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Current state-of-the-art dual camera-based face liveness detection methods utilize either hand-crafted 

features, such as disparity, or deep texture features to classify a live face and face Presentation Attack 

(PA). However, these approaches limit the effectiveness of classifiers, particularly deep Convolutional Neu- 

ral Networks (CNN) to unknown face PA in adverse scenarios. In contrast to these approaches, in this 

paper, we show that supervising a deep CNN classifier by learning disparity features using the existing 

CNN layers improves the performance and robustness of CNN to unknown types of face PA. For this pur- 

pose, we propose to supervise a CNN classifier by introducing a disparity layer within CNN to learn the 

dynamic disparity-maps. Subsequently, the rest of the convolutional layers, following the disparity layer, 

in the CNN are supervised using the learned dynamic disparity-maps for face liveness detection. We fur- 

ther propose a new video-based stereo face anti-spoofing database with various face PA and different 

imaging qualities. Experiments on the proposed stereo face anti-spoofing database are performed using 

various test case scenarios. The experimental results indicate that our proposed system shows promising 

performance and has good generalization ability. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Face recognition techniques have gained widespread attention

rom biometric communities in the recent decade. Along with

ther ubiquitous biometric recognition, such as fingerprint, iris,

nd palm, face recognition has been a dominant mode of bio-

etric identification for authentication and security purposes. The

dvantages of using face biometric-based systems for access con-

rol in various electronic applications are its convenient use, user-

riendliness, fast response, cleanliness, and involve minimal human

nteraction with the device ( Galbally, Marcel & Fierrez, 2014a ). 

Without face anti-spoofing (also known as face liveness detec-

ion) support, face recognition systems are vulnerable to varieties

f face spoofing attacks, also known as face Presentation Attacks

PA) ( Li, Correia & Hadid, 2018 ; Rehman et al., 2019 ). These face

A can be easily generated to gain illegal access to the user de-

ice such as cellphone, computer, or intangible assets such as bank

ccounts. Face PA can be classified into three main types: printed

hoto PA, replay-video PA, and face-mask PA. While face-mask PA

s not readily available because of higher production cost, the for-
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er two face PA can be easily generated using high-definition pho-

ography or videography. Due to the availability of high-end cam-

ras and printers, and the easy access to social media platforms

ike Twitter, Facebook, Instagram, WeChat, and YouTube, it has be-

ome easier to obtain a photograph and a video of a person’s face

or face PA production. As a result, face anti-spoofing has become

ndispensable for face recognition based authentication and verifi-

ation systems. 

In recent years, a multitude of techniques has been developed

o detect face PA in face recognition systems. These techniques can

e grouped into sensor-based face liveness detection systems and

oftware-based face liveness detection systems. The sensor-based

ace liveness detection systems utilize RGB-D ( Sun, Huang & Liu,

018 ) cameras, Near Infrared Imaging (NIR) ( Song & Liu, 2018 ),

hermal cameras ( Seo & Chung, 2019 ), and Kinetics ( Erdogmus &

arcel, 2013 ) to detect liveness cues in the input face image or

ideo, that can help to identify a live face and face PA. Although

he performance of these approaches is quite remarkable compared

o software-based approaches, their implementation and mainte-

ance costs are high, which limit its use in portable and handheld

lectronic devices. On the other hand, software-based face liveness

etection methods utilize off the shelf cameras for face image cap-

uring and performing face liveness detection. These techniques ei-

her exploit hand-crafted features, deep Convolutional Neural Net-

https://doi.org/10.1016/j.eswa.2019.113002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.113002&domain=pdf
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Fig. 1. Generalized pipeline for the proposed stereo-camera based face liveness detection using CNN. 
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works (CNN) ( Rehman, Po & Liu, 2018 ), or a combination of both

( Abbas, Rehman, Po, Liu & Zou, 2020 ; Nguyen, Pham, Baek & Park,

2018 ) to perform face liveness detection. 

Current state-of-the-art software-based face liveness detection

techniques that operate on dual cameras exploit the disparity or

depth information in the input face image or video to detect the

face PA ( Sun, Huang & Liu, 2016 ). Although these methods have

shown better performance in intra-database face liveness detection

scenarios, their performance degrades in general on unknown face

PA, and in adverse conditions. One common reason for the drop

in performance is that these methods train a classifier like Sup-

port Vector Machine (SVM) and CNN using the disparity or depth

information computed directly from the RGB or grayscale images.

Since the disparity or depth data in case of RGB and grayscale im-

age have fixed number of channels, training a CNN in particular

directly on this data limits its capability to learn discriminative

and generalized feature maps that can help in identifying unknown

face PA. 

In order to circumvent this problem, we propose to supervise

a CNN by learning dynamic disparity-maps from the existing con-

volutional layers of CNN. The dynamic disparity-maps represents

multi-channel disparities learned from the convolutional layers in

a CNN with stereo RGB data as input. In contrast to the fixed dis-

parity computed from stereo RGB and grayscale data, the learned

dynamic disparity-maps represents broad patterns in the stereo

RGB face data that can discriminate between a live face and a

face PA. Fig. 1 shows the general pipeline of the proposed system.

As shown in Fig. 1 , the input to the proposed system are prepro-

cessed stereo face images from the left camera and the right cam-

era, followed by the custom-designed disparity layer. The disparity

layer consists of two convolutional layers with shared weights that

output k feature maps. In contrast to the RGB or gray-scale dis-

parity that has a fixed number feature of channels, the proposed

method can incorporate any number of feature channels by vary-

ing the parameter k in the disparity layer. In this work, we use

k = 8. However, in practice, any number of k feature maps can be
enerated by varying the parameter k . The outputs of the two con-

olutional layers in the disparity layer are followed by the dispar-

ty blocks, with sigmoid activation, to learn the dynamic disparity-

aps between the convolutional features learned from the stereo

nput face images. The learned dynamic disparity-maps supervise

he rest of the CNN layers, following the disparity layer, in an end-

o-end fashion. Consequently, the disparity between the convolu-

ional features are learned using Square Disparity (SD), Absolute

isparity (AD), Feature Multiplication (FM), and Approximate Dis-

arity (APD) operations. In general, only one disparity block is used

ach time the network is trained.We performed experiments in

ach category to analyze its performance for face liveness detec-

ion. The main contribution of the proposed work are summarized

s follows: 

1. Different from previous approaches, we propose a low-cost

stereo camera-based face liveness detection method that uti-

lizes dynamic-disparity maps learned from convolutional layers

of CNN with stereo RGB data as input. For this purpose, we de-

signed a custom disparity layer, the output of which is used to

supervise the rest of CNN layers for face liveness detection. 

2. We evaluate various forms of learned dynamic disparity-maps

using operation such as SD, AD, FM, and APD for face liveness

detection in controlled and adverse scenarios. 

3. We also propose a novel stereo camera-based face anti-spoofing

database for face liveness detection and provide a detail expla-

nation of generating stereo real face images and stereo face PA.

4. Extensive experiments on three designed protocols are per-

formed to evaluate the effectiveness of the proposed method

against unknown face PA. Further, the proposed method is

tested by introducing variations in the input data to check its

robustness in adverse conditions. 

The organization of the rest of the paper is as follows: In

ection 2 , we review state-of-the-art methods in face liveness de-

ection using both monocular and stereo camera-based techniques.

he details of the proposed stereo camera-based face liveness de-
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ection method are provided in Section 3 . Section 4 provides the

etails of the proposed stereo camera-based face anti-spoofing

atabase, the experimental protocols, and performance evaluation.

inally, the paper concluded with a conclusion and future work in

ection 5 . 

. Literature review 

Software-based face anti-spoofing techniques can be catego-

ized into two domains: hand-crafted features-based and learn-

ble or dynamic features-based techniques. Hand-crafted features-

ased face anti-spoofing techniques utilized liveness cues in face

mages such as motion, texture, and spectral energy contents

 Pinto, Pedrini, Schwartz & Rocha, 2015 ). On the other hand, learn-

ble or dynamic features-based techniques, like CNN, learn features

irectly from the raw data fed to it. Therefore, the features learned

y CNN are dynamic and represent a broad range of patterns

n the data as compared to hand-crafted features-based methods

 Krizhevsky, Sutskever & Hinton, 2012 ; Rehman et al., 2018 ). 

Hand-crafted features-based face anti-spoofing techniques can

e classified into three domains: motion-based ( de Freitas Pereira

t al., 2014 ), texture-based ( Määttä, Hadid & Pietikäinen, 2012 ),

nd image quality based. Face anti-spoofing methods based on

otion exploits vitality or liveness sign in the face images such

s eye blinking, lips movement, temperature, and optical-flow

 Kim, Yoo & Choi, 2011 ; Kollreider, Fronthaler, Faraj & Bigun,

007 ; Anjos, Chakka & Marcel, 2013 ). These techniques utilized

he fact that motion patterns between a 2D planer face im-

ges and 3D real face images are different. The texture-based ap-

roaches compute either global texture features like image qual-

ty ( Galbally, Marcel & Fierrez, 2014b ; Wen, Han & Jain, 2015 )

r local texture features ( Boulkenafet, Komulainen & Hadid, 2016 ;

äättä, Hadid & Pietikäinen, 2011 ; Määttä et al., 2012 ) such as

BP ( Chingovska, Anjos & Marcel, 2012 ) and HOG ( Yang, Lei, Yi

 Li, 2015 ), using independent quantization or joint quantization

chemes ( Gragnaniello, Poggi, Sansone & Verdoliva, 2015 ). These

echniques were proved to be quite robust in the detection of

ifferent types of face presentation attacks. There is a vast lit-

rature available for monocular camera-based face spoofing de-

ection using CNN classifiers. These techniques either perform

iveness detection at the frame-level ( De Souza, Da Silva Santos,

ires, Marana & Papa, 2017 ; Jourabloo, Liu & Liu, 2018 ; Li et al.,

016 ; Menotti et al., 2015 ; Nguyen et al., 2018 ) or video-level

 Lakshminarayana, Narayan, Napp, Setlur & Govindaraju, 2017 ;

u, Li & Deng, 2015 ) on 2D face anti-spoofing databases like as

UAA database ( Tan, Li, Liu & Jiang, 2010 ), Idiap Replay Attack

atabase ( Chingovska et al., 2012 ), and CASIA ( Zhang et al., 2012 )

atabase. 

The disparity or depth of face obtained from the stereo camera

s a vital cue to detect face PA produced from planer mediums (e.g.,

rint and tablet face PA). For example, Wang, Yang, Lei, Liao and

i (2013) used a 3D face structure recovery method by utilizing

ace images captured from a single camera in different views. Ac-

ording to their method, they map the 2D landmark points of the

ace on 3D frontal face structure to calculate the 3D structure for

ive faces and PA. However, the 3D face structure recovery method

sing 2D face images is computationally expensive and required

ultiple stages of camera calibration and facial structure refine-

ent. Song, Zhao, Fang and Lin (2019) , first obtained facial land-

ark points using a calibrated pair of cameras. These facial land-

ark points were then registered with a template frontal face pre-

omputed using a stereo camera. The final landmarks were then

sed as a feature vector for face liveness detection. In Atoum, Liu,

ourabloo and Liu (2017) , the face-depth and face-patches like eyes,

ose, mouth, and eyebrows were utilized with CNN for face live-

ess detection. Two CNN were utilized for achieving the face live-
ess detection task: one for classification of face-patch and second

or obtaining the depth map from the input face image. The out-

ut depth map is then fed to an SVM classifier, and score-level fu-

ion strategy was used to improve the face liveness detection rate

urther. Although obtaining remarkable accuracy on intra-database

ace liveness detection, no results were reported for cross-database

ace liveness detection. Related work in Wang, Nian, Li, Meng and

ang (2017) utilized texture features from CNN and depth maps

btained from kinetic sensors for the detection of the live face and

A. 

In Liu, Jourabloo and Liu (2018) , the authors utilized the esti-

ated 3D information calculated using 3D Morphable model with

emote photoplethysmography (rPPG) signals for face liveness de-

ection. However, obtaining a stable rPPG signal is time-dependent,

nd it introduces additional latency. In Di Martino, Qiu, Nagenalli

nd Sapiro (2018) , the authors utilized the disparity information

etween the two binocular images and flashlight to detect spoof-

ng attacks. However, the authors only utilized a fixed number

f images captured using controlled conditions. Similar work in

un et al. (2016) fused the 2D and 3D features for face liveness

etection. They evaluated their method based on only two types

f face PA, i.e., printed and tablet PA. 

. Methodology 

In contrast to computing disparity between dual-camera im-

ges prior to training a CNN classifier, the proposed method takes

dvantage of simultaneously learning the dynamic disparity-maps

nd training a CNN classifier in an end-to-end fashion. Additionally,

he proposed dynamic disparity-maps represents multi-channel

isparity features that represent a broad range of features com-

ared to the fixed features-based disparity. Further, feeding the

earned dynamic disparity-maps enhances the performance of CNN

lassifier against unknown face PA, both in controlled and adverse

onditions, which are explained in the following sections. 

.1. Preprocessing 

Before feeding the stereo face images to the CNN, the stereo

ace images were first registered and normalized. To register the

wo stereo images, we utilized a single landmark point matching

echnique. Given two images captured by two cameras that are

orizontally aligned, we first detect the face area and 68 facial

andmarks point using Dlib Histogram of Oriented Gradient (HOG)

ased face detector ( DLib Face Detector, 2019 ). After obtaining the

ace and landmark from both images, the image captured from the

eft camera is registered with the corresponding image captured

rom the right camera based on the corner landmark location of

he right eye in both the images as shown in Fig. 2 . 

Let suppose P rc 
re denotes the landmark location of the right eye-

orner in the right camera face image and P lc re denotes the land-

ark location of the right eye-corner in the left camera face image.

hen, the rigid transformation T between P rc 
re and P lc re can be repre-

ented by Eqs. (1 )–(5) . Since both left and right cameras are iden-

ical and aligned horizontally, therefore only the translation com-

onent between the two images based on the landmark points P rc 
re 

nd P lc re is computed. In Eq. (2) , I represent 3 × 3 identity matrix.

he image captured by the right camera is considered as a refer-

nce frame, and the image captured by the left camera is trans-

ated by tx diff in the x direction and ty diff in the y direction respec-

ively based on landmark locations of the right-eye corner in both

ace images. 

 

rc 
re = T P lc re (1) 

 = [ I ] + t [ I ] (2) 
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Fig. 2. Stereo face generation using face alignment. The image is captured by the left and right camera, followed by face detection and landmark estimation. The right eye 

corner landmark point in both cameras frame is selected as the key feature point, and accordingly, the left camera frame is adjusted (only translation in x-direction and 

y-direction) according to the right camera frame to obtain an aligned image. 

Fig. 3. Result of single point matching. (a) Image before alignment: The blue channel of the left camera image is visible. (b) The image after alignment using single point 

matching. 
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t y di f f 
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] 

(3)

 x di f f = t x rc 
re − t x lc re (4)

 y di f f = t y rc 
re − t y lc re (5)

Fig. 3 shows the result of using the above procedure, where

the blue channel of the left-camera image is superimposed on the

right camera image. As can be seen in Fig. 3 (a), the blue chan-

nel of the left camera is at some distance d from the right-camera

image before tthe transformation. Fig. 3 (b) shows the result after

the transformation of the left-camera image using the translation

of the landmark points. Although there are multiple methods for

stereo-face alignment and matching, we found that the proposed

method of stereo-face alignment using single point matching is

sufficient for face liveness detection system. It should be noted that

stereo-matching is a broad field in computer vision, and many ef-

ficient stereo-matching techniques have been proposed in recent
ears. However, the proposed stereo-face alignment is only uti-

ized to align the facial region in the RGB color space. Additionally,

e do not perform the disparity computation at the image-level

s usually performed in stereo-matching techniques; instead, we

earn the Dynamic Disparity-Maps from the deep features within

he CNN. Therefore, although the proposed stereo-face alignment

echnique is simple, yet it is sufficient and adequate for the pro-

osed task, i.e., face liveness detection. 

.2. Dynamic disparity-maps 

After stereo face alignment, we input the left-face image and

he right-face image captured by the stereo camera to the CNN

o first learn the dynamic disparity-maps using the proposed dis-

arity layer. The dynamic disparity-maps are learned by utilizing

quare Disparity (SD), Absolute Disparity (AD), Feature Multiplica-

ion (FM) and Approximate Disparity (APD) between the convolu-

ional feature maps. 

 D k ( u, v , k ) = σ ( | F r ( u, v , k ) − F l ( u, v , k ) | ) (6)

 D k ( u, v , k ) = σ
(
( F r ( u, v , k ) − F l ( u, v , k ) ) 2 

)
(7)
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Table 1 

Architecture of proposed CNN. 

Input image = [ I r ( u,v ), I l ( u,v )] 

Layer name Kernel size Output channel Input 

Disparity layer 3 × 3 8 [ I l ( u,v ), I r ( u,v )] 

Conv_1 3 × 3 16 Disparity layer 

F1 = concatenate [disparity layer, Conv_1] 

Max-pool_1 2 × 2 24 F1 

Conv_2 3 × 3 32 Max-pool_1 

Conv_3 3 × 3 32 Conv_2 

F2 = concatenate [Conv_2, Conv_3] 

Max-pool_2 2 × 2 64 Max-pool_2 

Conv_4 3 × 3 64 Conv_3 

Conv_5 3 × 3 64 Conv_4 

Conv_6 3 × 3 64 Conv_5 

F3 = concatenate [Conv_4, Conv_5, Conv_6] 

Max-pool_3 2 × 2 192 F3 

Conv_7 3 × 3 128 Max-pool_3 

Conv_8 3 × 3 128 Conv_7 

Conv_9 3 × 3 128 Conv_8 

F4 = concatenate [Conv_7, Conv_8, Conv_9] 

Max-pool_4 2 × 2 384 F4 

Conv_10 3 × 3 256 Max-pool_4 

Conv_11 3 × 3 256 Conv_10 

Conv_12 3 × 3 256 Conv_11 

F5 = concatenate [Conv_10, Conv_11, Conv_12] 

Conv_13 1 × 1 2 F1 

Conv_14 1 × 1 2 F2 

Conv_15 1 × 1 2 F3 

Conv_16 1 × 1 2 F4 

Conv_17 1 × 1 2 F5 

F6 = concatenate [F1, F2, F3, F4, F5] 

GAP – 10 F6 

Fc1 10 2 GAP 

2-way soft-max 

Conv → Convolution, Fc → Fully-connected layer. 

3
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 M k ( u, v , k ) = σ ( F r ( u, v , k ) ◦ F l ( u, v , k ) ) (8) 

P D k ( u, v , k ) = σ

(
F r ( u, v , k ) − F l ( u, v , k ) 

∂ F l ( u, v ,k ) 
∂u 

)
(9) 

In Eqs. (6) –(9) , the symbol σ is the sigmoid activation func-

ion defined as: σ (x ) = 

1 
1+ e −x , F r ( u,v, k ) represents the k th con-

olutional feature-maps learned by convolution layer from the

ight camera I r ( u,v ) face image, F l ( u,v, k ) represents the k th con-

olutional feature-map learned by convolution layer from the left

amera I l ( u,v ) face image, AD k , SD k , FM k and APD k are the disparity-

aps learned for k th convolutional feature-map and ( u, v ) are

he spatial size of the respective k th convolutional feature-map.

he learned dynamic disparity-maps are then fed to the rest of

he convolution layers to learn the discriminative features for face

iveness detection. The proposed CNN is guided by these learned

ynamic disparity-maps as compared to stereo face images and

and-crafted disparity proposed by Di Martino et al. (2018) . The

artial derivative in the denominator of Eq. (9) is computed by us-

ng depth-wise convolution ( Chollet, 2017 ) with the following gra-

ient operator: 

 x = 

[ 

1 2 1 

0 0 0 

−1 −2 −1 

] 

(10) 

In general, the proposed dynamic disparity-maps can be com-

ined to generate new types of dynamic disparity maps. For ex-

mple, the proposed dynamic disparity-maps can be added, sub-

racted, and concatenated together. However, in the present case,

e only utilized one type of dynamic disparity-maps at a time,

n the disparity layer, to evaluate its effectiveness in CNN for face

iveness detection. 

.3. CNN architecture 

Table 1 shows the proposed CNN architecture, which consists

f 17 convolutional layers except for the disparity layer. The dis-

arity layer at the top of CNN architecture is used to learn dy-

amic disparity-maps from the stereo face images. The disparity

ayer output 8 feature maps which are fed to next convolutional

ayer. Each convolution layer in our proposed CNN consists of a

 × 3 kernel, followed by Batch-Normalization (BN) and Rectified

inear Unit (RELU). We also use a dropout rate of 0.2 after each

ax-pooling layer and an additional l 2 regularization of 0.0 0 05 in

onvolution layers. We also used the concatenation layers denoted

s F i , where i indicate the concatenation layer index, to concate-

ate the output of the intermediate convolutional layers, as shown

n Table 1 . After F 5 concatenation layer, all the concatenation lay-

rs are mapped to 2 feature-maps using 1 × 1 convolutional layers

hat result in 10 feature maps of the same size that are concate-

ated again by F 6 concatenation layer. The output of F 6 concatena-

ion layer is then given to the Global Average Pooling (GAP) layer

hat averages each feature map and output a 10-element feature

ector. This 10-element feature vector is then given to a 2-way

oftmax classifier for classification of the input stereo face image

s live face or face PA. Since, there is no learning in the GAP

ayer, the gradient computation from the soft-max layer is avail-

ble to each layer in the CNN network. As a result, there are mul-

iple path for the gradient to flow back to the CNN during back-

ropagation stage thus minimizing the vanishing gradient prob-

em as suggested in Simonyan and Zisserman (2014) , He, Zhang,

en and Sun (2016) and Huang, Liu, Van Der Maaten and Wein-

erger (2017) . 
.4. Training 

We train the proposed CNN for 20 epochs using Stochastic Gra-

ient Descent (SGD) algorithm with an initial learning rate of 0.01

nd a momentum of 0.9. A factor of 0.1 is used to reduce the learn-

ng rate after 10 and 15 epochs. The batch size is set to 32 follow-

ng the work in Masters and Luschi (2018) . For pre-processing, we

ormalize the input face images before feeding it to the proposed

odel. The total time taken by the proposed model for training on

080 GTX TI GPU is 30 min considering the size of the proposed

tereo camera-based face database. 

. Experimental results and discussions 

This section details and discusses the experimental setup and

esults obtained using the proposed stereo face liveness detection

ystem. As there is no public stereo face anti-spoofing database

vailable, we evaluated the performance of the proposed model on

ur own stereo face anti-spoofing database using various test case

cenarios. 

.1. Stereo face anti-spoofing database development 

Since there is no publicly available database for studying stereo

ideo-based face anti-spoofing, we created our own video-based

tereo face anti-spoofing database with 50 subjects on four types

f attacks: printed attack, cut-photo attack, mobile phone attack,

nd tablet attack. The database has been collected using Logitech

D Webcam C525 with three video resolutions: 320 × 240 rep-

esenting low resolution, 640 × 480 representing the normal res-

lution and 1280 × 720 representing high-resolution images. For

enerating face PA, we utilized four types of PA mediums: printed

hoto, cut-photo, mobile screen, and tablet screen. For generating
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Fig. 4. Real face and face PA samples in the proposed stereo camera face anti-spoofing database: Top row: High-quality samples. Middle row: Normal-quality samples. 

Bottom row: Low-quality Samples. 

Table 2 

Distribution of training and testing set in proposed stereo face anti-spoofing database. 

Training set Testing Set Total 

Subjects 40 10 50 

PA video samples (left camera + right camera) 960 240 1200 

Live video samples (left camera + right camera) 240 60 300 

Total video samples (Live + Attack) 1200 300 1500 
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a print photo attack, we took a high definition photo of the frontal

face and printed it on a fine A4 sheet of paper. For generating the

cut-photo attack, the same printed photo was utilized, however

with eyes section removed for imitating eye-blinking attack. The

mobile PA and tablet PA represent a replay-based PA, in which the

video of a person is played in front of the face liveness detection

system. The mobile PA and tablet PA are more realistic and high-

quality compared to the photo PA and cut-photo PA. Also, the loss

of high-frequency details in mobile PA and tablet PA is lower as

compared to photo PA and tablet PA. For generating mobile PA and

tablet PA, we utilized google phone Pixel XL and Samsung tablet.

Fig. 4 shows examples of a real face and corresponding face PA.

Each video in our database is 20 s long and contain 700 frames on

average. Table 2 shows the distribution of the training set and the

testing set. The total number of participants in this database were

50 with various ethnicity. For training a face anti-spoofing algo-

rithm, the training set contains 40 subjects, while the testing set

contains the rest of the subjects. This type of arrangement is par-

ticularly useful for training CNN that require more data for train-

ing. 

4.2. Evaluation protocol 

For performance evaluation, we use the Bona fide Presentation

Classification Error rate (BPCER) and Attack Presentation Classifi-

cation Error Rate (APCER). The Average Classification Error Rate

(ACER) is the average of BPCER and APCER ( ISO/IEC JTC 1/SC 37

Biometrics, 2016 ). The BPCER can be defined as the proportion of

Bona fide samples incorrectly classified, by a biometric face anti-
poofing system, as face PA. The APCER can be defined as the

roportion of face PA samples incorrectly classified by a biomet-

ic face anti-spoofing system as genuine. In practice, the APCER

s calculated individually for each face PA type, and the face PA

ype with maximum APCER is considered as the APCER of the

hole biometric face anti-spoofing system in the worst-case sce-

ario ( Boulkenafet et al., 2018 ). The BPCER, APCER, and ACER can

e defined as follows: 

P CER = 

1 

N G 

m −1 ∑ 

l=0 

S x l , x = G g (11)

P CE R PA = 

1 

N PA 

m −1 ∑ 

l=0 

G 

x 
l , x = S g (12)

C ER = 

BP C ER + AP CER 

2 

(13)

In Eq. (11) , S x 
l 

represents that the l th Bona fide image sample of

 user x having groundtruth label G g , presented to a biometric face

nti-spoofing system, is incorrectly classified as face PA . N G repre-

ents the total number of Bona fide samples in the database. Con-

ersely in Eq. (12) , G 

x 
l 

represents that the l th face PA sample of a

ser x having groundtruth label S g presented to a biometric face

nti-spoofing system, is incorrectly classified as a Bona fide sam-

le. N PA represents the total number of PA samples. 

For evaluating the proposed stereo face liveness detection sys-

em, we used various test case scenarios. We first designed three

rotocols, as shown in Table 3 . In each protocol, we rule out one

ace PA type and train the proposed system on the rest of the
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Table 3 

Evaluation protocols on unseen face PA. 

Protocols Training PA samples Test PA samples 

Protocol 1 Photo, Cut-photo, Mobile Photo, Cut-photo, 

Mobile, Tablet Protocol 2 Photo, Cut-photo, Tablet 

Protocol 3 Photo, Mobile, Tablet 
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raining set. During the testing stage, we used all the real and face

A in the test set. These protocols are designed to test the perfor-

ance of the face liveness detection system when an unseen face

A is presented to it. Further, we tested the performance of the

roposed Dynamic Disparity-Maps by using the protocols, defined

bove, in various tests case scenarios, such as Overall Performance

est, Spoof Face Detection Test, Image Scaling Test, and Blur Test. 

Overall Performance Test: For this case, we grouped the photo

ace PA and cut-photo face PA into a printed attack category and

he mobile face PA and tablet face PA into the video attack cate-

ory. The attack having highest APCER is selected to be the overall

ystem APCER, and accordingly, the ACER is determined. 

Spoof Face Detection Test: For this case, we tested the perfor-

ance of the proposed method on the individual face PA. This test

s done in order to investigate the vulnerability and robustness of

he proposed method to different face PA. For this case, the face

A with the highest APCER determines the performance of the pro-

osed system, i.e., the worst-case scenario. 

Image Scaling Test: In the image scaling test, we trained our CNN

sing a fixed size image, and tested it on a different size image.

ince different image acquisition devices have a variety of captur-

ng resolutions, the image scaling test can show the performance

f the proposed system under varying resolution changes in the

mage. For the evaluation, we utilized the same setup as used for

he overall performance test. 

Blur Test: In the blur test, we added Gaussian noise to the

amples during testing to check the robustness of the proposed

ethod for face liveness detection in adverse scenarios. For the

valuation, we utilized the same setup as used for the overall per-

ormance test . 

.3. Overall performance test 

We evaluated the face liveness detection performance on over-

ll performance test using disparity-maps learned between the

onvolutional-features by using Eqs. (6 )–(9) . Table 4 summarizes

he performance of the proposed CNN, for each dynamic disparity-

ap, on the three protocols of the proposed stereo face anti-
Table 4 

Performance of the proposed method on overall performance test. 

Disparity- 

maps Protocols 

Test 

Printed Video 

APCER (%) APCER (%

AD 1 0.00 0.21 

2 0.00 0.10 

3 0.00 0.25 

Overall 0.00 ± 0.00 0.19 ± 0

SD 1 0.03 0.06 

2 0.00 0.21 

3 0.00 0.18 

Overall 0.01 ± 0.02 0.15 ± 0

FM 1 0.00 5.39 

2 0.00 2.75 

3 0.00 0.75 

Overall 0.00 ± 0.00 2.96 ± 2

APD 1 0.00 0.70 

2 0.00 0.58 

3 0.00 0.06 

Overall 0.00 ± 0.00 0.45 ± 0
poofing database. As can be seen in Table 4 , all dynamic disparity-

aps provide better performance against printed attacks. In the

ase of video attacks, we observed that the disparity-maps learned

sing SD provides better performance by obtaining the %APCER

f 0.15 ± 0.08 compared to other learned disparity-maps. How-

ver, the disparity-maps learned using APD provides an overall bet-

er performance by providing a better trade-off between %APCER

nd %BPCER compared to AD, SD, and FM, and obtaining %ACER of

.20 ± 0.20. We further observed that the dynamic disparity-maps

earned using FM provides the lowest performance among other

earned disparity-maps. Notably, the %BPCER obtained using FM is

igher, 5.77 ± 4.57%, compared to AD, SD, and APD. This suggests

hat the dynamic disparity-maps learned using FM are more biased

oward face PA as compared to AD, SD, and APD. It can be further

bserved in Table 4 that all disparity-maps, except SD, have de-

ected the printed-based face PA (photo and cut-photo) with 100%

ccuracy as can be seen with 0.0 0 ±0.0 0% APCER, under the Printed

olumn, for AD, FM, and APD in all three protocols. This shows that

he proposed dynamic disparity-maps are effective against printed-

ased face PA. 

.4. Spoof face detection 

In order to evaluate the vulnerability and robustness of the pro-

osed to various kind of face PA, spoof face detection tests were

erformed. In this test, the objective was to evaluate the perfor-

ance of the dynamic-disparity maps learned using various dis-

arity measurements, as explained in Section 3.2 . Table 5 reports

he results obtained by applying the spoof face detection test using

ach AD, SD, FM, APD in the disparity layer of the CNN. 

It can be observed in Table 5 , that the proposed method achieve

emarkable performance against printed attacks, i.e., photo PA and

ut-photo PA. On the other hand, we found that dynamic disparity-

aps computed using SD provides better performance on mobile

A and overall PA by obtaining the lowest %APCER of 0.28 ± 0.19

ompared to other dynamic disparity-maps. It can be noted in

able 5 that the dynamic disparity-maps learned using AD, and

PD accurately detected tablet-based face PA compared to the

ynamic disparity-maps learned using SD and FM. Further ob-

ervation of the results obtained in Table 5 placed the dynamic

isparity-maps learned using APD in the third place after SD and

D. However, since APD provides excellent performance in terms

f %APCER and %BPCER in the Overall Performance Test , therefore

he performance of dynamic disparity-maps learned using APD is

etter compared to AD, SD, and FM. 
Overall 

) APCER (%) BPCER (%) ACER (%) 

0.21 0.47 0.21 

0.10 0.22 0.16 

0.25 0.50 0.38 

.08 0.19 ± 0.08 0.40 ± 0.15 0.25 ± 0.12 

0.06 0.17 0.11 

0.21 0.33 0.27 

0.18 0.44 0.31 

.08 0.15 ± 0.08 0.31 ± 0.14 0.23 ± 0.11 

5.39 10.64 8.01 

2.75 5.08 3.92 

0.75 1.58 1.17 

.32 2.96 ± 2.32 5.77 ± 4.57 4.37 ± 3.44 

0.70 0.14 0.10 

0.58 0.28 0.43 

0.06 0.08 0.07 

.34 0.45 ± 0.34 0.17 ± 0.10 0.20 ± 0.20 
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Table 5 

Performance various dynamic disparity-maps on spoof face detection test. 

Disparity- 

maps Protocols 

Test 

Photo Cut-photo Mobile Tablet Overall 

APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) 

AD 1 0.00 0.00 0.42 0.00 0.42 

2 0.00 0.00 0.19 0.00 0.19 

3 0.00 0.00 0.50 0.00 0.50 

Overall 0.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.16 0.00 ± 0.00 0.37 ± 0.16 

SD 1 0.06 0.00 0.06 0.06 0.06 

2 0.00 0.00 0.42 0.00 0.42 

3 0.00 0.00 0.36 0.00 0.36 

Overall 0.02 ± 0.03 0.00 ± 0.00 0.28 ± 0.19 0.02 ± 0.03 0.28 ± 0.19 

FM 1 0.00 0.00 0.28 10.50 10.50 

2 0.00 0.00 5.50 0.00 5.50 

3 0.00 0.00 1.42 0.08 1.42 

Overall 0.00 ± 0.00 0.00 ± 0.00 2.4 ± 2.75 3.53 ± 6.04 5.81 ± 4.55 

APD 1 0.00 0.00 0.14 0.00 0.14 

2 0.00 0.00 1.17 0.00 1.17 

3 0.00 0.00 0.11 0.00 0.11 

Overall 0.00 ± 0.00 0.00 ± 0.00 0.47 ± 0.60 0.00 ± 0.00 0.47 ± 0.60 

Table 6 

Performance of the proposed approach by up-scaling the stereo-face image by a factor of 2. 

Disparity- 

maps Protocols 

Test 

Printed Video Overall 

APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%) 

AD 1 0.13 1.90 1.90 3.94 2.92 

2 2.14 1.58 2.14 3.81 2.97 

3 0.60 1.19 1.19 3.53 2.36 

Overall 0.96 ± 1.05 1.56 ± 0.36 1.74 ± 0.50 3.76 ± 0.21 2.75 ± 0.34 

SD 1 0.93 0.47 0.93 2.17 1.55 

2 0.03 2.08 2.08 4.03 3.06 

3 0.35 0.93 0.93 2.47 1.70 

Overall 0.44 ± 0.46 1.16 ± 0.83 1.31 ± 0.66 2.89 ± 0.1 2.10 ± 0.83 

FM 1 0.00 10.72 10.72 21.25 15.99 

2 0.00 2.81 2.81 5.72 4.26 

3 0.34 4.04 4.04 6.92 5.48 

Overall 0.11 ± 0.20 5.86 ± 4.26 5.86 ± 4.26 11.30 ± 8.64 8.58 ± 6.45 

APD 1 0.07 0.76 0.76 1.69 1.22 

2 0.03 1.71 1.71 2.89 2.30 

3 0.12 0.07 0.12 0.28 0.2 

Overall 0.07 ± 0.05 0.85 ± 0.82 0.86 ± 0.80 1.62 ± 1.31 1.24 ± 1.10 
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4.5. Image scaling test 

To test the performance of the proposed method in adverse

conditions, we utilized an image scaling test. In this test, we up-

sample and down-sample the input stereo-face image by a scale

factor of 2 with linear interpolation, during evaluation. Since this

process introduces some distortion in the original input images,

there is a likelihood that the performance of the proposed system

for face liveness detection will be affected. Further, the image scal-

ing test represents the real-world scenarios, as the face bounding-

box changes with the variations in the distance between the face

and the camera. 

Table 6 shows the performance of the proposed method on

the test set by up-sampling the input face image by a fac-

tor of 2. As can be seen in Table 6 , for the up-sampling

case, the dynamic disparity-maps learned using APD provide bet-

ter performance by obtaining the %ACER of 1.24 ±1.10% com-

pared to AD, SD, and FM. It can be further observed that

the performance of the proposed method is affected by the

change of resolution in the input image during the test case.

In contrast to the rise in the %APCER, we observed that the

%BPCER rises significantly. This can be attributed to the distor-
ion introduces in the live samples during linear interpolation

peration. 

In down-sampling case, as shown in Table 7 , the dynamic

isparity-maps learned using APD achieved the best overall per-

ormance among all other disparity-maps learned using AD, SD,

nd FM. It can be observed in Table 7 , that the SD provides com-

aratively better performance in detecting face PA by obtaining

he overall %APCER of 1.86 ± 0.97% compared to the %APCER of

.22 ± 0.67% obtained using APD. However, the APD provides sig-

ificantly lower %BPCER of 12.61 ± 12.37% compared to the%BPCER

f 34.34 ± 14.92% obtained using SD. Further, from Fig. 5 , it can be

erified that the dynamic disparity-maps learned using APD pro-

ide better performance AD, SD, and FM in down-sampling. It can

lso be noted that the dynamic disparity-maps computed using

M do not generalize well in image scaling tests. The face liveness

etection in the down-sampling case is more challenging as com-

ared to up-sampling case. In the down-sampling case, the image

oses most of the crucial information that can be useful in deter-

ining whether the input image has a live face or face PA. As a

esult, it is evident that the performance of the face liveness de-

ection system will deteriorate when a low resolution or down-

ampled image is presented to it. 
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Table 7 

Performance of the proposed approach by down-scaling the stereo-face image by a factor of 2. 

Disparity- 

maps Protocols 

Test 

Printed Video Overall 

APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%) 

AD 1 0.72 1.42 1.42 40.31 20.86 

2 0.84 2.93 2.93 32.97 17.95 

3 1.49 1.96 1.96 5.97 3.97 

Overall 1.02 ± 0.41 2.10 ± 0.77 2.10 ± 0.77 26.42 ± 18.08 14.26 ± 9.03 

SD 1 0.46 0.96 0.96 30.56 15.76 

2 0.15 2.89 2.89 50.78 26.83 

3 0.18 1.72 1.72 21.67 11.69 

Overall 0.26 ± 0.17 1.86 ± 0.97 1.86 ± 0.97 34.34 ± 14.92 18.09 ± 7.84 

FM 1 4.94 8.36 8.36 27.28 17.82 

2 1.30 12.78 12.78 27.72 20.25 

3 15.71 0.19 15.71 30.19 22.95 

Overall 7.32 ± 7.50 7.11 ± 6.39 12.28 ± 3.70 28.40 ± 1.57 20.34 ± 2.57 

APD 1 2.36 1.58 2.36 5.89 4.13 

2 0.07 2.81 2.81 26.89 14.85 

3 1.49 1.44 1.49 5.06 3.27 

Overall 1.31 ± 1.16 1.94 ± 0.75 2.22 ± 0.67 12.61 ± 12.37 7.42 ± 6.45 

Table 8 

Performance of the proposed approach by blurring the face samples using 5 × 5 Gaussian kernel. 

Disparity- 

maps Protocols 

Test 

Printed Video Overall 

APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%) 

AD 1 0.50 0.82 0.82 2.33 1.58 

2 0.09 0.85 0.85 1.53 1.19 

3 0.53 0.49 0.53 1.92 1.22 

Overall 0.37 ± 0.25 0.72 ± 0.20 0.73 ± 0.18 1.93 ± 0.40 1.33 ± 0.22 

SD 1 0.66 0.13 0.66 1.53 1.1 

2 0.06 1.21 1.21 1.33 1.27 

3 0.27 0.85 0.85 2.17 1.51 

Overall 0.33 ± 0.31 0.73 ± 0.55 0.91 ± 0.28 1.68 ± 0.44 1.29 ± 0.21 

FM 1 0.00 14.39 14.39 28.81 21.60 

2 0.00 4.57 4.57 8.42 6.49 

3 0.00 3.03 3.03 6.39 4.71 

Overall 0.00 ± 0.00 7.33 ± 6.16 7.33 ± 6.16 14.54 ± 12.40 10.93 ± 9.28 

APD 1 0.03 0.19 0.19 0.47 0.33 

2 0.02 1.08 1.08 0.17 0.63 

3 0.02 0.03 0.03 0.08 0.06 

Overall 0.02 ± 0.01 0.43 ± 0.57 0.43 ± 0.57 0.24 ± 0.20 0.34 ± 0.28 
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.6. Blur test 

We used the blur test to test the performance of the proposed

ethod against unseen face PA when the input face samples are

lurred. To obtain blurriness in the input image utilized a Gaus-

ian kernel size of 5 × 5. Table 8 provides the performance of the

ynamic disparity-maps learned using AD, SD, FM, and APD. From

able 8 , it can be observed that dynamic disparity-maps learned

sing APD provides better performance compared to disparity-

aps learned using other approaches. The APD obtained an over-

ll lower %ACER of 0.34 ± 0.28% compared to other learned dy-

amic disparity-maps. Further, it can be observed in Table 9 , that

he learned dynamic disparity-maps are less sensitive to blurriness

n the input image compared to an image scaling test . 

It can be observed from Table 8 that the APD provide bet-

er performance on video-based face PA, by obtaining %APCER of

.43 ± 0.57%, compared to AD, SD, and FM. On the other hand, FM

hows the worst performance on video-based face PA, by obtaining

 APCER of 7.33 ± 6.16%, compared to AD, SD, and APD. This fur-

her shows that the dynamic disparity-maps computed using FM

hows high susceptibility to face PA under adverse scenarios. Also,

hen FM is combined with other dynamic disparity-maps, it may

eteriorate the performance of the final classifier. 
.7. Comparison with state-of-the-art approaches 

We further compare the performance of the proposed method

ith the work in Di Martino et al. (2018) and Sun, Huang, and Liu

2016) , across all 4 tests. For a fair comparison, we reported the

erformance across all the three protocols in the proposed testing

cenarios. Table 9 shows the overall performance of the proposed

pproach with other state-of-the-art approaches. It can be seen in

able 9 that the proposed approach using APD disparity maps out-

erform the state-of-the-art approaches in all 4 testing scenarios,

.e., Overall Performance Test, Image Scaling Test (Upsampling, Down-

ampling), and Blur Test . In Overall Test, the proposed approach ob-

ained a %ACER of 0.20 ± 0.20%. On the Image Scaling Test, Up-

ampling and Down-sampling, the proposed approach obtained a

ACER of 1.24 ± 1.10% and 7.42 ± 6.45%. Whereas in Blur Test,

he proposed method obtained a %ACER of 0.34 ±0.28% compared

o the other methods. It can be noted from Table 9 , that the pro-

osed method performed significantly better in the case of video

isplay attacks, compared to previously proposed methods. Addi-

ionally, the%BPCER of our proposed approach is significantly lower

ompared to the work proposed by Di Martino et al. (2018) and

un et al. (2016) . In the down-sampling case, the work proposed

y Sun et al. (2016) has obtained a lower %BPCER of 9.10 ± 3.22%
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Fig. 5. ROC curve for the various dynamic disparity-maps by down-sampling the stereo face image by a factor of 2 (a) Protocol 1 (b) Protocol 2 (c) Protocol 3. 

Table 9 

Comparison of the proposed method with conventional approaches in proposed testing scenarios. 

Method Evaluation 

Test 

Printed Video Overall 

APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%) 

Sun et al. (2016) Overall Test 0.00 ± 0.00 1.91 ± 2.39 1.91 ± 2.39 2.80 ± 3.26 2.35 ± 2.82 

Up-sampling 0.14 ± 0.14 4.77 ± 6.85 4.78 ± 6.84 7.28 ± 12.50 6.03 ± 9.66 

Down-sampling 0.36 ± 0.47 4.82 ± 2.86 4.82 ± 2.86 9.10 ± 3.22 6.96 ± 3.04 

Blur Test 0.21 ± 0.09 6.67 ± 3.89 6.67 ± 3.89 13.68 ± 7.55 10.17 ± 5.72 

Di Martino et al. (2018) Overall Test 0.01 ± 0.01 0.38 ± 0.33 0.38 ± 0.33 0.75 ± 0.65 0.56 ± 0.49 

Up-sampling 7.24 ± 5.01 3.84 ± 2.15 8.77 ± 2.61 21.54 ± 4.72 15.15 ± 3.64 

Down-sampling 6.00 ± 1.98 16.24 ± 2.51 16.24 ± 2.51 44.62 ± 6.07 30.44 ± 4.00 

Blur Test 1.09 ± 0.61 1.82 ± 1.00 2.14 ± 0.57 5.63 ± 0.90 3.89 ± 0.73 

Proposed (APD) Overall Test 0.00 ± 0.00 0.45 ± 0.34 0.45 ± 0.34 0.17 ± 0.10 0.20 ± 0.20 

Up-sampling 0.07 ± 0.05 0.85 ± 0.82 0.86 ± 0.80 1.62 ± 1.31 1.24 ± 1.10 

Down-sampling 1.31 ± 1.16 1.94 ± 0.75 2.22 ± 0.67 12.61 ± 12.37 7.42 ± 6.45 

Blur Test 0.02 ± 0.01 0.43 ± 0.57 0.43 ± 0.57 0.24 ± 0.20 0.34 ± 0.28 
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compared to our proposed approach that obtained the %BPCER of

12.61 ± 12.37%, however, the %APCER of their method is higher

compared to our proposed approach. As a result, the proposed

method have lower false rejection and false acceptance rate com-

pared to previously proposed approaches. 

Table 10 shows the performance of the proposed method on

the Spoof face detection test ; It can be seen in Table 10 , that the

proposed method have low %APCER among all presentation attacks
ompared to Di Martino et al. (2018) and Sun et al. (2016) . Partic-

larly, in case of Mobile and Tablet presentation attacks, the pro-

osed method performed significantly better compared to the pre-

iously proposed approaches. In case of Mobile presentation attack,

he proposed method obtained the %APCER of 0.47 ± 0.60%, and in

ase of Tablet presentation attack, the proposed method obtained

he %APCER of 0.00 ± 0.00%, which is significantly lower than the

ethods proposed by Di Martino et al. (2018) and Sun et al. (2016) .
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Table 10 

Comparison of the proposed method with conventional approaches in the spoof face detection test. 

Method 

Test 

Photo Cut-photo Mobile Tablet Overall 

APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) 

Sun et al. (2016) 0.00 ± 0.00 0.00 ± 0.00 0.70 ± 61 3.11 ± 5.39 3.81 ± 4.78 

Di Martino et al. (2018) 0.49 ± 0.32 0.22 ± 0.23 2.05 ± 1.10 1.05 ± 1.23 2.37 ± 1.0 

Proposed (APD) 0.00 ± 0.00 0.00 ± 0.00 0.47 ± 0.60 0.00 ± 0.00 0.47 ± 0.60 
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t can be noted from the results of Tables 9 , and 10 that supervis-

ng CNN with only stereo RGB images, or disparity-maps ( Di Mar-

ino et al., 2018 ; Sun et al., 2016 ) limits the performance of CNN

lassifier for face anti-spoofing in adverse scenarios. On the other

and, in the proposed approach, we utilized the dynamic disparity-

aps within the proposed CNN that shows improved performance

n adverse scenarios. Further, the dynamic disparity-maps were

earned as the CNN classifier is trained for face liveness detection.

herefore, the proposed dynamic disparity-maps shows a broader

et of disparity features compared to fixed disparity features, as

sually obtained from stereo images. 

. Conclusion and future work 

In this paper, we proposed a low cost and reliable stereo

amera-based face liveness detection method utilizing dynamic

isparity-maps learned from convolutional-features with input

tereo face images, to supervise a CNN. We further evaluated the

arious form of disparity-maps learned from convolutional-features

f stereo face images, such as Feature Multiplication (FM), the Ab-

olute Disparity (AD), the Square Disparity (SD) and Approximate

isparity (APD). Our experimental results with various challenging

ase scenarios justify the effectiveness of the proposed method in

eal-time face liveness detection scenarios. Further, since the depth

ap estimation using the stereo camera is an active research topic

n computer vision, and since current state-of-the-art CNN have

een proven to be effective in generating depth and disparity in-

ormation for a variety of tasks, we will explore these state-of-the-

rt CNN for stereo-face liveness detection. Also, there is a need to

urther explore challenging scenarios for testing for stereo-camera

ased face liveness detection systems that will help to assess the

eneralization and feasibility of stereo camera-based face liveness

etection systems in real-time. For example, the proposed work

tilized horizontally aligned stereo camera for face liveness detec-

ion. However, further work is needed for the cases, in which it

s difficult to align the camera horizontally. Additionally, the pro-

osed stereo face anti-spoofing approach can be combined with

ther hand-crafted features for further improvement in the per-

ormance. Further, other disparity-maps could also be designed to

urther improve the performance of CNN classifier for face liveness

etection. 
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