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Abstract. Face recognition is a widely used biometric technology due to its convenience but it is vulnerable to
spoofing attacks made by nonreal faces such as photographs or videos of valid users. The antispoof problem
must be well resolved before widely applying face recognition in our daily life. Face liveness detection is a core
technology to make sure that the input face is a live person. However, this is still very challenging using conven-
tional liveness detection approaches of texture analysis and motion detection. The aim of this paper is to propose
a feature descriptor and an efficient framework that can be used to effectively deal with the face liveness detec-
tion problem. In this framework, new feature descriptors are defined using a multiscale directional transform
(shearlet transform). Then, stacked autoencoders and a softmax classifier are concatenated to detect face liven-
ess. We evaluated this approach using the CASIA Face antispoofing database and replay-attack database. The
experimental results show that our approach performs better than the state-of-the-art techniques following the
provided protocols of these databases, and it is possible to significantly enhance the security of the face rec-
ognition biometric system. In addition, the experimental results also demonstrate that this framework can be
easily extended to classify different spoofing attacks. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.4.043014]
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1 Introduction
Face verification and recognition are a widely used biometric
technology due to its convenience and nonintrusive interac-
tion. In the last decade, face detection and recognition tech-
nology has achieved substantial progress. However, recent
works revealed that face biometrics is vulnerable to spoofing
attacks using cheap low-tech equipment, such as the photo-
graph or video of a valid user. Therefore, the antispoofing
problem for the face biometric system has gained great atten-
tion in the research community.

In recent years, liveness detection has been a very active
topic and received significant development in the fingerprint
recognition and iris recognition communities. However,
there is still a lack of effective approaches to deal with prob-
lems in face liveness detection. Usually, imposters will
present a large number of spoofed biometrics into the sys-
tem. In face recognition, the usual attack methods may be
classified into several categories. The classification is
based on what verification proof is provided to the face veri-
fication system, such as stolen face photos, recorded videos,
and three-dimensional (3-D) face masks with the abilities of
blinking and lip moving. The aim of face liveness detection
is to differentiate between real faces and nonreal faces. In
practice, the security level of a face biometric system will
be significantly improved with the help of liveness detection.
Face liveness detection is an important and challenging
issue, which determines the trustworthiness of the biometric
system’s security against spoofing.

Most of the conventional face liveness detection algo-
rithms can be classified into three types as (1) presence of

vitality, (2) differences in motion patterns, and (3) differences
in image quality assessment. For the first type, the presence
of vitality detection techniques focuses on creating certain
features that only live faces can possess. These methods usu-
ally analyze certain movements of certain facial components,
such as eye blinking and lip moving, and will consider those
movements as a sign of life and therefore a real face. For
example, Sun et al.1 proposed a blinking-based live face
detection using conditional random fields. In addition, Jee
et al.2 proposed a method for detecting eyes in sequential
input images and then variation of each eye region is calcu-
lated to determine the liveness status. For the second type,
differences in motion patterns-based analysis mainly rely
on the fact that real faces display a different motion behavior
compared to a spoofing attempt. These methods mainly dif-
ferentiate motion patterns between 3-D and two-dimensional
(2-D) faces. The general idea of this type method is that pla-
nar objects move significantly different from real human
faces, which are 3-D objects. Bao et al.3 proposed a liveness
detection method for face recognition based on an optical
flow field. It analyzed the differences and properties of opti-
cal flow generated by 3-D objects and 2-D planes. The
motion of an optical flow field is a combination of four
basic movements: translation, rotation, moving, and swing.
For the third type, image quality assessment-based analyses
focus on the presence of artifacts intrinsically presented at
attack medium. Tan et al.4 developed two strategies to extract
the essential information about different surface properties of
a live human face or a photograph, in terms of latent samples.
In addition, inspired by image quality assessment, characteri-
zation of printing artifacts, and differences in light reflection,
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Maatta et al.5 presented a face liveness detection method
using the microtexture analysis, which analyzed textures
of facial images using multiscale local binary patterns
(LBP). In addition, Li et al.6 proposed a live face detection
method that is based on the analysis of Fourier spectra of a
single face image or face image sequences. It hypothesized
that fraudulent photographs have less high-frequency com-
ponents compared with real ones.

Conventional face liveness detection algorithms usually
need to calculate or extract some explicit features using com-
plicated modules, such as modeling the texture, the motion,
or the life sign in the face images. These features focus on
representing a specific characteristic that can distinguish
between the real face images and nonreal face images
very well. However, because of the specificity, these methods
are hard to be generalized to other spoofing types. Thus, in
this paper, we aim to explore a new general purpose face
liveness detection algorithm that is based on shearlet
transform. The general idea of this method is that the stat-
istical property of real face images is usually constant.
Nevertheless, nonreal face images usually contain more or
less distortions in all directions. That is, the process of creat-
ing fake faces disturbs the statistical property of real face
images and discriminates real face images from nonreal
face images. Thus, we propose new feature descriptors
based on shearlet transform and these descriptors can effec-
tively distinguish between real face images and nonreal face
images. Shearlet is a multiscale and multidirectional image
descriptor, which is good at capturing anisotropic features.
Compared with LBP, shearlet can better describe curvilinear
singularities, including edges, textures, and artifacts.

The shearlet-based feature descriptors we proposed are
multifunctional descriptors. We can apply the same descrip-
tors for face liveness detection, spoofing attack classification,
and face recognition. The extracted descriptors are then fed
into stacked autoencoders (SAEs) that are concatenated with
a softmax classifier. In this way, all these goals are achieved
using a unified framework. In this paper, we focus on
face liveness detection and spoofing attack classification
problems.

The remainder of the paper is organized as follows.
Section 2 introduces the detailed structure and related tech-
niques about the proposed framework. In Sec. 3, experimen-
tal results and a thorough analysis of this framework are
presented. Finally, a conclusion and future works are given
in Sec. 4.

2 Methodology
A high-level overview of the proposed framework is shown
in Fig. 1. An image or a video entering the framework is first
subjected to a face detector, and each extracted face frame
or frame sequence is gray-scaled. Then, shearlet-based fea-
ture descriptors are extracted from these face images. The
extracted descriptors are applied to detect face liveness.
For a real face, these descriptors can be directly used for
face recognition. Therefore, the final output of this frame-
work is a recognized real face. However, if it is a nonreal
face, these descriptors can be also directly utilized for spoof-
ing attack classification and the output indicates which type
of spoofing attack is used. As previously described, we use
SAEs and a softmax classifier to serve as a liveness detection
system, a face recognition system, and a spoofing attack

classification system. In this way, we can use the same fea-
tures and a unified framework to deal with all three tasks.
More details about this framework will be described in
the following sections.

2.1 Shearlet Transform
It is known that traditional wavelets and their associated
transforms are highly efficient when approximating and ana-
lyzing one-dimensional signals. However, these frameworks
have some limitations when extended to process multidimen-
sional data such as images or videos. Typically, multidimen-
sional data exhibit curvilinear singularities, which cannot be
sparsely approximated using wavelet, because wavelet is
ineffective in describing directions. To overcome the draw-
backs of wavelets, a new class of multiscale analysis meth-
ods has been proposed in recent years, which is defined as
the third generation wavelet. A noteworthy characteristic of
these new methods is their ability to efficiently capture aniso-
tropic features in multidimensional data and the shearlet
representation7–12 is one of them. The proposed feature
descriptors are based on shearlet transform. When the dimen-
sion is n ¼ 2, the affine systems with composite dilations are
the collections of the form

EQ-TARGET;temp:intralink-;e001;326;306SHϕfða; s; tÞ ¼ hf;ϕa;s;ti; a > 0; s ∈ R; t ∈ R2;

(1)

where the analyzing factor ϕa;s;t is called shearlet basis,
which is defined as

EQ-TARGET;temp:intralink-;e002;326;238ϕa;s;tðxÞ ¼ j det Ma;sj−1
2ϕðM−1

a;sx − tÞ; (2)

where Ma;s ¼ BsAa ¼
� a

ffiffiffi
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p
s

0
ffiffiffi
a

p
�
, and Aa ¼

� a 0

0
ffiffiffi
a

p
�
,

Bs ¼
�
1 s
0 1

�
. Aa is the anisotropic dilation matrix and

Bs is the shear matrix. The analyzing functions associated
to the shearlet transform are anisotropic and are defined at
different scales, locations, and orientations. Thus, shearlets
have the ability to detect directional information and account
for the geometry of multidimensional functions, which over-
come the limitation of the wavelet transform.

Fig. 1 High-level overview of the proposed framework.
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2.2 Shearlet-Based Feature Descriptors
We start the derivation of our shearlet-based feature descrip-
tors (SBFD) in a gray-scale image. The calculation process
of SBFD is shown in Fig. 2. Each element in the red box is
defined as

EQ-TARGET;temp:intralink-;e003;326;752xða; s; bÞ ¼
P jSHϕfða; s; bÞj

m2
; (3)

where a ¼ 1; : : : ; A is the scale index (exclude coarsest
scale), s ¼ 1; : : : ; S is the direction index and
b ¼ 1; : : : ; ðM∕mÞ2 is the block index of each subband.
M represents the size of square image and m indicates the
size of the red block. SHϕfða; s; bÞ are the shearlet coeffi-
cients of each red block.

After the mean pooling of shearlet coefficients in each red
block, the pooled values are concatenated as a vector and
subjected to a logarithmic nonlinearity, which is represented
as

EQ-TARGET;temp:intralink-;e004;326;609SBFD ¼ log2ðx1; · · · ; xNÞ; (4)

where N ¼ A × S × ðM∕mÞ2 is the total number of
red block.

Figure 3 shows the SBFD of a 256 × 256 face image. In
this example, the total scale number A is 4, total direction
number S in each scale is 6, and the red block size m is
64. Therefore, the length of SBFD is 384.

To illustrate the effect of these descriptors, we randomly
select 10 frames for all the high quality videos of 50 subjects
in the CASIA face antispoofing database. Each frame of the
original frame sequence is gray-scaled and passes through a
face detector. The detected faces are geometric normalized to
256 × 256 pixels. Figure 4 shows the example of extracted
and reshaped face images in the CASIA database. There are
three types of fake face attacks in this database, which
include warped photo, cut photo (eye-blink), and video
attacks. The SBFD of each face image is extracted andFig. 2 The calculation process of SBFD.

Fig. 3 Visualization of the SBFD for a 256 × 256 face image.
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the mean SBFD for different spoofing attacks is obtained.
Figure 5 shows the mean SBFD versus the length of
SBFD where the total length of SBFD is N ¼
4 × 6 × ð256∕128Þ2 ¼ 96. It may be observed that the
mean SBFD varies with each type of spoofing attack. In
addition, we can also observe that the video attack generally
increases the low frequency but decreases the high frequency
of the image, compared with real face images. However, the
warped photo and cut photo attack decrease both low and
high frequency of the image. Since the warped photo attack
and cut photo are very similar except the eye area, the mean
SBFD of these two types of attacks are also similar.

2.3 Stacked Autoencoders and Softmax Classifier
As previously mentioned, the extracted SBFD can be fed into
SAEs and the final face liveness status, spoofing type, and
user identification are predicted by a softmax classifier. The
architecture of this framework is shown in Fig. 6.

Before being sent into the SAEs, the input SBFD is
normalized by subtracting the mean and dividing by the
standard deviation of its elements, and zero components
analysis whitening is performed to the normalized SBFD.
SAEs are a kind of neural network that contains multiple
hidden layers and allows us to compute much more com-
plex features of the input signal.13–21 Since each hidden
layer computes a nonlinear transformation of the previous
layer, a deep network can achieve significantly greater
representational power than a shallow one. Different from
training the traditional back propagation (BP) neural net-
work, two steps are implemented to obtain good parameters
for an SAE. The first step is called pretraining, which is a
kind of unsupervised training. In this step, each layer is

treated as an individual autoencoder and the optimized
encoding weights are obtained as the initial weights instead
of random initialization. The second step is called fine-tun-
ing, which is a kind of supervised training using a BP algo-
rithm. Fine-tuning is a strategy that is commonly used in
deep learning. Through this step, the performance of an
SAE can be significantly improved. From a high level per-
spective, fine-tuning treats all layers of an SAE as a single
model. For each iteration, all the weights in the SAE can be
optimized.

The final output layer of this deep neural network is a
softmax classifier. When performing the fine-tuning process,
the parameters of softmax are also updated. The output is
defined as

EQ-TARGET;temp:intralink-;e005;326;155pðyðiÞ ¼ jjxðiÞ; θÞ ¼ eθ
T
j x

ðiÞ

P
K
l¼1 e

θTl x
ðiÞ ; (5)

where K is the class number and θ is the softmax parameter
vector. For liveness detection and spoofing classification, K
is 2 and 4, respectively.

Fig. 4 Example of extracted and reshaped face images in the CASIA face antispoofing database.
(a) Real face image. (b) Warped photo attack image. (c) Cut photo (eyeblink) attack image.
(d) Video attacks image.

Fig. 5 Plot of the mean SBFD versus the length of SBFD.

Fig. 6 The architecture of SAEs and softmax classifier.
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3 Experiments and Related Analysis

3.1 Experimental Protocol
In order to effectively evaluate the performance of the pro-
posed algorithm and other liveness detection algorithms, the
following two publicly available databases are used, which
contain multiple types of spoofing attack.

(1) The CASIA face antispoofing database.22 This data-
base contains 50 genuine subjects, and fake faces are made
from the high quality records of the genuine faces. The data-
base includes three imaging qualities (low, normal, and high)
and three fake face attacks that consist of warped photo, cut
photo (eye-blink), and video attacks.

Figure 7 shows one complete video set for a subject.
There are a total of 600 video clips, and the subjects are di-
vided into subsets for training and testing (240 and 360,
respectively). A suggested test protocol is also provided
that consists of seven scenarios and can be summarized as:
Quality test. This test is designed to evaluate the perfor-
mance when image quality is fixed. The samples are:

1. Low (L) quality test: {L1, L2, L3, L4}.
2. Normal (N) quality test: {N1, N2, N3, N4}.
3. High (H) quality test: {H1, H2, H3, H4}.

Fake face test. This test is designed to evaluate the perfor-
mance when fake face types are fixed. The samples are:

1. Warped photo attack test: {L1, N1, H1, L2, N2, H2}.
2. Cut photo attack test: {L1, N1, H1, L3, N3, H3}.
3. Video attack test: {L1, N1, H1, L4, N4, H4}.

Overall test. In this test, all data are combined together to
give a general and overall evaluation.

Based on this suggested protocol, we design our experi-
ments into two main parts that include liveness detection and
spoofing attack classification.

In the liveness detection experiment, we identify only real
face images and nonreal face images. In the spoofing attack
classification experiment, we classify four different spoofing
types. Therefore, we conduct only a quality test and overall
test. We randomly select 10 face frames for each video and
average the selected face image scores as the final label.

(2) The replay-attack database.23 This database consists
of 1300 video clips of photo and video attack attempts of
50 clients, under different lighting conditions. The spoofing
attacks are generated in three different scenarios with
two different lighting conditions and support conditions.
The three types of spoofing attacks include: print (2),

Fig. 7 Example images of real face and the corresponding spoofing attacks in the CASIA database.

Fig. 8 Example images of real face and the corresponding spoofing attacks in the replay-attack
database.
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mobile (3), and highdef (4). The two lighting conditions
include: adverse (A) and controlled (C). The two different
support conditions include hand-based and fixed. In
addition, this database also defines three nonoverlapping
partitions for training, development, and testing. Figure 8
shows some example frames of real face and corresponding
attacks. The testing protocols adopted in this paper are as
following:

Fake face test. This test is designed to evaluate the per-
formance when fake face types are fixed. The samples are:

1. Print photo attack test: {A1, C1, A2, C2}.
2. Mobile video attack test: {A1, C1, A3, C3}.
3. Highdef video attack test: {A1, C1, A4, C4}.

Overall test. In this test, all data are combined to give a
general and overall evaluation. The samples are: {A1, C1,
A2, C2, A3, C3, A4, C4}.

We use this database to test the performance of liveness
detection and spoofing attack classification. For liveness
detection, we apply the fake face test and overall test proto-
col. For spoofing attack classification, only the overall test
protocol is adopted, similar to testing on the CASIA
database.

As discussed previously, most state-of-the-art works
apply LBP24 as a feature extraction method and use SVM
to identify real face images and nonreal face images. In
this paper, when conducting liveness detection experiments,
we first apply DoG, LBP, and SBFD as feature extraction
methods and send the extracted features into SVM. Radial
basis function kernel is selected for SVM. The parameters
of SVM kernels were set using grid-search. In addition, in
order to provide a rational and fair comparison, we also
send the corresponding features into SAEs.

For both the CASIA database and the replay-attack data-
base, we strictly train each framework using the suggested
training set and report the classification accuracy for the
testing set.

Parameters of algorithms: Shearlet transform is applied on
each 256 × 256 gray-scale face image. The face image is
decomposed into four scales (exclude approximation compo-
nent) and the direction number for each scale is six. The
pooling block size is 64 and the final SBFD length is
384. For LBP algorithm, block-based multiscale LBP is
used.23 For DoG algorithm, four DoG filters are considered:
σ1 ¼ 0.5, σ2 ¼ 1; σ1 ¼ 1, σ2 ¼ 1.5; σ1 ¼ 1.5, σ2 ¼ 2; and
σ1 ¼ 1, σ2 ¼ 2. The downsampling size is 16. The SAE con-
sists of four layers, one input layer, two hidden layers, and
one output layer. The neuron number for the hidden layers is
16 and 8, respectively. In addition, the weight decay param-
eter λ for both SAEs and softmax classifier is 5e-5. Sparsity
parameter ρ is 0.1 and weight of sparsity penalty term β is 5.

In order to provide an intuitive demonstration about the
proposed method, we made a demo video which shows some
experimental results on the CASIA database. In this video,
liveness detection and spoofing attack classification results
for four randomly selected subjects are demonstrated. As
previously described, SBFD also can be directly applied
for face recognition. Therefore, in this video, we also dem-
onstrate a preliminary experiment about the face recognition
test. In the face recognition experiment, we identify the face
image for 50 subjects in the CASIA database. The quality

Fig. 9 Plot of classification accuracy for different combinations
of scale number, direction number, and block size in high quality
test.

Table 1 Classification accuracy of liveness detection test on the
CASIA database.

Low Normal High

Quality test DoG + SVM 0.6767 0.7181 0.6970

LBP + SVM 0.7806 0.8397 0.9000

SBFD + SVM 0.9194 0.8996 0.8257

DoG + SAE 0.6226 0.7477 0.7625

LBP + SAE 0.7588 0.8305 0.9047

SBFD + SAE 0.9470 0.9272 0.8797

Warped Cut Video

Fake face test DoG + SVM 0.6332 0.6521 0.7129

LBP + SVM 0.8246 0.7991 0.8068

SBFD + SVM 0.8395 0.9249 0.9211

DoG + SAE 0.6253 0.6768 0.7208

LBP + SAE 0.8558 0.8334 0.9024

SBFD + SAE 0.8360 0.9315 0.9131

Overall test DoG + SVM 0.6664

LBP + SVM 0.8392

SBFD + SVM 0.8381

DoG + SAE 0.7165

LBP + SAE 0.8545

SBFD + SAE 0.8918
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test and overall test are considered for this experiment. We
randomly select 10 face frames for each video. Five face
images are used for training purposes and another five
face images are used for testing. There is no overlap between
training and testing face images. In addition, we also dem-
onstrate the results of DoG and LBP for comparison pur-
poses. This demo video is available at the link found in
Ref. 25.

In addition, in order to show that the proposed method can
be directly used in real situations, we completed a real-time
implementation of our method and tested it using real data
that also include a print photo attack, mobile photo attack,
and video attack. In this demo, 21 frames are analyzed
for each detection and the final result is the average score

of these 21 frames. This demo video is available at the
link found in Ref. 26.

3.2 Effectiveness of Parameters
Several parameters are involved in the design of SBFD. In
this experiment, we will first analyze and discuss how these
parameters affect the performance of liveness detection. To
examine the performance, we select several different combi-
nations of SBFD parameters and test them using high quality
test protocol. From Eq. (3), we can see that there are three
adjustable parameters for SBFD. Therefore, in this experi-
ment, we select scale number A as 2, 3, and 4; direction num-
ber S as 3, 4, and 6; block size m as 32, 64, and 128. In total,
27 types of combinations are considered. Figure 9 shows the
classification accuracy for different combinations. We can
observe that the performance shows the rising tendency
with the increase of scale number and direction number,
and decrease of block size. With the increases of scales and
directions, SBFD can describe image quality more discrim-
inatively. With the increase of blocks on the face image, the
difference between fake and true faces can be described on
different local facial regions using SBFD. Thus this differ-
ence can be represented more precisely.

3.3 Performance Evaluation for Liveness Detection
In this section, we will first test and compare the performance
of each method on the liveness detection task. The experi-
ments are conducted as the testing protocols detailed previ-
ously. The classification accuracy for each method under
different testing scenarios of the CASIA database is listed
in Table 1. It can be seen from the testing results that
SBFD outperforms DoG and LBP in most scenarios. In addi-
tion, we can also notice that the classification effect of SAE
is almost always better than SVM. Since we feed all the fea-
tures into the same classification framework, the testing
results reliably demonstrate that SBFD is more suitable
for liveness detection task compared with DoG and LBP.
Table 2 shows the classification accuracy for the testing
set of the replay-attack database. The good performance
of SBFD also can be demonstrated by these datasets.

Similarly,22,27 we also plot detection-error trade-off (DET)
curves28 of the overall test for both the CASIA database and
the replay-attack database, which are shown in Figs. 10(a)
and 10(b), respectively. The DET plot also confirms the
ability of SBFD.

Table 2 Classification accuracy of liveness detection test on the test-
ing set of the replay-attack database.

Testing set

Print Mobile Highdef

Fake face test DoG + SVM 0.7375 0.5875 0.6250

LBP + SVM 0.7625 0.9375 0.8625

SBFD + SVM 0.9250 1.000 0.8375

DoG + SAE 0.6500 0.5625 0.5750

LBP + SAE 0.9625 0.9625 0.9500

SBFD + SAE 0.9000 1.000 0.9500

Overall test DoG + SVM 0.5500

LBP + SVM 0.8125

SBFD + SVM 0.9250

DoG + SAE 0.6625

LBP + SAE 0.9375

SBFD + SAE 0.9500

Fig. 10 (a) DET curves of six methods for overall test on the CASIA database. (b) DET curves of six
methods for overall test on the replay-attack database.
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To visualize the statistical significance of the comparison,
we show a box plot of the distribution of the classification
accuracy values for the overall test on the CASIA database.
The plot is shown in Fig. 11. Obviously, the lower the stan-
dard deviation with a higher classification accuracy, the
better the performance is. The plot intuitively shows that
SBFD statistically performs better than DoG and LBP, and
SAE performs better than SVM when dealing with binary
classification.

3.4 Performance Evaluation for Spoofing Attack
Classification

To study whether the proposed method has the ability to dis-
tinguish different spoofing types, in this section, we conduct
the experiments using the spoofing attack classification
experiment protocols described previously. The spoofing
attack classification task is actually the extension of the liv-
eness detection problem where the class number changes
from two to four. We utilize the same features as in the liven-
ess detection, and the classification accuracy for each method
under different testing scenarios of the CASIA database is
listed in Table 3. In addition, Table 4 also provides the clas-
sification accuracy for the replay-attack database. We not
only report the overall accuracy, but also list the accuracy
of each individual spoofing type. Since the classification dif-
ficulty increases, the classification accuracy of all the three
methods decreases. However, the performance of SBFD still
significantly outperforms DoG and LBP in low quality, nor-
mal quality, and overall test of the CASIA database, and is
very close to LBP in high quality test of the CASIA database
and the replay-attack database.

Figure 12 shows the box plot of spoofing attack classifi-
cation accuracy of three methods for the overall test on the
CASIA database. Compared with the testing results of liven-
ess detection, in the spoofing attack classification test, SBFD
is still highly competitive and the testing results demonstrate
that SBFD is also suitable for distinguishing different spoof-
ing attacks.

3.5 Discussion and Future Work
All the above experimental results demonstrate that SBFD is
a kind of multifunctional feature descriptor and we can uti-
lize the same SBFD for many different applications. These

good performances may be owed to the excellent mathemati-
cal properties of shearlets such as well localization, highly
directional sensitivity, and optimal sparseness. Because of
these properties, shearlet functions are actually a very good
model for the oriented receptive fields of simple cells in
the primary visual cortex (V1).29 Through using shearlet

Fig. 11 Box plot of liveness detection accuracy of six methods for
overall test on the CASIA database.

Table 3 Classification accuracy of spoofing attack classification test
on the CASIA database.

Real Warped Cut Video All

Low

DoG 0.3775 0.2584 0.3655 0.5936 0.3948

LBP 0.5766 0.5324 0.4133 0.6792 0.5551

SBFD 0.8850 0.7278 0.7617 0.9118 0.8251

Normal

DoG 0.4793 0.4450 0.5138 0.6147 0.4975

LBP 0.7062 0.5327 0.5202 0.6993 0.6261

SBFD 0.8923 0.7429 0.6655 0.8312 0.7842

High

DoG 0.4302 0.2759 0.3922 0.3866 0.3693

LBP 0.8648 0.8092 0.6736 0.8977 0.8159

SBFD 0.7131 0.7953 0.8240 0.8699 0.8009

Overall

DoG 0.4973 0.1941 0.4678 0.5743 0.4213

LBP 0.7174 0.6386 0.5552 0.7931 0.6823

SBFD 0.8468 0.7063 0.7685 0.8464 0.8002

Table 4 Classification accuracy of spoofing attack classification test
on the replay-attack database.

Real Print Mobile Highdef All

Testing set

DoG 0.4250 0.3500 0.4500 0.2500 0.3625

LBP 0.7975 0.8425 0.9675 0.8375 0.8831

SBFD 0.8800 0.8300 0.9750 0.6650 0.8375

Development set

DoG 0.2500 0.2300 0.4333 0.2923 0.3016

LBP 0.9267 0.8567 0.9533 0.7633 0.8750

SBFD 0.8833 0.8367 0.9967 0.6733 0.8475
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functions, the receptive field is reduced to a small number of
parameters and these parameters are enough to describe the
basic selectivity properties of simple cells. In addition,
humans tend to perceive “poor” regions in an image and
these “poor” regions heavily affect the subjective impression.
Therefore, when designing SBFD, we adopt a pooling
method to further reduce the dimensionality of shearlet coef-
ficients and abstract the input image. There are several pool-
ing types usually adopted in deep learning problems,30,31

such as percentile pooling, max or min pooling, sum pooling,
and average (mean) pooling. In this paper, we empirically
observed that mean pooling performs better than other pool-
ing methods.

Since a real face is a nonrigid object with contractions
of facial muscles that result in temporally deformed
facial features, it can be assumed that the specific temporal
information should also be detected when a live human face
is observed in front of the camera. Therefore, in the future,
we will extend the feature descriptors using 3-D shearlet
transform,32 which is the perfect extension of the 2-D shear-
let transform. Through 3-D shearlet transform, we can
achieve a spatial-temporal feature representation and the pro-
posed face liveness detection method is naturally extended to
videos.

4 Conclusion
In this paper, we have proposed a multifunctional feature
descriptor and an efficient framework that can be used to
deal with face liveness detection and spoofing attack classi-
fication. This unified framework is based on shearlet
transform, SAEs, and a softmax classifier. We evaluated
this approach using the CASIA face antispoofing database
and the replay-attack database. The results show that our
approach is highly competitive and suitable for both of
the two tasks.
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