectively. And the
three sub-networks are trained separately. At hidden layer II, the
fused bottleneck feature is fully connected with the following net-
work. The hidden layer Il is trained layer-wisely with the hidden
layer 1. Details of core models in the flow chart are introduced as
follows.

3.1. Autoencoder and softmax classifier

An autoencoder is a neural network trying to learn an approxi-
mation to the identity function, so as to output X that is similar to x
[15], as shown in Fig. 2. The cost function for optimizing an autoen-
coder is given as

S2
Jsparse(W, b) = J(W,b) + B "KL(p || p) (1)

j=1

where J(W, b) is the cost function of an autoencoder for learning the
identity function, J,,..(W,b) is the sparsity constrained cost func-
tion of an autoencoder, p is the sparsity parameter, p; is the average
activation of jth hidden unit, KL is the Kullback-Leibler divergence
function for measuring the difference between p and pj, S, is the
number of neurons in the hidden layer, and g is the weight of the
sparsity penalty term. Through placing a dimension-reduced hidden
layer and a sparsity constraint, a compressed sparse representation
of the input can be obtained, as the bottleneck representation. Next,
the learned bottleneck representation is fed as the input for a soft-
max classifier to build a classification neural network, as shown in
Fig. 3.

A global fine-tuning of the overall neural network is performed
by backpropagation using a labeled dataset. The autoencoder train-
ing can be treated as a pre-training process, which can provide a
good initial solution for neural network optimization. Then the
fine-tuning of parameters of the autoencoder and softmax classifier
together using labeled data can further improve the bottleneck rep-
resentation for liveness classification and reduce the training time.
In this paper, both the three sub-networks for three visual cues and
the feature integration network were trained using the way of pre-
training followed by fine-tuning. Stacked autoencoders with multi-
ple hidden layers can be trained layer-wisely. And the unfolded
stacked autoencoders can be fine-tuned together with a softmax
classifier using labeled data. The layer-wise pre-training followed
by fine-tuning is the core idea in deep learning [30]. Due to the sig-
moid activity function used in neural networks, the bottleneck rep-
resentation is automatically scaled between 0 and 1, which is
suitable for fusing multi-cues features with different scales.

3.2. Shearlet-based image quality feature

Curvilinear singularities exhibited in images cannot be sparsely
approximated using traditional wavelet, due to a lack of direction
descriptor. To overcome drawbacks of wavelet, shearlet has been
proposed in recent years, with an ability of efficiently capturing
anisotropic features in multidimensional data [12]. Shearlet trans-
form has been successfully utilized to perform non-reference
image quality assessment as a state-of-the-art method [31].
Compared with real faces, spoofing faces may have sharpness
reduction, textureness differences, additive noises, and artifacts
due to face reproducing on spoofing mediums. Compared with
LBP and DoG, shearlet can better describe curvilinear singularities,
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Fig. 1. The flow chart of the multi-cues integration-based face anti-spoofing method using neural networks.
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Fig. 2. Autoencdoer architecture.

including edges, textures, and artifacts. Image quality assessment
based on shearlet has an advantage in detecting blurred edges
and distorted textures on spoofing faces, anisotropic artifacts
caused by face reproducing (video coding, printing, etc.), texture-
ness differences between real facial skin and spoofing mediums,

Softmax
Classifier

Bottleneck
Representation

Input
Layer

Fig. 3. Fine-tuning of autoencoder neural network with softmax classifier.
etc. At the same time, shearlet can also describe isotropic noises

and artifacts on spoofing faces. Hence the proposed image
quality-based liveness feature is based on shearlet. For a
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two-dimensional image, the affine systems with composite dila-
tions are the collections of the form [32]:

SHuf(a,8,6) = (f, dasr)y, a>0,seR teR? )

where f is the image and the analyzing factor ¢, is the shearlet
basis, which is defined as

Base(x) = |det Mos| 2 (M, 1x — ) (3)
_ _(a yas _(a 0 (1 s
whereMu7szsAaf<0 \/a>andAaf<0 \/E)'BS*<O 1)_

A, is the anisotropic dilation matrix and B is the shear matrix. Since
the analyzing functions associated with the shearlet transform are
anisotropic and defined at different scales, locations, and orienta-
tions, shearlet is able to detect directional information and account
for geometry of multidimensional functions.

Starting with the shearlet transform of a face image into differ-
ent sub-bands, the calculation process of the SBIQF is summarized
in Fig. 4. Each element in a red’ box in a sub-band is defined as

x(@s,b) s

(4)

where a=1,...,A is the scale index (excluding coarsest scale),

s=1,...,Sis the directionindexand b=1, ..., (M/m)2 is the block
index of each sub-band. M is the size of the square image and m is
the size of each red block. SH,f(a, s, b) are the shearlet coefficients of
each red block. Mean pooling of shearlet coefficients is performed in
each red block. The pooled values are concatenated as a vector sub-
jected to a logarithmic nonlinearity:

SBIQF = log, (X1,%2 ..., Xn) (3)

where N = A x § x (M/m)? is the total number of red blocks.

3.3. Optical flow-based motion feature

Optical flow can describe local image motions based on local
derivatives in a given image sequences. With the assumption of
brightness constancy and spatial smoothness, optical flow can be
calculated through solving motion constraint equation:

ol ol ol

Uy +-0Vy +

Uty 0 6)

where [ is the image intensity at (x,y,t), vx and v, are the x and y
components of optical flow, describing a local pixel translation. A
dense optical flow technique based on iterative reweighted least
squares (IRLS) method is adopted in this paper [33]. Optical flow
describes the motion direction and motion magnitude simultane-
ously. Only motion magnitude information is employed here.

Compared with previous hand-crafted motion-based face live-
ness features, the proposed optical flow-based motion feature does
not depend on any pre-defined model or prior assumption, such as
eye-blinking on real faces [24], non-rigid facial expression [25],
planar motion patterns on a photography face [26], and low
motion consistency between a real face and the background [27],
because it is hard to build a universal motion model to describe
motion cues for face anti-spoofing in varying spoofing scenarios.
The OFM map can capture every motion on the face or the scene.
A neural network is good at learning implicit patterns, which is
able to recognize motion cues for face liveness detection with
proper training. Hence the OFM map is selected to describe the
motion-based cues for learning to deal with different spoofing
attacks.

! For interpretation of color in Figs. 4 and 10, the reader is referred to the web
version of this article.

Input Image

sesscee xN

Shearlet-based Image Quality Feature

Fig. 4. Calculation process of shearlet-based image quality feature.

A short video (<2 s) is recorded during liveness detection. After
that, a face video is extracted using a simple eyes-location normal-
ization. Dense optical flow calculation is performed between two
frames with a fixed interval, and an OFM map can be obtained to
describe pixel-level motion trajectories between the two frames.
Several face OFM maps are generated with pairs of frames in the
face video using dense optical flow. An average of these face
OFM maps is utilized to record motion patterns on the face, as
shown in Fig. 5(a). An average scene OFM map is calculated from
the whole-frame video, as shown in Fig. 5(b). Scenic motion cues
in the background can be recorded in the average scene OFM
map. Face region or body region are not excluded for calculating
scene OFM maps, because it is difficult to define a uniform fore-
ground/background model in face anti-spoofing. The average
face/scene OFM map are columnized into two input vectors for face
motion-based and scene motion-based sub neural networks,
respectively.

Based on how the fake face is represented with the spoofing
medium, 2D face spoofing attacks can be classified into two cate-
gories: close-up and scenic spoofs. A close-up spoof describes only
the facial area which is presented to the sensor, during which
photography/screen edges and the attacker’s hands are visible on
the scene. In contrast with close-up spoofs, scenic face spoofs
incorporate the background scene in the face spoof. A resulting
scenic fake face is placed near to the sensor to hide medium
boundaries or human hands.

Some typical motion patterns will appear in face spoofing
attacks, which are distinguishable from motion patterns in real
accesses. For example, Fig. 6(a) shows an average OFM map on a
real face, where non-rigid local facial motions concentrate on facial
components. A face displayed on a photographic paper has a global
movement due to involuntary hand-shaking. Then comparable
OFM can be observed on both the face and the background neigh-
boring the face, as shown in Fig. 6(b). Specular reflection often
occurs on mirror-like screens of video-replay devices, which can
also be detected using the OFM map as shown in Fig. 6(c). A face
mask will cover local facial motions except eyes movements, and
a uniform motion pattern on the mask can be recorded on the
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Fig. 5. The calculation of an average OFM map: (a) on the face; (b) on the scene.

(d)

Fig. 6. Typical facial motion patterns on a real face and three spoofing faces: (a) a real face; (b) a hand-held photography face; (c) a video-replay face displayed on a high-

definition screen; (d) a masked face.

OFM map, as shown in Fig. 6(d). A clear face profile appears on the
scene OFM map for a real access, as shown in Fig. 7(a). For a scenic
spoof, if the display medium is not supported stably, a global
movement across the frame can be detected as shown in Fig. 7
(b). For a close-up spoof, suspicious movements of hands and bor-
ders of a video-replay device can be observed on the scene OFM
map, as shown in Fig. 7(c).

4. Face anti-spoofing databases

In order to evaluate performance of the proposed face anti-
spoofing approach, three public face anti-spoofing databases are
utilized as benchmarks, including the REPLAY-ATTACK database,
the CASIA-FASD database, and the 3D-MAD database.
4.1. REPLAY-ATTACK database

This database collected 1200 short videos of both real accesses
and face spoofing attacks from 50 subjects, recorded using a

webcam [6]. The videos were recorded in two different lighting
conditions: (1) Controlled, with a uniform background and
artificial illumination; (2) Adverse, with a complex background
and natural illumination. Three different kinds of attacks with
two different support conditions were considered. Three kinds of
attacks include: (1) Print: high-resolution photographs printed
on A4 papers were presented to the camera; (2) Mobile: photos
and videos taken and displayed using a smartphone were pre-
sented to the camera; (3) Highdef: high-resolution photos and
videos displayed using a tablet were presented to the camera.
Two support conditions include: (1) Hand-held: the attack media
was held by hands; (2) Fixed: the attack media was attached on
a fixed support. Some example frames from real accesses and
spoofing attacks in different scenarios are shown in Fig. 8.

All subjects in REPLAY-ATTACK database are partitioned into
three non-overlapped sub-sets with 15, 15, and 20 subjects respec-
tively: (1) Train, to tune parameters of the classifier; (2) Develop-
ment, to fix the decision threshold; (3) Test, to evaluate final
classification performance.
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(b)

Fig. 7. Typical scenic motion patterns for a real access and two spoofing attacks: (a) a real person; (b) a scenic hand-held photography; (c) a close-up hand-held video-replay

device.

Adverse

Controlled

Real

Print

Mobil

Highdef

Fig. 8. Examples of real accesses and spoofing attempts in different scenarios in the
REPLAY-ATTACK database.

4.2. CASIA-FASD database

This database consists of 600 short videos from 50 clients [7].
Their real accesses and corresponding three different kinds of
spoofing attempts were recorded using three digital cameras with
different imaging quality. The three kinds of attacks include: (1)
Warped-photo: face photographs printed on copper papers were
presented to the camera, simulating facial motions through warp-
ing photos; (2) Cut-photo: the eyes region was cut off from the
photography for exhibiting eye-blinking; (3) Video: high-quality
genuine videos were displayed using a high-resolution tablet pre-
sented to the camera. Three different imaging quality conditions
were implemented using an imaging device of (1) Low-quality,
(2) Middle-quality, and (3) High-quality, respectively. Example

frames from genuine and fake videos in different scenarios are
shown in Fig. 9. The CASIA-FASD database is divided into (1) Train
sub-set and (2) Test sub-set with 20 and 30 independent subjects,
respectively.

4.3. 3D-MAD database

This database is composed of 255 short videos of real accesses
and mask attacks from 17 subjects [8]. Color images and depth
maps were captured simultaneously using a natural user interface
device. Only color images are utilized in this paper. Example
frames of a real face and a masked face are shown in Fig. 10. The
3D-MAD database is randomly partitioned into three non-
overlapped sub-sets with 7, 5, and 5 subjects respectively: (1)
Train, to optimize the classifier; (2) Development, to fix the deci-
sion threshold; (3) Test, to report the spoofing detection result.

4.4. Protocol

HTER is advised to objectively evaluate a proposed countermea-
sure on the REPLAY-ATTACK and 3D-MAD databases. HTER is
defined as

FAR(t,D) + FRR(t, D)
; @)

HTER =

where FAR means the false acceptance rate, FRR means the false
rejection rate, D is the test sub-set, and t is the decision threshold.
The value of 7 is determined on the EER using the development sub-
set. The EER is the HTER subjected to that the FAR equals the FRR. As
mentioned above, there is no explicit partition for the train, devel-
opment, and test sub-sets in the 3D-MAD database. Hence, the
results reported on the 3D-MAD database are the average HTER
over 10 iterations of a random database partition. There is a lack
of a development sub-set in the CASIA-FASD database. Thereby,
the EER is utilized to report the evaluation results on the CASIA-
FASD database instead of the HTER, as advised in its protocol.

5. Experimental results

The experiments have been designed with a two-fold objective.
First, face anti-spoofing performance of the three proposed face
liveness features were evaluated, including the SBIQF, the average
face OFM map, and the average scene OFM map. Then the proposed
multi-cues integration-based face anti-spoofing approach was
evaluated and compared with the state-of-the-art face anti-
spoofing algorithms. Second, the multi-cues fusion strategy was
discussed through the comparisons among the raw feature fusion,
the score fusion, and the proposed bottleneck feature fusion.
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Fig. 9. Examples of real accesses and spoofing attempts in different scenarios in the CASIA-FASD database.
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Fig. 10. Examples of a real access and a mask attack in the 3D-MAD database.
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5.1. Setting of experimental parameters

Consecutive 60 frames were randomly selected from each video
in databases to generate a scene (whole-frame) video. The face
coordinates determined in the initial frame using Viola-Jones algo-
rithm with eyes-location alignment was utilized for all the 60
frames to extract a face video from the scene video. An OFM map
is calculated between two frames. For calculating an average face/
scene OFM map, 6 face/scene frames were firstly selected from 30
consecutive face/scene frames with a fixed interval of 5 frames.
Then 5 face/scene OFM maps were calculated consecutively using
the 6 selected face/scene frames. An average face/scene OFM map
was obtained through averaging these 5 face/scene OFM maps.
And a SBIQF was extracted from the first one of the 6 selected face
frames. Thus, a SBIQF, an average face OFM map, and an average
scene OFM map were extracted from consecutive 30 frames as an
input for the proposed multi-cues integration neural network. With

10 times of slides of 3 frames within the total 60 frames, 10 sets of
inputs were thus obtained. And the final liveness status in a video
was determined by averaging the liveness detection scores over
10 sets of inputs. For single performance evaluation of each pro-
posed liveness feature, the final video-score was also averaged over
10 inputs. For the SBIQF extraction, gray-scale face frames were
normalized into 256 x 256 pixels. The scale number A, the direction
number S, and the pooling block-size are set as 4, 6, and 64 x 64
pixels respectively, resulting in the length of the SBIQF as 384. For
the average face/scene OFM map calculation, face/scene videos
were down-sampled into a resolution of 32 x 32 pixels to reduce
computational cost. Hence, the input vector length of the colum-
nized average face/scene OFM map is 1024.

For building the multi-cues integration neural network (Fig. 1),
three sub-networks with one hidden layer of 60 neurons were
trained for three visual cues, respectively. After that, the second
hidden layer with 80 neurons was trained with the fused bottle-
neck representations from multi-cues as inputs. In this paper, all
neural networks were trained by the means of pre-training using
the autoencoder followed by fine-tuning through the whole classi-
fication network using labeled data. All inputs for neural networks
were normalized to zero-means and unit-variances. The weight
decay parameter for autoencoders and softmax classifiers is
3e—5. The sparsity parameter is 0.1 and the weight of sparsity
penalty term is 3. Support vector machine (SVM) was utilized for
a performance comparison. The parameters of SVM kernels were
set using grid-search [34].

5.2. Face anti-spoofing performance evaluation

The effectiveness of the proposed three face liveness features
for three different visual cues were tested separately. Then
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Table 1

Performance of various face anti-spoofing approaches (%).
Approach REPALY-ATTACK CASIA-FASD 3D-MAD

Devel. (EER) Test (HTER) Test (EER) Devel. (EER) Test (HTER)

LBP + SVM [6,35]° 8.55 11.75 18.50 - 0.95
DOG + SVM [7]* - - 17.00 - -
LBP-TOP + SVM [13]* 7.88 7.60 10.00 - -
Complementary Countermeasures + LDA [14]* 4.57 5.11 - - -
Component Dependent Descriptor + SVM [35]* - - 11.8 - -
Motion Magnification + LDA [11]* 0 1.25 - — -
Deep Representation + CNN [24]° - 0.75 - - 0
Fusion of Texture and Motion + SVM [9]? 0 0 - - -
SBIQF + SVM 3.17 7.13 17.78 0 0.50
SBIQF + NN 3.83 6.13 15.5 0 0
Face OFM Map + NN 3.83 2.50 19.81 7.00 7.00
Scene OFM Map + NN 3.50 6.16 18.33 3.00 4.00
Multi-cues integration + NN 0.83 0 5.83 0 0

2 Results as reported in citation (under the same protocol). Each approach is presented as Feature Description + Classifier. LDA — Linear Discriminant Analysis. CNN —

Convolutional Neural Network. NN — Neural Network.

Table 2
Performance of different multi-cues fusion strategies for face anti-spoofing (%). (NN - Neural Network).
Fusion strategy REPALY-ATTACK CASIA-FASD 3D-MAD
Devel. (EER) Test (HTER) Test (EER) Devel. (EER) Test (HTER)
Raw Feature Fusion + SVM 4.33 8.33 9.07 0 2.00
Raw Feature Fusion + NN 1.50 2.75 10.93 0 2.00
Score Fusion + NN 3.00 2.50 10.93 0 0
Bottleneck Feature Fusion + NN 0.83 0 5.83 0 0

performance of the proposed multi-cues integration-based face
anti-spoofing approach was evaluated on the three databases. All
these results are given in Table 1. For a performance comparison,
the results of the baseline algorithms in databases and the state-
of-the-art countermeasures to face spoofing attacks are also listed
in Table 1.

In order to make a comparison between LBP and SBIQF, both of
them utilized SVM to perform the liveness classification. And the
proposed SBIQF has a better ability in describing the image quality
discrepancy between genuine faces and fake faces, showing lower
HTER/EER on all three databases compared with LBP. When SVM
was replaced with a neural network, performance of SBIQF
obtained some improvement.

On the REPLAY-ATTACK database, a perfect classification has
been achieved through fusing texture-based features and motion-
based features, proposed by two teams in the 2nd competition
on countermeasures to 2D face spoofing attacks. The proposed
multi-cues integration-based approach can also achieve a HTER
of 0% on the test sub-set of the REPLAY-ATTACK database. On the
CASIA-FASD database, best performance in previous work was
achieved by the LBPs from three orthogonal planes (LBP-TOP)
method, exploring the spatial and temporal LBP distributions
simultaneously. The proposed multi-cues integration-based
approach achieved an EER of 5.83%, which is better than the LBP-
TOP method. On the 3D-MAD database, a perfect discrimination
was achieved by the deep representation method, which utilized
a deep CNN to learn local texture-based features from raw face
images. Both the proposed SBIQF and the proposed multi-cues
integration neural network can obtain a HTER of 0% on the 3D-
MAD database. This implies that image quality-based features
work effectively on distinguishing between real faces and face
masks.

On both the REPLAY-ATTACK database and the CASIA-FASD
database, the proposed multi-cues integration-based approach
achieved a huge performance improvement in liveness detection
compared with all the three input liveness features. This result

illustrates the effectiveness of the proposed multi-cues integration
approach using a hierarchical neural network and the complemen-
tarity of the SBIQF, the average face OFM map, and the average
scene OFM map.

5.3. Multi-cues fusion strategy

A bottleneck feature fusion was performed in the proposed
multi-cues integration neural network. In order to investigate the
effectiveness of the bottleneck feature fusion, a variety of multi-
cues fusion strategies for face anti-spoofing were evaluated for a
comparison, as shown in Table 2.

Raw feature fusion means that the proposed three liveness fea-
tures are directly concatenated on feature level without learning
bottleneck representations. Then the concatenated raw features
were fed into SVM or neural networks for classification. Score
fusion means that the proposed three liveness features are fed into
three separate neural networks for the face anti-spoofing classifi-
cation. Then the scores from the three neural networks are fused
using logistic regression. Since the proposed multi-cues integration
neural network has two hidden layers, stacked autoencoders with
two hidden layers of [6060] neurons were utilized for raw feature
fusion and score fusion for a fair comparison. In Table 2, the pro-
posed bottleneck feature fusion achieved best performance on all
the three databases. This illustrates the sparsity, reduced-
dimension, and unit-scale of bottleneck representations are helpful
in feature fusion. The score fusion strategy obtained comparable or
even better results than raw feature fusion strategies, which
implies that a proper feature fusion strategy is critical for multi-
cues integration for face anti-spoofing.

6. Conclusion and future directions

With the rapid development of face anti-spoofing techniques,
the threats of spoofing attacks will also increase in the diversity,
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the reality, and the sophistication. It will be hard to select one tech-
nique over the others. Hence, the combination of several comple-
mentary countermeasures is a promising approach. In this paper,
an effective multi-cues integration neural network is proposed
for face anti-spoofing, which fuses the SBIQF, the average face
OFM map, and the average scene OFM map using bottleneck repre-
sentations. Extensive experiments were performed on three pub-
licly available databases to evaluate the proposed multi-cues
integration-based face anti-spoofing approach. A perfect discrimi-
nation between real accesses and spoofing attacks were achieved
on the REPALY-ATTACK database and the 3D-MAD database. An
EER of 5.83% was achieved on the CASIA-FASD database, which is
better than the state-of-the-art methods. Compared with LBP, the
proposed SBIQF is better in describing the image quality discrep-
ancy between real faces and fake faces. The bottleneck feature
fusion strategy obtained better performance than the strategies
of raw feature fusion and score fusion. The proposed face anti-
spoofing approach has been implemented using a combination of
C programs and MATLAB programs on a desktop computer with
a 2.67 GHz processor and 16 GB of memory. A demo video is avail-
able at https://youtu.be/151USnKDKZY. The proposed face anti-
spoofing approach can be easily combined with a face identifica-
tion module via sparse representation [36], as shown in the demo
face authentication system. The face identify, user existence, and
liveness status can be determined within 4.15 s, including a 2-s-
long video collection process with 30 frames per second. In future
work, other advanced neural networks will be investigated to
improve face anti-spoofing performance, such as the convolutional
neural network and the long short-term memory (LSTM) network
[37,38], which may be more effective in learning face liveness
features.
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