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Letters
A Novel Patch Variance Biased Convolutional Neural Network

for No-Reference Image Quality Assessment

Lai-Man Po , Senior Member, IEEE, Mengyang Liu, Wilson Y. F. Yuen, Yuming Li, Xuyuan Xu,
Chang Zhou, Peter H. W. Wong, Senior Member, IEEE, Kin Wai Lau, and Hon-Tung Luk

Abstract— Deep convolutional neural networks (CNNs) have been
successfully applied on no-reference image quality assessment (NR-IQA)
with respect to human perception. Most of these methods deal with
small image patches and use the average score of the test patches for
predicting the whole image quality. We discovered that image patches
from homogenous regions are unreliable for both neural network training
and final image quality score estimation. In addition, image patches with
complex structures have much higher chances of achieving better image
quality prediction. Based on these findings, we enhanced the conventional
CNN-based NR-IQA algorithm to avoid homogenous patches for the
network training and quality score estimation. Moreover, we also use a
variance-based weighting average to bias the final image quality score to
the patches with complex structure. The experimental results show that
this simple approach can achieve state-of-the-art performance compared
with well-known NR-IQA algorithms.

Index Terms— Deep learning, convolution neural network, no-reference
image quality assessment.

I. INTRODUCTION

DURING the last three decades, the volume of digital image
data was growing explosively due to the rapid development of

multimedia and networking technologies. Nowadays, every hour has a
massive number of digital images generated that makes image quality
assessment (IQA) become a popular area for both academic and
industrial developments. According to the dependency of reference
images, IQA methods are usually divided into 3 types: full-reference
IQA (FR-IQA), reduced-reference IQA (RR-IQA) and no-reference
IQA (NR-IQA). FR-IQA and RR-IQA metrics assume that the whole
or partial information of the reference image is available, and do
a comparison between reference image and tested image. PSNR,
SSIM [1], FSIM [2], IFC [3] and VIF [4] are well-known FR-IQA
algorithms. However, the reference image is not always available that
makes NR-IQA more desirable for practical applications and many
NR-IQA algorithms have been developed. The first generation of
those algorithms are calibrated to some specific distortions such as
JPEG [5], JPEG2000 [6] and H.264/AVC [7]. They are difficult to
be generalized for other new distortion types. The second-generation
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NR-IQA algorithms focus on the investigation of natural scene
statistics (NSS) and use handcrafted features that supposedly captures
relevant factors affecting image quality. Well-known NSS-based
algorithms are DIIVINE [8], BLIINDS-II [9] and BRISQUE [10].

In recent years, deep learning has been proved to perform well
on a large variety of problems. The rise of deep learning had also
revolutionized the NR-IQA development as a data driven approach,
which learn discriminative features directly from raw image patches.
Pioneer works of this approach are CORNIA [11] and CNN-NRIQA
[12]. CORNIA aims at training image representation kernels directly
from raw image pixels using unsupervised feature learning and
CNN-NRIQA integrates feature learning and regression into one
optimization process using Convolutional Neural Network (CNN).

Basically, Kang et al. [12] are the pioneers to apply CNN to
NR-IQA. They proposed a very meaningful framework and achieved
excellent results. This approach mainly deal with small image patches
(such as 32 × 32) and the whole image quality score is the average
predicted scores of the small test patches. However, Kang’s CNN-
NRIQA [12] network only contains one convolution layer, which is
too shallow. Thus, complete image with size of 224 × 224 pixels
were used in [13] and [14] to train deep CNNs with many layers
for handling the small patch problem that cannot match with human
perception. While Sun et al. [15] and Bosse et al. [16] applied
existing deep CNNs to fine-tune the parameters. In addition, CNNs
designed for small patches with weight adjustment for each patch
were proposed in [17] and [18]. Recently, Cheng et al. [19] proposed
a pre-saliency map (pre-SM) based NR-IQA method via CNN. They
demonstrated that prediction error of the image patches in saliency
regions is on average lower than that in homogenous regions using a
fast saliency map (SM) model. Based on this result, pre-SM algorithm
adaptively applies CNN computation on image patches and assigns
higher weights for salient patches in the whole score estimation.
It can achieve high accuracy with subjective quality. Liu et al. [20]
proposed a RankIQA with use of Siamese network to train the CNN
for achieving better image quality score prediction.

In this letter, we first report an interesting discovery of image
patches with low variances are not reliable for quality score esti-
mation in CNN-based NR-IQA. We use the distribution of quality
score prediction errors against patch variances for demonstrating
very low-variance patches are not robust and we should bias to the
patches with high variances. Based on this finding, we enhanced the
conventional CNN-based NR-IQA network to avoid the use of very
low-variance image patches for both network training and quality
score prediction. The remainder of the letter is organized as follows.
Section II discusses the main problem of the small patch approach
and presents the prediction error characteristic of image patches in
terms of patch variances. Section III presents the proposed patch
variance biased CNN-based NR-IQA algorithm. Experimental results
are presented in section IV. Finally, conclusion is given in section V.
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Fig. 1. Image patch based CNN architecture for NR-IQA.

II. PREDICTION CHARACTERISTIC OF IMAGE PATCHES

One of the main ideas of CNN-based NR-IQA is to use small
image patches to train the network. During the training, patches
are randomly sampled from the training images with quality labels
set to the score of the source image. Moreover, each patch is
treated as an independent sample [12]. After training, the network
is used to estimate individual patch’s score that is scanned from
the tested image. The whole image quality score is based on the
average predicted scores of the patches from the tested image. Thus,
the accuracy of the final score is highly depended on the individual
patch quality score estimation.

The main drawback of using small image patches is that not
every patch has the same amount of information. Normally, homoge-
nous patches from flat or smooth regions have relatively lower
accuracy as compared with non-homogenous patches that consist
of strong edges or complex textures. It is because homogenous
regions of high and low quality images could be very similar
in most of the real-world images. Thus, very similar homoge-
nous patches could come from high and low quality images.
As a result, similar homogenous patches have relatively higher
chances to be assigned with very different quality labels during the
CNN training process. These low-quality training data will confuse
the network during the training process. In addition, the trained
network is also unreliable for homogenous patch quality score
estimation.

With the above hypothesis, we propose to use patch variance as
the homogenous indicator for performing image patch quality score
prediction error analysis. The patch variance is defined as the average
pixel value variances of the patch in RGB color channels, which can
be expressed as

varave(P) = 1

3

[
varR (P) + varG (P) + varB (P)

]
(1)

where varR(P), varG (P) and varB(P) are variances of pixel values
in RGB color channels, respectively. The reason to use patch variance
as homogenous indicator is mainly due to homogenous patches
normally have very low variances in pixel values. To start the
analysis, we trained a CNN-based NR-IQA network with use of
LIVE database [20] and the network architecture is shown in Figure
1. This network is very similar to Bosse’s CNN in [16] with
use of 3 × 3 convolutional kernels only. Basically, the network
consists of 12 convolutional layers with max-pooling between every
2 convolutional layers. Except the last fully-connected layer, all layers
are activated by ReLU activation function. Zero-padding and 3 × 3
kernels are used in all convolutional layers. Dropout regularization
is added after layer 11 with 0.5 ratio and MAE loss function is used
with 0.0001 learning rate for ADAM optimizer.

We randomly choose 80% images of LIVE database for training
and the remaining 20% for testing. In addition, we densely sampled
70,650 image patches from the test set for quality score prediction
error analysis. The scatter plot of these patches in terms of image
quality score prediction errors against image patch variances is shown
in Fig. 2. It can be easily observed that the prediction errors for
patches with very low variances are not reliable for quality score

Fig. 2. Scatter plot of image patch quality score prediction errors against
image patch variances.

Fig. 3. Image examples and their corresponding patch variances and quality
score prediction errors. (a)(d) Test images, (b)(e) Patch’s variances, and (c)(f)
Prediction errors, where brighter pixels indicate higher variances or errors.

estimation as their prediction errors are widely spread out. In contrast,
the prediction errors distribution for patches with high variances are
distributed on the much lower prediction error regions.

To further visualize this phenomenon, two images from the test set
with their correspondent patch variances and quality score prediction
errors are shown in Figure 3. It can be found that the homogenous
regions of these two images are having very low patch variances,
which corresponding to the dark regions of Fig. 3(b) and 3(e). While
most of these dark regions are corresponding to bright regions in
Fig. 3(c) and 3(f), which indicate that homogenous regions create
relatively higher prediction errors. These examples further demon-
strate that the image patches with very low patch variances are not
reliable for estimating the whole image quality score. In addition,
we should bias to the patches with higher variances for calculating
the overall image quality score.

III. VARIANCE BIASED CONVOLUTIONAL

NEURAL NETWORK

Based on the findings in section II, we should avoid to use homoge-
nous patches during the CNN training and quality score estimation.
To enhance the performance of the conventional CNN-based NR-
IQA, we propose to use a variance threshold to avoid using these
low-quality data in both CNN training and image quality estimation.
In addition, we also propose to use variance-based weighting for
calculating the whole image quality score.

A. Patch Sampling With Variance Threshold in CNN Training

To avoid homogenous patches used in the CNN training, we have
to modify the patch sampling strategy. The most straightforward way
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Fig. 4. Variance threshold based patch sampling examples with use of
different threshold values.

is to use a patch variance threshold (Tvar) to determine whether the
sampled patch is good or not for the training. The pseudo code of this
patch sampling strategy for CNN training is shown in Algorithm 1.
This algorithm is used to randomly generate M · N patches Pi, j
with patch variances greater than or equal to Tvar for each epoch
of the training. In which the patches corresponding quality score
Qi, j are assigned with the ground truth score of the source image Ii
such that we can generate N patch/score pairs [Pi, j , Qi, j ] from each
training image with total M · N pairs. In realization of this algorithm,
the patch variance is defined as the average m × m block variances
of the patches in RGB color channels, where m is predefined as 32.
In addition, the pixel’s intensive values are normalized to [0, 1]. For
each epoch of the training, a new set of training data are resampled
to maintain the data richness. It is because the LIVE database is
relatively small with only 29 reference images and 779 distorted
images. Thus, N is set to 32 in our experiments for balancing the
number of patches in each epoch and the data richness.

Algorithm 1 Patch Sampling Based on Variance Threshold
Input: Images from training set with M images

{I1, I2, . . . , IM }
while i [1, M] do

j = 0;
while j < N do

Randomly sample a m × m patch P from Ii ;
Calculate the patch variance of P:

varave(P) = [varR (P) + varG (P) + varB (P)]/3
if varave(P) ≥ Tvar then:

Keep this patch as [Pi, j , Qi, j ];
j = j + 1;

end if
end while

end while
Shuffle the M · N patch/score pairs;
Feed them to the CNN model for one epoch of training;

Figure 4 shows the sampling results of the proposed patch sampling
strategy using different variance thresholds. Each point of this figure
represents a sampled patch’s center. The color and shape of these
points are used to representing different threshold values. The red-
triangle points represent the patch sampling without threshold as the
threshold is set to zero. Thus, these points are uniformly distributed
on the whole image, in which quite a lot of patches are sampled
from homogenous regions. When we increase the variance thresholds,
the sampled patches are trends to locate on the regions with more
complex structures (non-homogenous regions). However, we found
that we cannot use too large threshold values, which will make the
selected patches only concentrated on some special regions as the

purple-star and orange-diamond markers in Fig. 4. These patches
may ruin the CNN model performance as the training data may
only come from very limited areas of the training images. Then,
too much information may be lost during the patch sampling process.
Thus, small variance threshold should be used and threshold selection
analysis is provided in the experiments section.

B. Adaptive Stride Scan for Test Patch Generation

After we can train a CNN without using the unreliable data
from homogenous regions, we should also avoid using homogenous
patches from the tested image for quality score estimation. However,
this may not be as straightforward as it may seem by just using
the same variance threshold Tvar to generate the patches from the
tested image. It is because we may not obtain sufficient patches from
some tested images with large portion of homogenous regions using
a fixed sampling stride to scan the image for generating the test
patches. Thus, we propose an adaptive stride method for generating
the test patches with use of an initial stride (Sinit) and a minimum
of number of test patches (Nmin ). The idea is simple, by scanning
the tested image with the initial stride to generate n patches from
the tested image based on the same Tvar that are used in the CNN
training. After that we check whether n is large enough for the quality
estimation. If n is greater or equal to Nmin , then we can start the
quality score estimation using these n patches. However, if n is lower
than Nmin , then we can scan the tested image again with stride reduce
by half such that we can generate more patches from the tested
image. Repeat this patch generation process until we can obtain n
greater or equal to Nmin or stride is reduced to 1. With appropriate
selection of the parameters Tvar, Sinit, Nmin , it is always possible to
generate sufficient patches for quality score calculation. It is because
most of the real-world images consist of sufficient portion of non-
homogenous regions for quality evaluation.

C. Variance-Based Weighting for Quality Score Estimation

Besides avoiding homogenous patches for quality score estimation,
we should also bias to the predicted scores of the patches with higher
variances based on the prediction error property as shown in Fig. 3.
It is because high-variance patches are more robust with relatively
lower prediction errors. Thus, we propose to use a patch variance
weighted average for calculating the final image quality score. For n
non-homogenous patches {P1, P2, . . . , Pn} that are obtained from the
tested image using the adaptive stride patch generation, the overall
image quality score Q is calculated by

Q =
∑n

j=1 Q j varave(Pj )
∑n

j=1 varave(Pj )

where Q j and varave(Pj ) are predicted quality score and patch
variance of Pj , respectively. This simple weighted average can make
the final quality score bias to the predicted scores of the patches with
higher variances. This can improve the robustness of CNN-based NR-
IQA.

IV. EXPERIMENTAL RESULTS

We implemented the proposed CNN-based NR-IQA network as
shown in Fig. 1 using Keras with TensorFlow as backend and
conducted our experiments based on the LIVE database [21] and
the TID2013 database [22]. We randomly choose 80% images to
construct the training set and the remaining 20% for the test set.
Our CNN model is trained based on the patch sampling strategy
of Algorithm 1 with 1500 epochs. In NR-IQA, the performance is
evaluated by how good the quality score correlates with subjective
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Fig. 5. LCC, SROCC and ART of the quality score estimation against
different patch variance thresholds (Tvar).

test results, therefore, LCC (Linear Correlation Coefficient) and
SROCC (Spearman Rank Order Correlation Coefficient) are used as
the performance metrics. In the following experiments, we will first
analyze how the variance threshold and minimum number of test
patches affect the quality score estimation for parameter selection
based on the training set of the LIVE database. We assume that the
training set represents the real-world image characteristics. After that
we use the test set to evaluate the performance of our algorithm as
compared with other well-known methods.

A. Variance Threshold Selection

The patch variance threshold (Tvar) is an important parame-
ter of the proposed method, which determines complexity of the
non-homogenous patches for the CNN training and quality score
estimation. Thus, we first analyze how this parameter affect the
quality score estimation performance in terms of LCC, SROCC and
computational time for score estimation. These results are illustrated
in Fig. 5 with Tvar in the range of 0.0 to 0.010. The curves of LCC
and SROCC are the highest values for various settings with only
Tvar is fixed. The trend of these two curves shows that LCC and
SROCC are both improving with higher Tvar but the improvement is
becoming insignificant for Tvar greater than 0.001. This align with our
hypothesis that homogenous patches with very low patch variances
are unreliable, which cause higher prediction errors. Thus, we cannot
use a very low value of Tvar as too small Tvar cannot filter out
homogenous patches. Based on this observation, we should select
Tvar higher than 0.001. However, too high value of Tvar will filter
out too many patches as some of the useful non-homogenous patches
might be removed. Another drawback of large variance threshold is
higher computational requirement for the score estimation process.
It is because higher Tvar leads to more densely patches sampling
(small stride) in order to obtain sufficient number of patches for
the score estimation. The average run time (ART) for a single
image quality score estimation against different Tvar are also shown
in Fig. 5, which demonstrate that significantly increase of NRT occur
with Tvar higher than 0.005. Based on these results, 0.005 is chosen
for the parameter selection of Tvar.

B. Minimum Number of Test Patches Selection

Another important parameter is the minimum number of test
patches (Nmin). Too little test patches will cause unreliable quality
score estimation, while too many test patches will significantly
increase the computational requirement. Thus, we also analyzed how
Nmin affect the quality score estimation performance in terms of
LCC, SROCC and computational time for quality score estimation.
These results are illustrated in Fig. 6 with Nmin from 1 to 1024,
in which Nmin = 2x. Based on the curves of LCC and SROCC,
we can find that higher Nmin always achieve better accuracy, but
the improvements are becoming not very significant for Nmin larger

Fig. 6. LCC, SROCC and ART of the quality score estimation against
different numbers of Nmin.

TABLE I

LCC AND SROCC PERFORMANCE COMPARISON UNDER

DIFFERENT TYPES OF DISTORTION IN LIVE DATABASE

than 64 (=26). However, the quality score estimation run time also
increase with Nmin, especially for Nmin larger than 128 (=27).
To achieve reasonable low computational requirement as well as good
accuracy, we select Nmin = 128 patches as another main setting for
our experiments.

C. Accuracy Performance on LIVE and TID2013 Datasets

To evaluate our method in a non-distortion specific setting, we per-
formed experiments using five distortion types of LIVE databset [21]
and a more challenging dataset of TID2013 [22] with 24 types of
distortion. The key parameters of the experiments for the proposed
algorithm are Tvar = 0.005, Nmin = 128 and Sinit = 128. Table I
shows the experimental results in terms of LCC and SROCC for
these five distortion types of JPEG2000 compression (JP2K), JPEG
compression (JPEG), White Noise (WN), Gaussian blur (BLUR)
and fast fading (FF) in LIVE dataset. In which, we compared the
proposed method with one FR-IQA algorithm of FSIM [2], two non-
CNN-based NR-IQA algorithms (DIIVINE [8] and CORNIA [11]),
and two state-of-the-art CNN-based NR-IQA algorithms (Kang [12]
and Pre-SM [19]). The objective of this experiment is to see how
the proposed algorithm will perform if we only have images with
one particular type of distortion. As shown in Table I, the proposed
method outperforms all these well-known methods except JPEG
distortion with slightly lower than Kang et al. [12] and Pre-SM [19]
methods. Moreover, our method achieves excellent results (greater
than or equal to 0.99) for white noise distortion and outstanding
performance on handling JP2K distortion. In addition, Table II lists
and compares the proposed method with three popular FR-IQA
methods (PSNR, SSIM and FSIM), four non-CNN-based NR-IQA
methods (DIIVINE, BLIINDS-II, BRISQUE and CORNIA) and eight
CNN-based NR-IQA methods. Table III presents the performance
comparison results based on more challenging TID2013 database for
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TABLE II

PERFORMANCE COMPARISON OF DIFFERENT IQA METHODS
BASED ON LIVE DATABASE

TABLE III

PERFORMANCE COMPARISON OF DIFFERENT IQA METHODS

BASED ON TID2013 DATABASE

four well-known methods including the state-of-the-art method of
RankIQA [20]. The two tables shown that our method achieves the
highest prediction accuracy in terms of both LCC and SROCC among
all compared methods. These results demonstrate that removing
homogenous patches and the proposed variance-based weighting for
quality score estimation can significantly improve the CNN-based
NR-IQA performance.

V. CONCLUSION

In this letter, we reported a special characteristic of CNN-based
NR-IQA neural networks, which is small image patches with very
low patch variances are not reliable for training and final quality
score estimation. In addition, image patch with high variances have
much higher chance to achieve better prediction accuracy. Based on
this new discovery, we proposed a simple strategy with use of a
low patch variance threshold for avoiding homogenous patches in
both CNN training and quality score estimation. To bias the score
to test patches with higher variances, a variance-based weighting
average is also proposed to calculate the final image quality score.
Experimental results demonstrated that this new patch variance
biased approach can achieve state-of-the-art results on both LIVE
and TID2013 databases for NR-IQA. On the other hand, the new
discovery of the prediction error characteristic with use of patch
variance as homogenous indicator may open a new direction for
further development of CNN-based NR-IQA algorithms. It is because
we can make use of this characteristic in many different ways to
improve the CNN training process as well as the final image quality
score calculation.
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