
  

 

Abstract—In personal healthcare, blood pressure (BP) is an 

important vital sign to be monitored frequently. However, 

traditional BP measurement devices require cuff’s inflation and 

deflation that is very uncomfortable for many users. Cuffless 

noninvasive BP estimation methods are very attractive 

especially on using Photoplethysmography (PPG) approach for 

achieving continuous BP monitoring and minimal user’s 

inconvenience. From recent studies on the second derivative of 

PPG (SDPPG) for vascular aging, SDPPG contains the 

information about aortic compliance and stiffness, which is 

highly related to blood pressure. To making use of this new 

finding, 14 new SDPPG based features are proposed in this 

paper.  They are combined with conventional 21 time-scale PPG 

features to develop a Support Vector Regression based BP 

estimator. Experimental results demonstrated that the combined 

features based BP estimator could improve accuracy of the 

conventional time-scale PPG based BP estimation by 40%. 

 
Index Terms—Blood pressure, photoplethysmography (PPG), 

Second derivative wave, Support vector Regression  

 

I. INTRODUCTION 

Blood pressure (BP) is one of the four vital signs of human 

body besides heart rate, respiratory rate, and body 

temperature. Recently, the risk of having hypertension is 

extending from older to younger groups of the population.  

This trend making the number of people who need daily 

monitoring of BP is significantly increased. In addition, the 

demand for public resources in the hospital is becoming more 

and more serious and the type of healthcare is tending to 

individual-centered rather than hospital-centered. The need of 

self-monitoring BP devices dramatically increases in the 

recent decades. However, most of the commercial BP 

measuring devices require to inflate and deflate a cuff for 

determining the BP values. This measurement has a high 

demand for the medical practitioner’s operation skills. 

Self-monitoring BP devices using cuffless and noninvasive 

detective methods are very attractive for personal healthcare 

applications. It was reported that cuff-less, noninvasive, and 

continuous measurement of BP could be achieved by 
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photoplethysmography (PPG) [2–7]. PPG [1] is a simple, 

portable and low-cost optical pulse that can be used to detect 

blood volume changes. The waveform of PPG is formed by 

heartbeat and affected by the condition of cardiovascular 

system [8]. When BP increases, the volumetric elasticity of 

blood vessel increases. This makes vessel wall stiff and the 

pulse wave propagation velocity is increased. The pulse wave 

propagation velocity (PWV) is represented as the pulse wave 

propagation distance divided by Pulse transit time (PTT). 

PTT is the time for the pulse wave to travel between two 

arterial sites, which is highly related with PWV. Normally, 

PTT is calculated from the time distance between R wave of 

ECG signal and following peak of fingertip PPG signal [10]. 

PTT based methods [5-7,10] have been demonstrated to 

achieve relatively high accuracy on BP estimation, but two 

devices are required for the measurement. This is 

inconvenient and requires high operation skill in practical 

usage. Moreover, synchronization between two devices is 

also a big challenge of PTT approach. Therefore, PPG 

waveform analysis approach using a single PPG signal is very 

attractive for continuous and noninvasive BP measurement. 

However, several reported PPG waveform analysis based BP 

estimation methods [14, 15] are still in the incremental 

development stage especially on achieving high accuracy of 

BP estimation. In these methods, the features for BP 

estimation are only defined in one domain especially the time 

domain.  In [15], 21 features are defined based on time and 

amplitude scales in time-domain of the PPG signal and Neural 

Network (NN) based machine learning algorithm is used as 

BP estimator that is trained by Multi-parameter Intelligent 

Monitoring in Intensive Care waveform database. 

Experimental results show that this method can achieve better 

accuracy than the linear regression estimator and satisfy the 

American National Standards of the Association for the 

Advancement of Medical Instrumentation. In order to further 

enhance the BP estimation accuracy of [15], additional 14 

features in the second derivative of PPG signal are combined 

with time-scale 21 features of [15] for designing a new BP 

estimator. Moreover, the estimator is trained by Support 

Vector Regression (SVR) instead of NN, which can further 

enhance the performance of the trained estimator.  

The paper is organized as follows. In section II, we first 

review the conventional 21 PPG features of [15] in the time 

domain and then the new 14 features in the second derivative 

of PPG signal are presented. For training the estimator, we 

choose Support Vector Regression as the training method, 

which will be introduced in section III. The experimental 

setting and results are presented in section IV. Finally, a 

conclusion is given in section V. 
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II. PPG FEATURES EXTRACTION 

A. Time-Scale PPG Features 

In [15], 21 time-scale PPG features are defined from the 

amplitude of the PPG signal and duration of specific 

components of the cardiac cycle as shown in the upper part of 

Fig. 1. Several of these features are based on [14,16] for 

characterizing the PPG pulsatile component such as Cardiac 

Period (CP), Systolic Upstroke Time (SUT), Diastolic Time 

(DT), pulse width at 10%, 50% and 66% of the pulse 

amplitude in Systolic and Diastolic intervals. Additional 

features added in [15] are pulse width at 25%, 33% and 75% 

of the pulse amplitude in Systolic and Diastolic intervals as 

shown in Fig. 1. These 21 features can be summarized as 

below:  

• CP, SUT, DT 

• 10%: DT10, ST10+DT10, DT10/ST10 

• 25%: DT25, ST25+DT25, DT25/ST25 

• 33%: DT33, ST33+DT33, DT33/ST33 

• 50%: DT50, ST50+DT50, DT50/ST50 

• 66%: DT66, ST66+DT66, DT66/ST66 

• 75%: DT75, ST75+DT75, DT75/ST75 

B. Second Derivative PPG Features 

From the recent studies [17, 18] of vascular aging through 

the second derivative of PPG (SDPPG), Pulse Wave Velocity 

(PWV) and SDPPG contain the information about aortic 

compliance and stiffness. These factors highly correlated with 

blood pressure. Basically, SDPPG is the acceleration of PPG 

and its waveform is in “W” shape with five sequential waves 

normally, as shown in the lower part of Fig. 1. These five 

waves are named as Initial Positive Wave (IPW), Early 

Negative Wave (ENW), Late Upsloping Wave (LUW), Late  

 
Fig. 1. Features’ Definition 

Downsloping Wave (LDW), and Diastolic Positive Wave 

(DPW). The positions of ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’ are peaks of 

these waves as defined in [17-19]. One of their findings is that 

the ratio of late systolic peak to early systolic peak is 

influenced by age and systolic blood pressure (SBP).  

Moreover, Jeong et al. [20] investigated the applicability of 

SDPPG for blood pressure measurement through analysis of 

the relationship between blood pressure and SDPPG features. 

They find that diastolic blood pressure (DBP) has a good 

relationship with the amplitude ratios of peak “b” to peak “a” 

and peak “e” to peak “a”.  

Based on these recent findings, we combine SDPPG 

features with the conventional 21 time-scale PPG features [15] 

to develop a better BP estimator. We assume that the ratio of 

amplitudes and the amplitudes of corresponding PPG points 

(A_a, A_b, A_c, A_d, A_e, AP_a, AP_b, AP_c, AP_d, and 

AP_e), as shown in lower part of Fig.1, are good features for 

BP estimation. These ratios of five characteristic points’ 

amplitude in SDPPG could reveal the condition of the 

cardiovascular system, such as the vascular aging, 

atherosclerosis, and the vasoactive [17, 18]. Moreover, we 

believe that the shape of PPG signal or the changes of PPG’s 

acceleration is highly related with vessel condition. To further 

reveal the shape of PPG signal, we define four new features 

which combine PPG and SDPPG signal. Using the location of 

five points on SDPPG, we can get the corresponding five 

points on PPG signal and then, we can get the amplitude of 

these five points. Their ratios are the four new features. Thus, 

we propose to define four features based on SDPPG 

amplitude ratio and another four features based on PPG 

amplitude ratio as: 

 A_b/A_a 

 A_c/A_a 

 A_d/A_a 

 A_e/A_a 

 AP_b/AP_a 

 AP_c/AP_a 

 AP_d/AP_a 

 AP_e/AP_a 

Those five characteristic points can be considered as the 

end point of a stage in heartbeat cycle. So the time interval of 

those special points represents the time of duration of each 

stage. Thus, we propose other five features based on time 

interval between two consecutive points as: 

 T_a 

 T_c 

 T_e 

 T_b 

 T_d 

 

Finally, Aging Index (AI) has been proved to have good 

relation with vascular aging and our SDPPG’s AI feature is 

defined as: 

 AI = (A_b - A_c - A_d - A_e) / A_a 

Thus, there are 14 SDPPG and 21 PPG features for the 

proposed BP estimation. The extraction of those features is 

following this step. Firstly, we filter the noise and find the 

local peaks of each PPG cycle. Secondly, we separate PPG 

signal into each cycle based on the local peaks. In the next, we 

compute the second derivative waveform. For each cycle, we 

identify the five SDPPG peaks based on the characteristics of 

IPW, ENW, LUW, LDW, and DPW. The peak ‘a’ is always 

the maximum point in one cycle of an SDPPG waveform, 

while the peak ‘b’ is the minimum point. They can use this 

characteristic to identify the IPW and ENW. After the ENW is 

identified, the DPW is the positive maximum value from 

ENW to the end, which can be used for peak ‘e’ detection. 



  

LUW is the local peak point in the area between ENW and 

DPW. The peak ‘c’ is determined by the maximum after peak 

‘b’. LDW can be simply considered as the minimum point in 

the period that between the LUW and DPW, which can be 

used to detect the peak ‘d’.  

In addition, this SDPPG feature point detection method is 

also used to remove bad cycle. It is because errors generate at 

the LUW and LDW detection for some SDPPG signals 

without local maximum peaks between ENW and DPW or 

have more than one peak. These kinds of pulse cycle are 

removed after peak detection. We define some conditions to 

determine which cycle is bad cycle, which will be discussed in 

the following section.  

III. SUPPORT VECTOR REGRESSION 

In [15], Linear Regression (LR) and Neural Networks (NN) 

are used to train the BP estimation module from the 21 

time-scale PPG features. To further improve the BP 

estimation accuracy using the proposed combined features in 

PPG and SDPPG domains, we adopt Support Vector 

Regression (SVR) algorithm to train the estimation module. 

Basically, SVR is an extension algorithm of the well-known 

Support Vector Machine (SVM) with use of loss function 

such as Vapnik’s-insensitive loss function and Huber’s loss 

function for solving regression estimation problems. It is well 

known that SVR can minimize the over-fitting problem as 

compared with LR and NN.  

The basic idea of SVR is to map the input space into a 

high-dimension space by a non-linear mapping achieved 

implicitly by the trick of kernel function and to do a linear 

regression in the new feature space. Given a time series 

samples {xi, yi} xi ∈ Rl, yi ∈ R,i=1,2,3…,N, where xi is the 

input feature variable, yi is the target value. Firstly, SVR 

algorithm maps the data to a high-dimension feature space 

and then a linear function is found in the condition of 

minimizing the sum of empirical risk and the complexity term 

that enforce flatness in feature space. The linear function in 

the high dimensional feature space corresponds to the 

non-linear function in the original lower dimensional feature 

space.  

In order to train the BP estimation module using SVR, we 

employed the LIBSVM [21] developed by Lin and his group. 

This library is very popular in Support Vector Machine which 

support many different platform include MATLAB. We 

choose their library to do the regression job, so we use 

epsilon-SVR to train the estimation module. During the 

training, we also design the cross-validation set in order to set 

the best parameters of the epsilon-SVR – gamma and epsilon. 

Epsilon-SVR is a regression method whose parameters – 

epsilon, can control the final accuracy of this model.  Even if 

the number of support vector may become many or the 

complexity of the module may become high, the first priority 

of blood pressure estimation is accuracy. So we choose 

epsilon-SVR as our model.  

 

IV. EXPERIMENTS 

A. Dataset 

In order to evaluate the performance of the proposed 

combined features using SVR based BP estimation, we 

employed the dataset from the Multiparameter Intelligent 

Monitoring in Intensive Care II (MIMIC II) database [22]. 

This dataset provides a wide representation of PPG signals 

with correspondent beat-to-beat BP values. However, not all 

the PPG pulse cycles can provide the second derivative 

waveform with clear “W” shape. Thus, we developed a 

method to remove some of the pulse cycles with bad SDPPG 

waveform. Though observation, we found that if the typical 

“W” shape is required, the position and amplitude of the five 

SDPPG characteristic points (a, b, c, d and e) should satisfy 

the following conditions: 

 

 The results of characteristic point detection must have 

five points.  

 The amplitude of ‘a’ points should be the largest one and 

the amplitude of ‘b’ points should be the smallest one.  

 The order of these five points should be disturbed in 

order such that “a” have to be before “b” and “b” have to 

before “c”, etc. 

 The time interval between two successive points should 

larger than a predefined threshold, such as 3% of the length of 

that pulse cycle.  

 The amplitude distance between two successive points 

should larger than a predefined threshold. This threshold is 

about 5% of the amplitude distance between “a” and “b”. 

 

With use of these screening conditions, 910 good PPG 

pules cycles are detected from MIMI II dataset for our 

experiments. These good PPG cycles cover the population of 

normal, hypertension, and hypotension. In which, 648 pulse 

cycles (around 70%) are randomly selected as training data 

and 262 cycles (around 30%) are used as test data. Fig. 2 

shows one example PPG waveform with its corresponding BP 

waveform that extracted from MIMIC II database. The x-axis 

is just the sample number. The website of this dataset give the 

information of sample rate. The sample rate is 125/s, so 125 

scales in x-axis represents a second. The y-axis is the 

amplitude of PPG signal which is meaningless, because the 

absolute value of PPG amplitude can change a lot under 

different lighting situation and operation. However, for the 

blood pressure signal, we consider that the y-axis value 

represents the value of blood pressure. We found that most of 

the good pulse cycles are extracted from mimic2wdb/35, 

which is a sub-database of MIMIC II. Most of PPG and BP 

signals in this sub-database are relatively clean without noise 

and distortion. Fig. 3 shows one of the SDPPG waveform 

after low-pass filter with the five detected SDPPG points. The 

blue line in Fig. 3 is the PPG signal and the red line is the 

coordinate SDPPG waveform. The five detected SDPPG 

points are marked by red “X” marker. The x-axis is still the 

sample number which indicates 1/125 second per scale and 

the y-axis doesn’t have physical meaning. We only consider 

the relative value of these signal amplitude. 



  

 
(a) PPG signal 

 
(b) Blood Pressure signal 

Fig. 2. (a) Extracted PPG signal, and (b) its corresponding BP signal. 

 

 
Fig. 3. Example of detected five SDPPG points. 

B. BP Estimation Results 

In order to compare the performance of the proposed 

method with the conventional NN based 21 features method 

[15], we also used our training set to train a NN based BP 

estimator with 32 neurons in hidden layer. The proposed BP 

estimator uses both 21 time-scale PPG features and 14 

SDPPG features to train a SVR based BP estimator. In the 

training set, we randomly select 20% samples in training set 

as cross validation set. To get best parameters, we select cross 

validation (CV) set five times every training stage and for 

each training we try many different parameters combination 

and using CV set to find the one with best performance. To 

compare the proposed method with the 21 features NN based 

BP estimator, we use Mean Absolut Error (MAE) and 

Relative-Mean-Square-Deviation (RMSD) as the basic 

performance metric. In addition, Bland-Altman plot is also 

used, as it is commonly used for medical parameter 

measurement method comparison [23]. The MAE and RMSD 

are defined as:  
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Where the  means the prediction result of tth sample and 

 is the true value of that sample. Table 1 shows the MAE 

and RMSD in form of (MAE±RMSD) on SBP and DBP 

estimations using conventional method [15] and the proposed 

method for the testing set. Lower MAE means that average 

error between the estimated BP and true value is small. 

RMSD reveals the fluctuation of the error. From Table 1, we  

TABLE I: THE MAE AND RMSD OF THE ESTIMATED SBP AND DBP USING 

METHOD [15] AND PROPOSED METHOD 

 NN SVR 

 SBP DBP SBP DBP 

Kurvlyak [15] 

21 features 
(15.1±13.3) (7.7±6.6) (13.6±13.6) (7.7±7.9) 

Proposed method 

35 features 
(13.4±11.6) (6.9±5.9) (8.54±10.9) (4.34±5.8) 

 

 
Fig. 4. BA-plot of referenced method (left) and proposed method (right) 

 

find that the combined features can always achieve better 

performance as compared with use of only 21 time-scale 

features on using both NN and SVR estimation methods. 

Moreover, the proposed BP estimator with use of combined 

features and SVR can achieve lowest MAE and RMSD for 

both SBP and DBP estimations. The improvement of the 

proposed method is up to 40% as compared with the 

conventional method using NN and 21 features. To further 

prove the results improvement is significant, we calculate 

p-value to check the significance of this improvement. For 

SBP, the p-value between referenced method and proposed 

method is 0.001 and for DBP, p-value is 2.19E-09. The 

p-values are smaller than 0.01, which means the improvement 

of proposed method is significant. 

Bland-Altman plot (BA-plot) is a special performance 

evaluation method, which is used to compare the agreement 

between two methods. BA-plot can visualize the distance 

between predicted value and true value. The confidence 

interval also can indicate the performance is better or not. If 

the length of confidence interval is small, the errors 

concentrate in small area, which means better performance. 

Fig. 4 is the BA-plot for method [15] and proposed method.  

The left side of Fig.4 represents BA plot of method [15] 

and the right side is for proposed method. It is clear that the 

confidential interval of proposed method is smaller and the 

mean line that is the middle of three lines is more fitting the 

identity line (error = 0). 

V. CONCLUSION 

Based on the recent findings of blood pressure is related to 

the second derivative of PPG signal, we proposed 14 new 

features based on the five characteristic points of SDPPG. 

Moreover, PPG cycle screen method is proposed to make sure 

that the pulse cycles used for training and estimation are 

having good “W” shape SDPPG waveform.  To enhance the 



  

accuracy of the PPG signal based blood pressure estimation, 

we combined the proposed 14 SDPPG features with the 

conventional 21 time-scale PPG features to training an SVR 

based blood pressure estimator. Experimental results show 

that the proposed blood pressure estimator can achieve 40% 

accuracy improvement as compared with a conventional 

neural network and 21-feature based method. 
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