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Performance of face liveness detection algorithms in cross-database face liveness detection tests is one 

of the key issues in face-biometric based systems. Recently, Convolution Neural Networks (CNN) clas- 

sifiers have shown remarkable performance in intra-database face liveness detection tests. However, a 

little effort has been made to improve the generalization capability of CNN classifiers for cross-database 

and unconstrained face liveness detection tests. In this paper, we propose an efficient strategy for train- 

ing deep CNN classifiers for face liveness detection task. We utilize continuous data-randomization (like 

bootstrapping) in the form of small mini-batches during training CNN classifiers on small scale face anti- 

spoofing database. Experimental results revealed that the proposed approach reduces the training time 

by 18.39%, while significantly lowering the HTER by 8.28% and 14.14% in cross-database tests on CASIA- 

FASD and Replay-Attack database respectively as compared to state-of-the-art approaches. Additionally, 

the proposed approach achieves satisfactory results on intra-database and cross-database face liveness 

detection tests, claiming a good generality over other state-of-the-art face anti-spoofing approaches. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, research in face, fingerprint, iris and palm based

iometric has attained significant interest from biometric commu-

ities ( Choudhury, Then, Issac, Raman, & Haldar, 2018; Galbally,

lonso-Fernandez, Fierrez, & Ortega-Garcia, 2012; Nguyen, Fookes,

illela, Sridharan, & Ross, 2017; Sajjad et al., 2018 ). With conve-

ient use and almost no physical interaction with the biomet-

ic devices, face recognition systems and face authentication sys-

ems have been widely used in portable electronic devices such as

ell phones, laptops, tablets, and in non-portable electronic devices

uch as attendance registration systems in colleges and universi-

ies, surveillance systems at the airport and other sensitive areas

 Ramachandra & Busch, 2017 ). Despite their widespread use in to-

ay’s modern electronic systems, face recognition systems and face

uthentication systems like other biometric traits are vulnerable to

ace spoofing attacks, i.e. an intruder can easily fool the face au-

hentication system by presenting it a forged face of a genuine

ser. In addition, there are multiple levels of forged face attacks

hich ranges from single photographic image attack to 3D face

asks attacks ( Boulkenafet, Akhtar, Feng, & Hadid, 2017 ). Thus,

 robust face authentication system and face verification system
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hould distinguish between any type of forged face and a genuine

ace, which make face anti-spoofing techniques, like other state-of-

he-art biometric anti-spoofing techniques, as a baseline require-

ent in modern electronic face authentication systems and face

erification systems design. 

A robust face anti-spoofing system generally deals with multi-

le types of face spoofing attacks. Realizing the need to make a

ace recognition systems fool proof, the face-biometric communi-

ies have developed and made publically available several state-of-

he-art face anti-spoofing datasets and systems to aid the develop-

ent of robust face anti-spoofing techniques ( Marcel, 2013 ). These

tate-of-the-art face anti-spoofing datasets have multiple definition

f face spoofing attacks in accordance with the medium used to

rick the face authentication systems. In addition, to assess and an-

lyze the performance of the face anti-spoofing algorithms, various

rotocols have been defined as well, that include various tests such

s fake face test, quality test etc. 

Many efficient face anti-spoofing algorithms have been devel-

ped in the recent decade, which can be broadly classified into

xed feature based face anti-spoofing algorithms ( Menotti et al.,

015 ) and automatic learnable feature based face anti-spoofing al-

orithms ( Feng, Po, Li, Xu et al., 2016 ). The fixed feature based face

nti-spoofing algorithms utilizes hand-crafted features of genuine

ace and spoofed face for face anti-spoofing applications. Usually,

he features of genuine faces and fake faces are computed prior

o training an algorithm for face anti-spoofing applications. Fixed
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feature based algorithms are further broadly classified into mo-

tion based, texture based, image quality based, 3D shape based

and techniques that exploit multi-spectral reflectance. On the other

hand, automatic learnable feature based face anti-spoofing algo-

rithms do not use hand-crafted features but use deep learning

techniques, such as Convolution Neural Networks (CNNs) for clas-

sification of genuine faces and spoofed faces. A CNN network learn

the features of genuine faces and fake faces during its training

phase. A CNN network basically maps the raw input pixels of

an image to the output probability by passing the input image

through intermediate hidden layers. The number of hidden layers

determine the depth of a CNN network. Practically, a deep CNN

network is the choice for many applications, however small train-

ing data, especially for face anti-spoofing systems, has restricted its

use in face anti-spoofing applications. 

Till now, there have been very few methods, reported in the

recent years, that use deep CNN networks for face anti-spoofing

application. Although, obtaining good accuracy on face spoofing

detection; most of these methods have used a shallow and pre-

trained Alex Net ( Krizhevsky, Sutskever, & Hinton, 2012 ) along with

transfer learning techniques for face anti-spoofing application de-

velopment, which limits its implementation in real-time face anti-

spoofing systems. Additionally, in these methods, the end-to-end

learning strategy has not been utilized, and traditional feature ex-

traction methods have been used prior to training a CNN net-

work, and an SVM classifier after training a CNN network. Fur-

ther these face anti-spoofing algorithms have been tested on intra-

database face spoofing detection tests and very few articles estab-

lished cross-database face spoofing detection tests. 

Acknowledging the remarkable success of deep CNN networks

in image classification and object detection since its successful in-

carnation in 2012 ( Krizhevsky et al., 2012 ), this paper proposes

a deep CNN network for face anti-spoofing application. The main

contributions of this paper are as follow: 

1. First, an efficient strategy is presented for training CNN net-

works on face anti-spoofing datasets that have limited train-

ing samples. The proposed training strategy in this paper is a

data randomization technique which is similar to bootstrapping.

This provide an efficient mechanism for training deep CNN net-

works, in which deep CNN networks are trained effectively,

using end-to-end learning, on databases with limited training

samples like face anti-spoofing databases. Specifically, it helps

to improve the generalization capability of CNN networks in

classifying unknown types of attacks and further reduces the

training time substantially. 

2. Second, detail analyses of the performance of proposed training

strategy for CNN networks on intra-database face anti-spoofing

tests and cross-database face anti-spoofing tests are presented

that include spoofing or liveness detection under various proto-

cols tests respectively. 

The rest of this paper is organized as follows: Section 2 presents

a review of state-of-the-art face anti-spoofing algorithms.

Section 3 describes the details of the proposed CNN networks, the

proposed strategy for training CNN networks for face anti-spoofing

application and the metrics used for evaluation of the proposed

CNN networks for face anti-spoofing applications. Section 4 pro-

vide a detail evaluation of the performance of CNN networks on

intra-database tests and cross-database tests. Section 5 provides

a discussion on the proposed method and experimental work.

Finally, Section 6 provides concluding remarks and future work. 

2. Conventional CNN network based face liveness detection 

Owing to remarkable success of CNN networks in various

categories of image classification and object detection, the CNN
etworks are now being used for face detection ( Li, Lin, Shen,

randt, & Hua, 2015 ) and face recognition ( Schroff, Kalenichenko,

 Philbin, 2015 ). Face anti-spoofing is a special case of intra-class

ace recognition, in which the aim is to recognize a face image

s a genuine or spoofed. Face anti-spoofing algorithms can be di-

ided into two broad categories, face liveness detection and spoof-

ng attack classification. Face liveness detection is fundamentally

 binary classification problem, in which the aim is to classify a

ace as genuine or spoofed. On the other hand, in spoofing at-

ack classification, the task is to not only classify a face image as

ither genuine or spoofed but also to classify the type of spoof-

ng attack in case of a spoofed face image. A multitude of liter-

ture is available for fixed feature based face anti-spoofing algo-

ithms ( Galbally, Marcel, & Fierrez, 2014; Määttä, Hadid, & Pietikäi-

en, 2011; 2012; Waris, Zhang, Ahmad, Kiranyaz, & Gabbouj, 2013 ),

hich are broadly classified as motion based, texture based, im-

ge quality based and methods that used 3D and spectral re-

ectance properties. However, little literature is available for face

nti-spoofing techniques that utilized deep learning algorithms

uch as CNN networks. In the following paragraph, a review of the-

tate-of-the-art techniques is presented that use deep CNN net-

orks for face anti-spoofing application. 

In Menotti et al. (2015) , a CNN network was used for combined

ace, iris and finger-print spoofing detection. Although, a high ac-

uracy and low HTER was reported on face anti-spoofing datasets

or face liveness detection, there were no results reported on cross-

atabase face liveness detection which might question the gen-

rality of the proposed method in real-time applications. Further,

hey proposed a very shallow CNN network for face liveness de-

ection that was unable to capture the abstract and high level fea-

ure maps as in deep CNN networks. In Xu, Li, and Deng (2015) ,

he authors introduced a 2 layers CNN network with a single LSTM

ayer for face liveness detection application. The CNN network was

sed to capture the 2-dimensional feature maps and the LSTM net-

ork was used to capture the temporal information. Although, the

roposed model provided satisfactory results on face liveness de-

ection problem using CASIA-FASD database ( Zhang et al., 2012 ), it

as unable to provide any accuracy of classifying multiple types

f attacks. Further, there was no information about the number

f samples of each subject used for training CNN network, which

s a key element in training of CNN networks. Further, the CNN

etwork used was quite shallow, 2 convolution layers were used

hich may not perform well on multi-class face anti-spoofing

roblem. 

In Alotaibi and Mahmood (2017) , the authors proposed a shal-

ow CNN network for the classification of spoofed face and real

ace. Their method utilized the non-linear diffusion based on ad-

itive operator splitting schema to get a diffused image that was

ater fed to a CNN network to classify an input face image as

eal or fake. However, their approach has certain limitations. First,

hey used a very shallow network consisting of only 3 convolu-

ion layers which could provide less generalization capability as

he initial layers capture the low-level information. The use of dif-

usion approach to capture the gradient information was redun-

ant because the early stages of CNN networks performed the

ame process. Second, their approach cannot be considered as

n end-to-end learning approach as hand-crafted features were

rst obtained prior to training a CNN network. Most importantly,

he authors did not provide any results on cross-database test-

ng which question the generality of the proposed approach. In

ang, Lei, and Li (2014) , the authors proposed a CNN network for

ace anti-spoofing problem to classify various attacks on two state-

f-the-art face anti-spoofing datasets, i.e. CASIA-FASD database and

eplay-Attack database ( Chingovska, Anjos, & Marcel, 2012 ). In

heir method, a face region was first localized followed by data

ugmentation at five different scales before training a CNN net-
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Fig. 1. The sampling is done in the form of mini-batches. (a) Conventional method for training CNN Networks. (b) Proposed method for training CNN networks. 
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ork. However, after training CNN networks, the final features

ere used to train the Support Vector Machine (SVM) classifier

or face anti-spoofing. Even their proposed method obtained re-

arkable results on CASIA-FASD and Replay-Attack database, it

annot be regarded as an end-to-end learning. The approach in

i et al. (2016) exploited the layer-wise features of CNN network to

rain an SVM algorithm. In their CNN network, they used various

ayers of shallow to deep VGG networks features for face liveness

etection. However, they used a pre-trained network for face anti-

poofing and thus there are no details of training a CNN network.

n Feng, Po, Li, and Yuan (2016) , the authors proposed a combina-

ion of shearlet-based features and stacked auto-encoders for the

ace liveness detection and face spoofing attack classification. In

anjani, Tariyal, Vatsa, Singh, and Majumdar (2017) a deep dic-

ionary approach has been proposed for face liveness detection ap-

lication. However, no results were reported for intra-database and

ross-database spoofing attack classification. 

The approaches mentioned above were carefully designed for

inary classification problem, however their performance on cross-

atabase tests has been very low. Further, the inherent property

f deep learning algorithms, i.e. end-to-end learning was not fully

tilized in these algorithms. Thus, this paper aims to present an

fficient approach that utilizes the end-to-end learning property

f CNN networks for face liveness detection. The next section

resents the proposed methodology adopted to achieve this objec-

ive. 

. Methodology 

The main motivation behind using CNN network for face anti-

poofing is to capture the discriminative and generalized feature

aps from face images that can help in identifying face from non-

ace. To learn generalized feature maps, a CNN network must be

rained effectively without any over-fitting. Unfortunately, the con-

entional deep CNN training techniques over-fit when trained on

imited scale face anti-spoofing databases. Fig. 1 shows the conven-

ional and the proposed method respectively for training CNN net-

orks. As can be observed in Fig. 1 (a), in conventional method, the

ata is randomize only once prior to training CNN network. How-

ver, in the proposed approach, the training data is continuously

andomized before applying to CNN network in a form of single

mall mini-batches as shown in Fig. 1 (b). This proposed training
trategy greatly circumvent the effects of over-fitting in deep CNN

etworks caused by low amount of training data, which is ex-

lained in the following sections. 

.1. Training with continuous data-randomization 

We utilize data randomization technique that is similar to boot-

trapping. Rather than randomly arranging the training set once,

e continuously pick random mini-batches from the whole train-

ng set at each training epoch. Let suppose the total number of

pochs, for which the network to be trained, is represented by E T 
nd the sub-epochs is represented by εps . Each K complete epoch

s represented by E K , where K is an integer. The training mini-batch

an be represented by B s (x t 
i 
) . Then 

 k = εps × B s rand(x t i ) , (1)

 T = K × εps × B s rand(x t i ) , (2)

 T = C × B s rand(x t i ) , C = k × εps . (3)

Thus, at every single complete epoch E k , the training exam-

les are randomly sampled εps times, and during the whole

raining process the examples are randomly sampled C = K × εps 

imes. This novel strategy is used for training CNN networks

or face anti-spoofing application. This training strategy is named

s B s RS − εps Sec − 1 E(B s Random Samples − εps sub − epochs Count −
 E poch ) , which is used here to train a VGG-11 network and its de-

ived networks. For each forward-pass through the CNN network,

5 face images are randomly sampled from the training dataset.

ach forward-pass through a CNN network correspond to a single

ub-epoch, and 60 sub-epochs count for 1 complete epoch. Fig. 2

hows training of a VGG-11 network using the conventional and

he proposed training approach respectively. It can be clearly seen

n Fig. 2 (a), (b) that using the conventional training method, train-

ng loss reduces in a 25 epochs, however with the proposed train-

ng method, the VGG-11 network can be easily trained for 500

pochs without any over-fitting as shown in Fig. 2 (c). 

Conventionally, training a deep CNN network with small scale

ata lead to over-fitting. This occur mainly due to the large capac-

ty of deep CNN networks as compared to the training data. Adding

 dropout can circumvent this problem to certain extent by provid-

ng regularization, however since the face anti-spoofing dataset is
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Fig. 2. Training a VGG-11 network using conventional training method and proposed strategy for low-sample size data. (a) Training loss and validation loss for a standard 

VGG-11 network using conventional training technique. (b) Training loss and validation loss for a modified VGG-11 using conventional training technique. (c) Training loss 

and validation loss for a modified VGG-11 network using proposed training technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

small, over-fitting still occurs. Further, in conventional approach for

training CNN networks, data as a whole was randomized once and

passed through the CNN networks. However, with this approach

the deep CNN networks with large capacity gains the knowledge of

the whole training data in few epochs, which reduces their learn-

ing ability quickly as evident from Fig. 2 (a), (b). However, with pro-

posed method, we trained the network without over-fitting for 500

epochs as shown in Fig. 2 (c). Although, in the proposed approach

the amount of over-fitting is reduced substantially, there is a like-

lihood that some of the samples in the training dataset may not

pass through the CNN network during the complete training stage.

However, since the face anti-spoofing databases have limited sam-

ples, the probability of training-samples not being included during

training stage is very low. The main attributes of reducing over-

fitting in the proposed approach are as follows: 

1. First, the network can be trained on more than a single video-

frame as compared to the previous approaches used for face

liveness detection ( Yang et al., 2014 ). That said, the network is

then able to learn more about the discriminative features in the

input data. 

2. Second, the CNN network can be trained from scratch using

end-to-end learning for face anti-spoofing systems and appli-

cations as compared to other approaches that used CNN net-

work using transfer learning or additional classifiers for face

anti-spoofing ( Li et al., 2016; Menotti et al., 2015; Yang et al.,

2014 ). 
3. Third, training on a known indexed single frame from the in-

put video-data can make the network deterministic regarding

the input data and may lead to over-fitting. Thus, providing

more frames from the video-data can circumvent the prob-

lem of over-fitting and can improve the generalization capa-

bilities of the CNN network. More importantly at each sin-

gle epoch E k , the training examples are randomly sampled εps 

times, which means that at the end of a complete epoch the

sampling process is repeated C = K × εps times. That mean that

a batch of training examples presented to the CNN network

at each single epoch is not deterministic but rather random.

Thus, the introduction of these random batches of training data

leads to innovation in the CNN network’s cost-function at ev-

ery sub-epoch and the CNN network weights are dynamically

updated at each complete epoch. This can also be considered

as a dropout mechanism in the input data as was done similar

for CNN network regularization ( Srivastava, Hinton, Krizhevsky,

Sutskever, & Salakhutdinov, 2014 ). Thus, for example, some of

the training samples may not be given as an input to the CNN

network during a single complete epoch but is introduced to

the CNN network after some epochs. Thus, the introduction

of these new samples results in innovation in the CNN’s cost-

function and hence can alleviate the problem of over-fitting to

a greater extent. 

4. Fourth, the network training time is reduced substantially.

Table 1 shows a comparison between training time required
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Table 1 

Comparison between total time taken for training CNN network using conventional 

training approach and the proposed training approach. 

Conventional CNN Proposed CNN 

training technique training technique 

Epochs 26 500 

Time (hours) 6.74 5.5 

Time saved % 6 . 74 −5 . 5 
6 . 74 

× 100 = 18 . 39% 

Table 2 

VGG-11 and its derived networks. 

Network A Network B Network C Network D 

96 × 96 × 3 

3 × 3, 64R 7 × 7, 64R 7 × 7, 64R 3 × 3, 64R 

2 × 2 mp 2 × 2 mp 2 × 2 mp, Dp 0.5 2 × 2 mp, Dp 0.5 

3 × 3, 128R 5 × 5, 128R 5 × 5, 128R 3 × 3, 128R 

2 × 2 mp 2 × 2 mp 2 × 2 mp, Dp 0.5 2 × 2 mp, Dp 0.5 

3 × 3, 256R 3 × 3, 256R 3 × 3, 256R 3 × 3, 256R 

3 × 3, 256R 3 × 3, 256R 3 × 3, 256R 3 × 3, 256R 

2 × 2 mp 2 × 2 mp 2 × 2 mp, Dp 0.5 2 × 2 mp, Dp 0.5 

3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 

3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 

2 × 2 mp 2 × 2 mp 2 × 2 mp, Dp 0.5 × 2 mp, Dp 0.5 

3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 

3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 3 × 3, 512R 

2 × 2 mp 2 × 2 mp 2 × 2 mp, Dp 0.5 2 × 2 mp, Dp 0.5 

FC-4096R 

FC-4096R 

FC-4 

Soft-max 

∗R = RELU, mp = max-pool, Dp = Dropout, FC = Fully-Connected 
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for CNN to be trained for a fixed number of epochs. Since in

the proposed training scheme, the batch-size is small and the

sub-epochs are 60 which counts for 1 complete forward pass,

the training time is reduced to 40 s econds per forward pass

as compared to the conventional approach which takes almost

6.74 h ours for only 26 epochs (forward pass). 

The architecture of standard VGG-11 and its modified versions

re shown in Table 2 . For all CNN networks, the learning rate has

een initially set to 0.01 for the first 100 epochs. The learning

ate is then reduced by a factor of 0.1 for the next 10 0, 20 0 and

0 epochs respectively. Overall, the learning rate is reduced three

imes. The weight decay has been set to 0.005 with a dropout of

.5 in the fully-connected layers for Network A, B, C and D respec-

ively, and an additional dropout of 0.5 after every max-pooling

ayer in Network C and Network D. Rectified Linear Unit(ReLU) has

een used as an activation function for all the networks. The video-

rames are resized to 96 × 96 patch keeping the center part of the

ace patch and respecting the aspect-ratio. This is done by consid-

ring the presently adopted computer system limitations and GPU

apabilities. 

.2. Evaluation metrics 

Let H denote a set of human subjects, and x i denotes each indi-

idual human subject, where i is an integer. Each subject also con-

ains a set Z of image samples, which contains a subset of G gen-

ine images and a subset of S spoofed images. Additionally, there is

urther categorization of a set S depending upon the type of spoof-

ng attack represented by its samples. Denote the images in set

 by A . Since, any s m 

image presentation to a biometric system is

enerally considered as an attack, denoted by a , on the correspond-

ng system, s m 

can generally belong to n types attack. Thus, mathe-
atically the set H, Z and A can be written by using ( Eqs. (4) –(6) ).

 = { (G, S) | (G, S) ∈ Z and Z ∈ x i } , i ∈ Z + , (4)

 = { z 1 , z 2 , . . . , z n | z j ∈ G or z j ∈ S} , { n, j} ∈ Z + , (5)

 = { s m 

| s m 

∈ A and s m 

∈ { a 1 , . . . , a n }} , { m, n } ∈ Z + . (6)

A CNN network for face anti-spoofing application has a prede-

ned task of classifying an input image sample z l of x i user as

ither genuine g or spoofed s . A CNN network achieve this task

y mapping the input raw pixels of an image sample z l to the

 -dimensional output probabilities vector y = { y 1 , y 2 , . . . , y n } . The

robabilities are then compared with a decision threshold value τ
o determine the class ( cls )of an image sample z l . The output of a

 th CNN network with soft-max σ at its output can be defined by

sing ( Eqs. (7) and (8) ). 

 l , j = σ (CNN j (z l )) , (l, j) ∈ Z + , (7)

(CNN j (z l )) = 

e CNN j (z l ) ∑ 

N e 
CNN j (z l ) 

. (8) 

For binary face classification problem or face liveness detection

 = { y 1 , y 2 } . Where, y 1 represents the probability of true class.

hus, for binary classification, the cls of an image sample z l can

e determined by considering only y 1 . The decision threshold can

hen be written by using ( Eq. (9) ). 

ls (z l ∈ G, S | y l, j ) = 

{
z l ∈ G, if y 1 > τ

z l ∈ S, Otherwise 
(9)

The soft-max function at the output of a CNN network gives a

ormalized output, which can be compared with a set of threshold

alues to get a list of False Acceptance Rate (FAR) and False Rejec-

ion Rate (FRR) that can then determine the overall system Equal

rror Rate (EER), Half Total Error Rate (HTER) and Receiver Operat-

ng Point (ROC) curve. 

The FAR is a probability of a j th CNN network in accepting input

mage samples z l , having ground truth label s g (spoofed face), of a

ser x i as genuine attempts g l (live face). Whereas the FRR is a

robability of j th CNN network in rejecting input image samples z l ,

aving ground truth label g g , of a user x i as spoofing s l attempts.

athematically, they can be defined by using ( Eqs. (10) and (11) )

here the sum is over all K samples in the test set. 

 AR (CNN j ) = 

K ∑ 

l=1 

z x i 
l 

= g x i 
l 

Z 
, z x i 

l 
= s g (10)

 RR (CNN j ) = 

K ∑ 

l=1 

z x i 
l 

= s x i 
l 

Z 
, z x i 

l 
= g g (11)

The EER is normally threshold independent, and determine the

quilibrium point between the FAR and FRR ratio. However, in real-

ime systems it is very difficult to obtain an equilibrium point.

hus, EER is normally determined by using Receiving Operating

oint (ROC) curve, which is the distribution of FRR against FAR at

arious threshold values ( Toh, Kim, & Lee, 2008 ). 

HTER is usually threshold dependent. Normally, for calculating

TER, the face anti-spoofing dataset has a split between training

et O , testing set P and validation or development set D . The

raining set is used to train the face anti-spoofing system; the val-

dation or development set is used to find the threshold value τ
t which the FAR and FRR become equal and the performance of
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the system is determined by computing the HTER on the test set

at a threshold value determined by development set. This can be

mathematically defined by using ( Eq. (12) ) 

HT ER = 

F AR (τ, P ) + F RR (τ, P ) 

2 

(12)

3.3. Face liveness detection 

In face liveness detection, the aim of CNN network is to classify

an input face image sample z l as either G class or S class. Since,

state-of-the-art face anti-spoofing databases (like CASIA-FASD and

Replay-Attack) have a division of S samples among multiple classes

as compared to samples belonging to G classes, an issue of sample

imbalance often occurs. For example, CASIA-FASD database provide

3 video samples for G class and 9 video samples for S class for each

human subject. Thus, a G class for every subject in CASIA-FASD

has only 25% of the total video samples. A system then trained

for face liveness detection on such data, although gives high ac-

curacy, could provide poor anti-spoofing capabilities and poor gen-

eralization of the system in cross-database analysis. To determine

whether a face anti-spoofing system perform better in face live-

ness detection, HTER and EER values have been used. While an EER

can provide a faithful determination of system efficiency in live-

ness detection; an HTER may result in poor system performance in

cross-database analysis. This is because for an HTER, a fixed thresh-

old value τ determined by development set, is used throughout

the testing. Thus, for a dataset with an imbalance of samples be-

tween the G class and S class, an HTER value may give a wrong

point than equilibrium point (i.e. the point where the difference

between FAR and FRR is minimum) in test dataset, and thus results

in a system either more prone to accepting fake image samples or

rejecting genuine image samples respectively. Consider for exam-

ple the case of using HTER value on the test set, a set threshold

value (determined by development set) gives FRR = 0%, and FAR

= 25%, and liveness detection accuracy of the system is 75%. Thus,

HTER = 12.5%, however the system has a higher tendency of ac-

cepting 25% fake image samples. Thus, in the test sets the HTER

might or might not point to the actual equilibrium point. Thus, in

this paper, we train our proposed CNN networks by maintaining

equal distribution of each type of image samples. Further to find a

quantitative measure, independent of threshold value , a top-1 ac-

curacy is introduced. In top-1 accuracy, the class having maximum

probability is considered as the true class. The top-1 accuracy is

a common approach adopted for object classification in CNN net-

works ( Szegedy et al., 2015 ). Mathematically, top-1 accuracy can be

defined by using (13) . 

cls (y l, j ) = argmax idx { y l, j } (13)

The top-1 accuracy generally determines the point where the ROC

curve intersect the EER line. 

3.4. System design 

The proposed system is combination of cascade systems con-

sisting of face detector and CNN network. The block diagram of

the system is shown in Fig. 1 (b). For detecting the face regions

Viola-Jones face detector ( Viola & Jones, 2004 ) is used. The de-

tected face regions are then fed to CNN network for determining

the class of the input face image. Before training a CNN architec-

ture for face anti-spoofing on a given dataset, the face images in

the dataset are pre-processed, which usually includes mean cen-

tering and normalization. Since, state-of-the-art face anti-spoofing

databases (like CASIA-FASD), mainly consists of video-data rather
han single images, the proposed data-preparation approach is dif-

erent from conventional CNN data-preparation approaches for face

nti-spoofing. In conventional CNN based approaches for face anti-

poofing, only a limited portion of video-data, restricted to 10 to

0 frames of each video, were utilized as an input data to the CNN

rchitecture. On contrary, we randomly select 100 frames from

ach video in the database and stored them in a disk. At training

ime, we detect the face area using Voila-Jones cascade classifier in

he mini-batch image frames and normalize it before giving as an

nput to a CNN network. 

. Experiments and evaluation 

For the experiments, first, all the networks are individually

rained on each database for intra-database evaluation and cross-

atabase evaluation. Second, the predictions from all the networks

or intra-database and cross-database are used to calculate the

valuation metrics, i.e. Accuracy (Acc), EER, HTER and ROC curve.

urther, for each intra-database and cross-database evaluation re-

pectively, the standard given protocols were followed for further

ests as defined in Zhang et al. (2012) , Chingovska et al. (2012) and

eng, Po, Li and Yuan (2016) . The most important aspect in the

resent study is to assess the generalization capabilities of the pro-

osed CNN compared to other state-of-the-art approaches for face

iveness detection, i.e. to assess, whether the proposed CNN net-

orks perform effectively on unseen face image samples for face

iveness detection and spoofing attack classification. Thus for a fair

omparison, we also provide results obtained by training CNN net-

ork using conventional approach and the proposed approach. In

he following paragraphs, the details of the experimental setup,

atabases and protocols used for face liveness detection and spoof-

ng attack classification are presented. 

.1. Databases used for experiments and evaluation 

Two face anti-spoofing databases namely CASIA-FASD and

eplay-Attack are used for the extensive evaluation of the pro-

osed CNN networks on face liveness detection. It is worth not-

ng that although many face anti-spoofing databases are available

n literature for testing the performance of face anti-spoofing sys-

ems, however the adopted face anti-spoofing databases in this pa-

er are more challenging as compared to other face anti-spoofing

atabases. The details of the database adopted in this paper are as

ollows. 

.1.1. CASIA-FASD 

The CASIA-FASD database (from here on as CASIA) has a to-

al of 50 human subjects. The database has been split into two

ets: training set with 30 subjects and testing set with 20 sub-

ects. For each subject, it provides 12 videos of which 3 are real

ccess videos and 9 are fake access videos. For each subject, three

maging qualities are given, i.e. Low resolution(L), Normal resolu-

ion (N) and High resolution (H), and three presentation attacks

re given, i.e. Wrapped photo attack (Wrapped), Cut photo attack

Cut) and Video tablet attack (Video). Three protocols namely Qual-

ty Test (QT), Fake Face Test (FFT) and Overall Test (OT) are given

o evaluate the performance of face liveness detection system. 

.1.2. Replay- A ttack 

This database also contains 50 human subjects. The database

as been split into three sets: train set, development set and test

et. For the training set and development set, the database pro-

ides 360 non-overlapping video samples and for the test set, the

atabase provides 480 non-overlapping video samples. For each

ubject in the database, three presentation attacks have been given,

.e. Print attack (Print), Mobile attack (Mobile) and High definition
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Fig. 3. ROC curve for training standard VGG-11 network using the conventional 

training technique, and training Network C using conventional and proposed train- 

ing technique. 
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Fig. 4. ROC curve for intra-database test on CASIA. 

Fig. 5. ROC curve for intra-database on Replay-Attack. 
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ttack (Highdef). Two lightning conditions i.e. adverse (A) and con-

rolled (C), and two support conditions i.e. hand-based and fixed

ave been defined. 

.2. Liveness detection 

Face liveness detection is binary classification problem. For face

iveness detection, the elements of prediction vectors from each

NN network for intra-database and cross-database tests have been

plit into two categories, i.e. real access and fake access. Following

his division, the proposed CNN networks are tested on the test

rotocols described previously for each database. In the following

aragraph, a detail evaluation of the proposed CNN networks for

ace liveness detection on intra-database and cross-database is pre-

ented. Further, the proposed CNN networks are compared with

tate-of-the-art-face liveness detection algorithms on both intra-

atabase and cross-database tests. 

.2.1. Intra-database evaluation 

For intra-database evaluation, each network is individually

rained on CASIA and Replay-Attack database respectively. Fig. 3

hows the ROC curve obtained by training a standard VGG-11 net-

ork and Network C using conventional training technique, and

urther training Network C using proposed training technique on

ASIA-FASD database respectively. As can be observed in the Fig. 3 ,

 comparatively lower EER is attained when the modified VGG-

1 network is trained using the proposed training technique as

ompared to the conventional training technique. Further, since

he proposed training technique lower down the time required for

raining CNN networks, we give the results obtained by only us-

ng the proposed training technique on all the CNN networks from

ere on. 

Fig. 4 shows the ROC curve for the intra-database evaluation

n CASIA test database. As can be depicted in Fig. 4 , Network D

chieve a low EER as compared to the rest of the CNN networks.

etwork D is an overall regularized network with a 3 × 3 kernel

s a parameter regularization, and additional regularization in the

orm of dropout after every max-pooling layer. Addition of dropout

egularize the CNN networks and further strengthen the gener-

lization capabilities of CNN networks which can be clearly seen

rom the ROC curve as shown in Fig. 4 . Table 3 shows, the corre-

ponding threshold EER obtained from ROC curve and binary HTER

btained using top-1 accuracy for the proposed CNN networks on

ASIA database test set and overall set (train set + test set) respec-

ively. As can be seen in Table 3 , Network D achieves an overall

hreshold EER of 4.59% on test set and threshold EER of 3.34% on
verall set respectively. The overall set is included in the evaluation

ecause the proposed training strategy uses data-randomization

nd there is a high chance that the CNN network may not get

rained on some training samples indicated by a slightly high EER

n the Overall set. 

Fig. 5 , shows the ROC curve of the proposed CNN network for

ntra-database test on Replay-Attack database. It can be depicted

n Fig. 5 that Network D achieve an overall low threshold HTER of

.74% on the test set. Similarly, Table 4 , shows the HTER of the

roposed CNN network for intra-database test on Replay-Attack

atabase development set and test set. The development set of

eplay-Attack database is used for each CNN network to determine

nd set a threshold value τ for the Replay-Attack database test set.

he slight increase of HTER on the overall set clearly signify that

ome of the samples were not utilized during the training phase

ecause of data randomization, however the HTER is well within

he acceptable range. 

Table 5 shows the comparison of intra-database results with

ther state-of-the-art techniques that used method like CNN net-

orks. As can be seen in Table 5 , the proposed CNN archi-

ectures perform consistently in intra-database analysis as com-

ared to other state-of-the-art approaches. From Table 5 , it can

e see that the final HTER for intra-database test on CASIA is

lightly higher than the Li et al. (2016) , Siddiqui et al. (2016) and

anjani et al. (2017) and similarly for Replay-Attack database

he HTER is higher than the Menotti et al. (2015) , Feng, Po,

i, Xu et al. (2016) , Pinto, Pedrini, Schwartz, and Rocha (2015) ,

iddiqui et al. (2016) and Manjani et al. (2017) . This indicate that
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Table 3 

Intra-database results: Classification accuracy in (%) and EER in (%) on CASIA-FASD database. 

Protocol Test Network A Network B Network C Network D 

EER threshold HTER binary EER threshold HTER binary EER threshold HTER binary EER threshold HTER binary 

Test Set 7.37 6.12 6.88 6.92 5.09 4.61 4.59 4.81 

Overall set 3.34 3.37 4.96 4.86 3.56 3.06 3.34 3.37 

Table 4 

Intra-databse results: Classification accuracy in (%) and EER in (%) on Replay-Attack database. 

Protocol Test Network A Network B Network C Network D 

HTER threshold HTER binary HTER threshold HTER binary HTER threshold HTER binary HTER Actual HTER binary 

Test Set 6.44 5.71 6.94 6.21 8.81 6.93 5.74 5.33 

Development Set ∗ 7.52 6.05 8.95 6.60 8.41 6.21 7.68 6.32 

Total 6.98 5.88 7.95 6.41 8.61 6.57 6.71 5.83 

∗EER = HTER 

Table 5 

Intra-database results: Comparison with other state-of-the-art method (Liveness Detection). 

Intra-database 

CASIA (Test) Replay-Attack (Test) 

Method HTER (%) HTER (%) 

DPCNN ( Li et al., 2016 ) 4.5 6.1 

SpoofNet ( Menotti et al., 2015 ) – 0.75 

LSTM + CNN ( Xu et al., 2015 ) – 5.93 

Non-Linear Diffusion ( Alotaibi & Mahmood, 2017 ) – 10 

Multi-cues Integration + NN ( Feng, Po, Li, Xu et al., 2016 ) 5.83 a 0 

Pinto et al. (2015) 14.3 2.8 

Siddiqui et al. (2016) 3.8 0 

DDGL ( Manjani et al., 2017 ) 1.3 0 

LiveNet 4.59 a 5.74 

a EER = HTER 

Table 6 

Cross-database results: Liveness detection accuracy and HTER in % respectively. Training set: CASIA, Evaluation set: Replay-Attack. 

Network A Network B Network C Network D 

HTER threshold HTER binary HTER threshold HTER binary HTER threshold HTER binary HTER threshold HTER binary 

Training Set 11.78 12.81 13.92 15.41 8.33 16.30 18.53 19.17 

Test Set 14.25 13.34 12.80 13.06 8.39 16.03 17.30 19.14 

Development Set ∗ 14.92 15.13 14.61 15.66 8.61 17.70 19.23 19.39 

∗EER = HTER 
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on one hand, continuous data-randomization can help to train

deep CNN networks on small scale database without over-fitting;

on the other hand, it may prevent some samples to pass through

CNN network that results a slight increase in the HTER in intra-

database tests. 

It is further emphasizing here, that an algorithm that gives

low HTER on one database might give higher HTER on another

database. Thus, the generality of the system is an important aspect

of the system design, particularly when the system is designed for

real-time scenario. Thus, a cross-database analysis is also presented

in the following section. 

4.2.2. Cross-database evaluation 

To check whether the proposed approach generalized well to

the unknown face spoofing attacks, a cross-database evaluation is

performed. It must be noted here, that although some approaches

for face anti-spoofing application perform remarkably well in intra-

database evaluation, however they have a lower accuracy in cross-

database evaluation. Fig. 6 shows the ROC plot for cross-database

evaluation on Replay-Attack database, i.e. the network trained on

CASIA database is tested on Replay-Attack database. From Fig. 6 ,

and Table 6 it can be clearly seen that all proposed CNN networks

provide good generalization scores. It can be seen in Table 6 , that

an all time lower HTER of 8.39% is attained on Replay-Attack(test)
et using CNN Network C.For cross-database evaluation on Replay-

tt ack dat abase, the Replay- Att ack development dataset is used

or CNN network trained on CASIA training database to determine

 threshold value τ . Then, HTER values for liveness detection on

rain sets and test sets of Replay-Attack database are calculated.

imilar process is repeated for CASIA database, i.e. the CNN net-

orks trained on Replay-Attack datasets are evaluated using the

rain set and test of CASIA database. Fig. 7 and Table 7 shows the

orresponding threshold HTER and binary HTER values for cross-

atabase evaluation on CASIA database. As can be seen in Table 7 ,

 lower HTER of 19.12% is attained on CASIA (test)set using CNN

etwork C. 

Table 8 shows a comparison of the proposed approach with

ther state-of-the-art approaches for cross-database evaluation. It

an be clearly seen that the approaches having low EER or HTER

n intra-database evaluation have higher EER or HTER in cross-

atabase evaluation. The proposed CNN networks provide signifi-

antly lower HTER values in cross-database evaluation, i.e. 8.39%

n Replay-Attack and 19.12% on CASIA, outperforming other state-

f-the-art approaches in cross-database evaluation, which shows

hat the proposed CNN networks have better generalization ability

s compared to other state-of-the-art approaches. Further, the CNN

etworks were trained by utilizing data-randomization in the face
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Fig. 6. ROC curve for cross-database test on Replay-Attack (a) Train data (b) Development data (c) Test data. 

Table 7 

Cross-databse results: Liveness detection accuracy and HTER in % respectively. Training set: Replay-Attack, Evaluation set: CASIA. 

Network A Network B Network C Network D 

EER threshold HTER binary EER threshold HTER binary EER threshold HTER binary EER threshold HTER binary 

Training Set 18.57 13.91 19.04 13.78 19.45 15.25 19.14 13.94 

Test Set 18.83 13.24 20.20 13.82 19.12 14.96 21.84 13.55 

Overall Set 18.73 13.51 19.74 13.80 19.25 15.08 20.76 13.70 

Fig. 7. ROC for cross-database test on CASIA. 

a  

w  

a  

p  

t

Table 8 

Cross-database Results: Comparison with other state-of-the-art method (Liveness 

Detection). 

Method Cross-database 

CASIA (Test) Replay-Attack (Test) 

HTER (%) HTER % 

Pinto et al. (2015) 50 34.4 

Siddiqui et al. (2016) 44.6 35.4 

CNN ( Yang et al., 2014 ) 38.11 23.78 

DDGL ( Manjani et al., 2017 ) 27.4 22.8 

LiveNet 19.12 8.39 
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nti-spoofing datasets, i.e a different combination of face samples

ere fed to the CNN networks during each forward pass, that en-

ble the network to learn more about intra-class variation thus im-

roving the generalization and robustness of the learned features

o unknown types of attacks. 
In face anti-spoofing databases, train and test data respectively

ave been collected under the same conditions (illumination, tem-

erature, head pose). Therefore the remarkable performance of

lassifiers on intra-database face liveness detection tests is evident.

owever, the same algorithms struggle to correctly classify the face

mage as live face or fake face in cross-database tests. The rea-

on for this degradation in the performance of other algorithms

n cross-database face liveness detection tests is because, the test

atabase is completely different from the training database with

ifferent conditions (illumination, head pose). However, as com-

ared to other state-of-the-art approaches, our proposed strategy
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significantly improve the performance of face liveness detection in

cross-database tests by lowering the HTER by 8.28% on CASIA and

14.28% on Replay-Attack database respectively. 

5. Discussion 

The proposed method provides an effective way of leveraging

the generalization capabilities of deep CNN networks for cross-

database face anti-spoofing. The data-randomization (like boot-

strapping) approach is an effective way of preventing CNN net-

works from over-fitting caused by small training data. However,

in the proposed approach, we randomly sampled small batches

from the whole training dataset in a naive fashion. Thus, there

is a chance that some of the samples, having different properties

from the other samples in the database, may not pass through the

CNN network. This is evident by a slight increase in the HTER in

intra-database tests. However, in cross-database tests the HTER is

significantly lower than the other state-of-the-art approaches. The

proposed data-randomization method can be attributed to dropout

mechanism used for regularizing the CNN networks. Since the data

is randomly sampled, some of the training data is prevented to

pass through the CNN network. After few epochs, some samples

of the data that is prevented is passed through the CNN network.

With the introduction of this new data to the CNN network, the

loss is increased that results in weight adjustment of the hidden

layers and hence the CNN network learning continuous without

over-fitting on the training data. 

Further, the training time is reduced substantially, by using

small random batches, for training CNN network on small scale

database. On contrary, training using the proposed technique on

large scale database with small random batches with high-end

GPU may result in an increase in the overall training time. There-

fore, while using the proposed method for large scale data, the

batch-size need to be set in according to the size the training data.

For a reference, in this work the CASIA database has 24,0 0 0 frames

while the Replay-Attack database has 36,0 0 0 frames for Develop-

ment set, 36,0 0 0 for training set and 48,0 0 0 frames for test set. 

6. Conclusion and future work 

This paper proposed an efficient approach for face liveness de-

tection when the training data is limited. The proposed approach

utilizes continuous data-randomization in the form of small mini-

batches during training a deep CNN network. The proposed ap-

proach is reliable in both intra-database and cross-database face

liveness detection problems. Particularly for cross-database scenar-

ios, the proposed approach significantly reduced the HTER. The

proposed method attained an HTER of 19.12% for CASIA database

and an HTER of 8.39% for Replay-Attack database in cross-database

tests respectively. Further, the proposed strategy reduces the train-

ing time substantially by training the network in smaller and ran-

dom batches. The data-randomization approach proposed in this

work is similar to bootstrapping technique, which is quite effec-

tive in predicting the class of unknown samples using small scale

population for training. 

Future work include the extension of the proposed method to

much deeper CNN networks like GoogleNet and ResNet and their

performance evaluation on face anti-spoofing databases. Further,

since the batch-size and sub-epochs are the hyper-parameters in

the proposed work, we will further analyze the effect of vary-

ing batch-size and sub-epochs and vice versa on the generaliza-

tion abilities of CNN networks. Additionally, inclusion of various

schemes like data-augmentation, hybrid-CNN networks and exten-

sion of the proposed framework in detecting spoofing attacks in

other medias are among the future work considered. Finally, since
ace-liveness detection is a binary classification problem, the inclu-

ion of multi-class face anti-spoofing techniques will be considered

n the future research that will further strengthen the abilities of

ounter measures for face anti-spoofing systems and applications. 
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