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Abstract. Face recognition based-access systems have been used widely in security systems as the recog-
nition accuracy can be quite high. However, these systems suffer from low robustness to spoofing attacks. To
achieve a reliable security system, a well-defined face liveness detection technique is crucial. We present an
approach for this problem by combining data of the light-field camera (LFC) and the convolutional neural net-
works in the detection process. The LFC can detect the depth of an object by a single shot, from which we derive
meaningful features to distinguish the spoofing attack from the real face, through a single shot. We propose two
features for liveness detection: the ray difference images and the microlens images. Experimental results based
on a self-built light-field imaging database for three types of the spoofing attacks are presented. The experimen-
tal results show that the proposed system gives a lower average classification error (0.028) as compared with
the method of using hand-crafted features and conventional imaging systems. In addition, the proposed system
can be used to classify the type of the spoofing attack. © 2019 SPIE and IS&T [DOI: 10.1117/1.JEI.28.1.013003]
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1 Introduction
Face recognition is one of the most common biometric meth-
ods to identify or to verify individuals because of its noninva-
sive property. Due to the development of the advanced image
sensors and the sophisticated image processing techniques,
acquiring facial information becomes easy and this approach
can eliminate the risk of forgetting login key and password
information for a computer user account. For these reasons,
using facial information to access security systems becomes
popular, and this approach can make the systems more con-
venient and reliable.1

Although face recognition systems are widely used in
security systems such as intelligent entrance guard systems
at companies and schools, bank user account logins, and
website account login processes, etc., they are still vulner-
able to various intentional attacks. For the system, it is dif-
ficult to detect whether the face in front of the camera is a
bona fide face or a spoofing attack. In practice, even some
simple methods can pass the security system. There are four
common types of flat face spoofing attacks: (i) using a
printed photo, (ii) displaying a photo by using high-defini-
tion (HD) screen, (iii) warped print attacks, and (iv) display-
ing a video using an HD screen. A more challenging type of
attack, which is the three-dimensional (3-D) facial mask
attack,2 has been raised recently. All these attacks can pro-
vide facial information from which the system can get a valid
recognition result. For this reason, a technical approach for
the defense against spoofing attacks is necessary for a face
recognition security system. Liveness detection aims to dis-
tinguish the testing face of a bona fide person from a spoof-
ing attack.

Past research in this area can be classified into three
approaches—the systems with extra devices, 2-D informa-
tion methods, and 3-D information methods. Extra device
approaches have been used in industries, which use infrared
sensors3 or an extra camera.4 Two-dimensional (2-D) image-
based methods have relatively low computational cost and
can be embedded in portable devices. The 2-D image-
based methods can be further separated into three main
categories5 based on the types of liveness indicator they
used: motion analysis,6 texture analysis,7 and life sign detec-
tion. As the definition and color range of screens becomes
higher and wider, it is more difficult to detect the texture dif-
ference between a real object and a screen image. In addition,
for the motion analysis and life sign detection methods,
the system cannot perform well when the spoofing attack is
a video sequence. In a video, the motion of a face is the same
as that of the real case and also gives the same life sign, such
as photoplethysmography (PPG) signal,8 lips movements, or
eye blinking.9

The third type of face liveness detection is based on the
3-D facial information. It is easy to counterfeit the 2-D facial
information; however, the depth information is quite hard to
be counterfeited. Methods that obtain the depth information
can be varied in a number of ways. Some attempts try to cap-
ture the face through different directions to manifest the 3-D
information. Wang et al.10 proposed that a real face can get
different images when the shooting direction is varied. This
method requires the user to rotate his head to get shootings
from different directions, which is inconvenient, time-
consuming, and can be fooled easily by the “video” type of
attack that contains different directions shooting the user’s
face. Other works attempt to reveal the 3-D information
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through evaluating the focusing degrees. Kim et al.11 used a
single camera with two different focusing lengths to get two
images and Raja et al.12 proposed to capture a stack of
images with different focal lengths. Using these images to
calculate, compare, and classify the real face and the facial
image from spoofing attack. The performance of this kind of
method is highly related to the distance between the camera
and testing face. When the distance is going to be large, the
performance degraded severely. Recently, light-field cameras
(LFC) have been developed. Using light-field technique is
very promising to solve face liveness detection problems
and many other problems that need 3-D information, such
as distance prediction, building modeling, object modeling,
etc. We will introduce the attempts that are based on the
light-field imaging after the brief introduction of the LFC
in the next section.

LFC can provide depth information. We propose that this
extra information can be well utilized by the convolutional
neural networks (CNNs) to get better classification results
for flat face spoofing attack. Because of this reason, we
attempt to introduce CNNs into light-field-based liveness
detection context. CNNs have recently got a great success
in image or video classification, recognition, and retrieval
since 2012.13–17 At that year, Krizhevsky et al.13 started an
era in machine learning and CNNs, by activating a signifi-
cant progress of the image recognition accuracy using CNNs.
Almost every year after 2012, the score of ImageNet,18

which has become the standard benchmark for large-scale
object recognition in the past 7 years, has been improved
a lot by CNNs-based method. Liveness detection also can
be considered as an image classification problem. However,
the difficulty of liveness detection is that all classes only
have a slight difference, and for the light-field data, the data
structure is not suitable for the CNNs model.

In this paper, we proposed two possible ways to convert
the raw light-field data of the eye area into the type that is

suitable for the conventional CNNs model. A conventional
CNNs model was trained and used as the feature extraction
and the classifier. In addition, we built a light-field face
image database that includes the real face and three different
types of the spoofing attack. All images in this database were
taken by an LFC. The proposed system can get better per-
formance on our database than the conventional image-based
method and the existing light-field-based face liveness detec-
tion methods.

The rest of the paper is organized as follows: the related
work is introduced in Sec. 2, which contains the light-
field imaging principle, former light-field-based work, and
the CNNs. Section 3 describes our proposed method.
Section 4 describes the detail of the database that we have
built, experimental setup, and the performance evaluation.
Section 5 concludes this work.

2 Related Work

2.1 Light-Field Camera
The traditional imaging system [Fig. 1(a)] only records the
2-D information of the real-world scene by projecting it into
a 2-D image sensor, which loses the object’s depth informa-
tion. To overcome this limitation, light-field imaging systems
aim to collect both the total amount of light at each point on
the photosensor and the amount of light traveling along each
ray that intersects the sensor. To realize this, a lenslet-based
light-field imaging system has been proposed by Adelson
and Wang19 and well implemented into a hand-held camera
by Ng et al.20 Figure 1(b) is a simple illustration of the
microlens-based imaging system. An array of microlenses
is placed at the image plane of the camera main lens. The
image sensor is positioned in the focal plane of the microlens
array. The lights come from the points on the plane of focus
[the red color in Fig. 1(a)] and converge to a point on the
image sensor in a traditional imaging system; however, in

Fig. 1 The basic imaging principle comparison between (a) the traditional image system and (b) the light
field image system.
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a light-field imaging system, the microlenses at those points
separate these light rays based on their directions [the red
color in Fig. 1(b)]. The different part of the sensor will
receive the light ray from different directions. Through this
way, the focal plane can be changed after exposure and the
depth information can be obtained from it.

2.2 Light Field-Based Liveness Detection
Sepas-Moghaddam et al.21 gave a thorough review of the
light-field-based face liveness detection recently, and follow-
ing their work, we can classify the existing methods into two
categories.

Approaches in the first category utilized the pixel inten-
sity variance of different focus images. One important char-
acteristic of the light-field imaging is that its focal length can
be changed after one single shooting. Based on this reason,
for the real face, the image may change a lot because the
points on nose, eyes, or ears have a different distance to
the camera. For example, if the focus area locates on the
nose, the ears will become blurry. If the focus area moves
to the left ear, the nose will become blurry. On the contrary,
for the printed spoofing attack face or high-definition screen
displayed spoofing attack, different parts of a face are on one
plane. Wherever the focus area is located, the image should
stay unchanged. Raghavendra et al.22 have tried a lot of dif-
ferent methods based on this phenomenon to distinguish the
bona fide face and spoofing attack face. They found that the
Tenengrad variance can well reveal the difference between
images with different focus areas. Ji et al.23 proposed light
field histogram of gradient (LFHOG) as the feature extracted
from the light-field imaging data. LFHOG contains one more
direction than the conventional HOG, which is applied to the
depth direction. The multifocus image-based methods highly
depend on the quality of the multifocus image. If the aperture
parameter of the camera is small, the DoF should be very
large. In this case, all the face area is in the DoF, which
means wherever the focus area located, the image will not
change a lot.

Approaches in the second category utilized the subaper-
ture image of a light-field image data. The subaperture image
is also the characteristic of the LFC. Because of the special
structure of the LFC, the pixels on the photosensor are
assigned to each microlens and form a small image,
which is considered as the subaperture image.21 Figure 2
is an example of the subaperture image. The number of
pixels in one subaperture image relies on the number of

the microlenses in the LFC. Kim et al.24 concluded that
the microlens image around the chin of the human face can
distinguish the fake face and the real face, because, normally,
the chin is close to the background, which leads to a large
distance changing occurs in this area. This is the reason
that this area has been chosen. However, this method is
not robust to the complex background and the performance
may decrease a lot when the subject’s hair is too long to see
their chin. Moreover, when the color of the background is
similar to the face, the characteristic of the subaperture
image in the chin area cannot significantly separate the real
and the fake ones.

3 Proposed Liveness Detection method
The liveness detection is used as the pretest of the human
face recognition-based security system, which aims to distin-
guish the fake face and the real face in front of the camera.
Furthermore, the proposed system can also obtain the good
ability on classifying the type of spoofing attack. Because of
the imaging principle of the LFC, the raw data is a microlens
image array after decoding, as shown in Fig. 2. The decoded
data structure is a five-dimensional (5-D) data ðu; v; x; y; cÞ,
where c represents the color channels, ðx; yÞ is the pixel loca-
tion, and ðu; vÞ is the location in a microlens image that was
highlighted in Fig. 2(c). We use the open source toolbox—
light-field toolbox for MATLAB25 to decode the raw data
generated by the LFC. Based on this data structure and out-
put, we design our proposed liveness detection method with
the main pipeline shown in Fig. 3. First, the facial area will
be detected on the plain image ðu0; v0; x; y; cÞ generated
from the 5-D data. ðu0; v0Þ is the center location of a single
subaperture image. This plain image has 3-D data structure
that can be applied to the Viola et al.26 face detection method
directly. We used the OpenCV toolbox to implement this
Viola–Jones face detection method. In addition, we also
use the OpenCV toolbox to detect the eye area on each

Fig. 2 An example of the light-field microlens images (before demosaicing) and the zoom in detail of
the subaperture images.

Fig. 3 The flow chart of the proposed liveness detection system.
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detected face image to ensure that the detection result is rea-
sonable. Both eye areas must be included in the face area.
Second, we proposed two types of features—microlens
image and ray difference image—to distinguish the real
face and the spoofing attack face. Third, we propose to
use CNNs to further extract the features and give the final
detection result: real or spoofing attack in liveness detection
or the type of attack in the spoofing attack classification.

3.1 Microlens Images
The size of the ðu; vÞ domain that is generated by the Lytro
Illum LFC is 15 × 15, which means every pixel in the plain
image is a 15 × 15-pixel subaperture image [Fig. 4(c)]. Kim
et al.24 found that if the depth changed in an area, like the
chin area of the face, the microlens image in that area should
give an inhomogeneous pattern. For the real face, the depth
always changes because the human face has irregular 3-D
shape, but for the spoofing attack, normally it is either a
2-D image (printed attack or display attack) whose depth
does not change too much or a regular 3-D image (wrapped
photo attack) whose depth changes smoothly. The shape of
the eyes and eye socket is complex and not easy to manipu-
late. A relatively large distance change usually appears
between the upper eyelid and the eyeball. The pupil and
sclera also have a slight distance difference and the color
change is clear. All these characteristics only appear in
the real case. The common ways of spoofing attack can
only manipulate the color of eye area without any depth
information. Based on this analysis, we designed an algo-
rithm to build the microlens image that can maintain the pat-
tern of the subaperture image and whose data structure (3-D)
is suitable for the conventional CNNs.

Figure 4 shows the pipeline of the microlens image gen-
eration. The plain eye area image [Fig. 4(a)] is generated
from the plain image ðu0; v0; x; y; cÞ, which selects the center
pixel ðu0; v0Þ of each subaperture image from the raw 5-D
light-field data. Here, x and y are in the range of ½1; H� and
½1;W�, where “H” and “W” are the height and width of the

original image, respectively. We applied the V − J algorithm
in OpenCV toolbox to detect the eye area ðu0; v0; x 0; y 0; cÞ.
x 0 and y 0 represent the location of this eye area and set the
eye area a fixed size: 50 × 50-pixel. We found that the central
area of each subaperture image, which contains the most key
spatial information at that location in ðx; yÞ domains, can
already well maintain its pattern. Moreover, if we only con-
sider the central area, the computational complexity can be
reduced a lot. We chose to select the central 5 × 5-pixel
area of each subaperture image to build the microlens
image. At each location (ðx 0

i ; y 0
i Þ), the area {ðu 0; v 0Þ∶u 0 ∈

½u0 − 2; u0 þ 2�, v 0 ∈ ½v0 − 2; v0 þ 2�g has been selected.
The generated image ðx 00; y 00; cÞ is a traditional plain
image in which x 00 ¼ x 0 × 5þ u 0 and y 00 ¼ y 0 × 5þ v 0,
which is suitable for the input of the conventional CNNs.
The enlarged small patch in Fig. 4(b) can show the clear
inhomogeneous pattern at the area between the eyelid and
the eyeball and it also can be found between the pupil
and the sclera.

3.2 Ray Difference Images
The second approach is named as the ray difference images.
Every single pixel in a microlens image is considered as
a direction of the light ray and also related to the focus
plane.19 The plain image that generated from the different
position at a subaperture domain can be considered as the
image is taken from the different focal lengths. For a 3-D
object, such as the real face, the depth information of
each point should be different, which leads to the different
generated images. Following this principle, we designed the
second type of feature. Figure 5 shows the basic pipeline of
this approach. After the eye area has been detected in the
same way as the microlens image, the location of the eye
area, represented by the ðx 0; y 0Þ, has been located. In the
next step, the #1 to #4 in Fig. 5(b) and the #0 in Fig. 5(a)
are generated by selecting different points on every subaper-
ture images. The point #0 is the center point of the subaper-
ture image and the other four points are the points that have

Fig. 4 Microlens image-based feature building. (a) An example of the detected eye area from a plain
image and an enlarged small patch for illustration, (b) the generated microlens image and its enlarged
small patch, and (c) the detail of the selected region in a subaperture image as an example.
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3-pixel distance from the central point in four different direc-
tions [Fig. 5(a)]. To reveal the difference of the generated
image in Fig. 5(b), we designed to use those images to sub-
tract the #0 image. Figure 5(d) shows the difference between
those images and the central image. The area around the eye-
lid, which has depth change, has the largest difference—the
lighter color in Fig. 5(d). This is an alternative way to empha-
size the depth information using light-field imaging raw data.
Finally, we concatenate those “difference” images to gener-
ate a single image as the input of the CNNs model.

3.3 Structure of Convolutional Neural Networks
The deep neural network we proposed contains four 2-D
convolutional layers, two max-pooling layers, and two
fully connected layers. Four convolutional layers contain
64, 128, 256, and 256 3 × 3 kernels, respectively. All the

convolutional layers are activated by the ReLU function.
The number of neuron of the fully connected layers is
256 and 128, respectively. One dropout with 50% keep prob-
ability is added between these two fully connected layers to
avoid the overfitting during the training. The number of neu-
rons at the final output layer is determined by the number of
classes—two classes for liveness detection (real/fake) and
four classes for spoofing attack classification (types of
faces). The activation function used for the last layer is “soft-
max” [Eq. (1)], where xðiÞ and ŷðiÞ are the input features and
the predicted probability of the i’th training sample, respec-
tively; “j” is the class index of this label; and θj. represents
the trainable weights corresponding to class “j”. The loss
function is the cross-entropy function [Eq. (2)]. “ŷn” is the
predicted probability of the n’th samples. yn represents the
ground truth class label of the current sample. We chose
the “Adam”27 with the default settings as the optimizer.

Fig. 5 Ray difference image based feature building: (a) the plain image generated from the central
point of every subaperture images and the point selection on a subaperture image, (b) the plain images
generated from the #1 to #4 points, (c) the ðu0; v0; x 0; y 0; cÞ images, (d) the error maps between those
generated images, and (e) concatenating all those error maps.

Fig. 6 Structure of the CNNs we used to further extract features and classify the different types of face.
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Figure 6 is an illustration of the deep neural network
structure:

EQ-TARGET;temp:intralink-;e001;63;730p½ŷðiÞ ¼ jjxðiÞ; θ� ¼ eθ
T
j x

ðiÞ

P
k
l¼1 e

θTl x
ðiÞ ; (1)

EQ-TARGET;temp:intralink-;e002;63;681LðθÞ ¼ −
1

N

XN

n¼1

½yn log ŷn þ ð1 − ynÞ logð1 − ŷnÞ�: (2)

4 Experimental Setup and the Results
To evaluate the performance of the proposed method, we
build our own database with the human face images using
Lytro ILLUM camera. As Lytro light-field cameras are no
longer produced, Raytrix LFC can be an alternative for
future research. This section introduces the detail about
the database, the experimental settings, and the performance
evaluation.

4.1 Real and Spoofing Attack Face Database
Construction

This work mainly focuses on revealing the inherent charac-
teristics of the LFC that can be used to separate the spoofing
attack and real face in face recognition-based system. Our
database contains 46 different people’s faces with a homo-
geneous background. Each subject’s photo is taken with
different expressions to expand the size of the database.
We design three different types of spoofing attacks—high-
definition printed photo, warped printed photo, and a
high-definition screen displayed photo. Photographs were
taken at Chu Hai College of Higher Education over a period
of 3 months. As all samples are volunteers and collected in
college, 90% of the samples are young people whose age is
between 20 and 29 years old. The gender ratio is around 1:1.
The number of samples in real class and three different
spoofing attack classes are 328, 199, 198, and 199,
respectively.

The bona fide samples are captured with the homo-
geneous background. The subjects sit in a chair with a
fixed height in front of the camera at 0.9 m. The lighting,

Fig. 7 Illustrations of database collection: (a) real face, (b) printed photo, (c) warped photo, and (d) screen
displayed photo.

Fig. 8 Examples of artifact photo database which are collected by Lytro ILLUM camera and the face area
is detected by Viola–Jones algorithm. (a) Original, (b) printed photo attack, (c) warped photo attack, and
(d) screen displayed attack.
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exposure, focal length, and other photography parameters are
controlled. For spoofing attack dataset building (Fig. 7), we
design three common types of the spoofing attack. Printed
photo attack is very easy to realize and the 2-D facial infor-
mation can be well reproduced by the printer machine.
Warped printed photo attack contains depth information.
The distance between different points of the warped face
and the camera may be different. The HD screen displayed
attack can represent two situations—photo or video is dis-
played. For the video based spoofing attack, many popular
2-D methods, such as motion based or live sign based,
cannot perform well. Because the video can reproduce not
only the motion of a human face in the real case but the
life sign of a human being. The attack photo is printed by
Fuji Xerox ApeosPort-V C7775 printer, which is colorful,
high quality, and displayed by Dell P2214H 1920 × 1080
60-Hz screen. The printed and displayed photos are the
original all-in-focus photos. Figure 8 shows the image
examples of the database.28

4.2 Experimental Settings and Results
This part presents the experimental protocols that include
the comparison methods, data structure, the data augmenta-
tion strategy, and the evaluation metrics. The Raghavendra
et al.’s method22 is considered as the baseline method.
Two other well-developed 2-D methods (LBP29 and Shearlet
transform30) are also provided as the comparison methods.
LBP is a well-known feature extraction, which is designed
for representing the texture feature of the image.
Reference 30 uses Shearlet transform as the feature extrac-
tion method and a fully connected neural network is used as
the classifier. For the LBP-based methods, we design two
types of inputs that are face and eye. The original design
of LBP-based method uses the face image as input data,
and as described in the previous sections, the eye area is
worth to try as input data. The classifier of the LBP-based
method is SVM. Because the eye area in our dataset is
50 × 50 pixel, which is too small to apply the Shearlet trans-
form, we only implement this method on the face image. We
also apply the conventional 2-D eye image extracted from
our database as the input data on the same CNNs architecture
to evaluate the effectiveness of the extra information intro-
duced by the LFC. All experiments are implemented on the
Linux Ubuntu 14.04 platform with python 2.7 language
except the MATLAB toolbox to decode the light-field
raw data. The CNNs is implemented on the tensorflow31

platform.

About 250 × 250 × 3 for microlens image and 100 × 100
for ray difference image are the dimensions of the CNNs’
input and of the eye area is around 50 × 50 pixels, so we
cropped each eye detection result to 50 × 50 pixels. Thus,
for the microlens image, the dimension of CNNs’ input is
250 × 250 × 3, where 3 is the RGB three-color channels.
The final ray difference image that was inputted to the
CNN model obtains the 100 × 100 × 1 dimension as it is
stitched by four 50 × 50-pixels ray difference image. For
LBP algorithm,29 block-based multiscale LBP is used and
both the face image and eye image are used as input. For
the SBFD algorithm,30 the Shearlet transform is applied
on each 256 × 256-pixels grayscale face image. The input
image is decomposed into four scales (exclude approxima-
tion component) and the direction number for each scale is 6.
The pooling block size is 64 and the final SBFD length is
384. The classifier settings and training protocol of this
method are the same as the original paper.30 For all data
driven methods, such as the proposed method, Litong’s
method,30 and the SVM + LBP-based method, we randomly
split the database into 80% samples for training and 20%
samples for testing. In addition, the training set is further
divided into 80% for training and 20% for validation. We
found that the model is converged at around 50 epochs
when the batch size is set to 32. Figure 9 shows the training
process.

We designed a way to augment the data scale. We only
applied the “shifting” on the decoded raw data because
other common types of data augmentation on the conven-
tional image or for recognition task are not suitable for
the decoded raw light-field data and the liveness detection
task. For example, changing the luminance value on the
raw light-field data, such as adding salt and pepper or
Gaussian noise and enlarging the average luminance value
by multiplying a scale value, may totally change the charac-
teristic of the decoded data. Moreover, the rotation transla-
tion matrix cannot be applied to both the raw data and the
decoded data directly. To keep the data unchanged as much
as possible, we only shifted the bounding box of the face or
eye to generate the samples. The direction and the shift scale
(%) are randomly selected in the range of [0, 360 deg] and
[0, 10]. We ran the shifting operation 10 times to enlarge the
scale of the samples 10 times. In addition, as the features we
designed are based on the single eye, we consider two eyes
from one subject as two samples with the same label. This
should further enlarge the number of the samples twice.

We used the standard evaluation criteria to reveal and
compare the performance of these methods. For liveness

Fig. 9 Illustration of the training process in terms of the loss and the accuracy: (a) the changes of the loss
value for the liveness detection task, (b) the changes of the accuracy value for the liveness detection task,
(c) the changes of the loss value for the spoofing attack classification task, and (d) the changes of
the accuracy value for the spoofing attack classification task.
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detection, we followed the ISO/IEC WD 30107-3,32 which is
subject to three types of errors: Bona Fide presentation clas-
sification error rate (BPCER), the attack presentation classi-
fication error rate (APCER), and the average classification
error (ACER). BPCER represents the proportion of the
error of considering the true face as the spoofing attack;
APCER represents the proportion of the error of considering
the spoofing attack as a true face; and the ACER is the aver-
age value of the BPCER and the APCER. We chose the ROC
curve to reveal the sensitivity of a liveness detection classi-
fier, in which contains the false positive rate (APCER) as the
x-axis and the true positive rate (one minus BPCER) as the y-
axis. The curve that is closer to the upper left corner is better
performance. For the spoofing attack classification, we use
mean average precision (mAP)33, which is the most popular
parameter in multiclassification to evaluate the system
property.

4.2.1 Evaluation of liveness detection

The experimental results of liveness detection task are
presented in this subsection. Table 1 shows the BPCER,
APCER, and the ACER of each method. Figure 10 is the
ROC curve of each method. For LBP-based methods,
using the eye area image leads to better performance than
using face image. This proves the previous analysis,
which points out using the eye area is the better choice of
feature extraction for liveness detection task than face
area. Raghavendra’s method cannot get good results from
our database. This method focuses on the difference between
the photos with different focal planes. We found that the LFC
cannot set a very large aperture to get a narrow depth of field.
As the depth of a human face is small compared with
the depth of field, the difference between the images with
the different focal point cannot be well revealed. “Litong”
method performs lower ACER than other methods except
for the proposed method. This result is the same in the origi-
nal paper. The Shearlet transform can extract good features
and the deep fully connected neural network takes advantage
of these features to well classify the real and fake face.
However, this method is not an end-to-end training; useful
features may be ignored by the Shearlet transform. The
proposed microlens-based methods outperform the previous
methods. Especially, from the ACER value, both the

proposed microlens-based and ray difference-based method
can get much lower error rate than others. Moreover, we can
find that the designed features introduced from the LFC can
improve the performance of liveness detection by comparing
with the case that using the conventional 2-D eye image as
the input of the CNNs model (“ConvCamera” in Table 1) and
the two proposed methods. The ROC curve in Fig. 10 also
can show that the curve of two proposed methods is closer to
the left upper corner than other methods, which indicates
that the proposed methods can accept the real face with
high accuracy when the accuracy for fake face rejection is
also high.

4.2.2 Evaluation of spoofing attack classification

This subsection provides the results of spoofing attack clas-
sification. The spoofing attack classification aims to recog-
nize the type of spoofing attack or the real face, which is
useful for data collection for further security system design
in the future. Table 2 shows that the proposed method can
well recognize the different types of the faces by comparing
the precision of each type of spoofing attack. The “LBP-eye”
method performs the lowest mAP, which is not the same in
the liveness detection task. The spoofing attack classification
is a more challenging task that needs more information to

Table 1 Experimental results for liveness detection task (the bold
values are the best performance).

Method BPCER APCER ACER

Raghavendra 0.294 0.366 0.330

Litong 0.071 0.090 0.080

LBP-eye 0.321 0.127 0.224

LBP-face 0.378 0.213 0.296

ConvCamera 0.119 0.078 0.099

Microlens 0.033 0.023 0.028

Raydiff 0.066 0.023 0.045

Fig. 10 ROC curve for different liveness detection methods.

Table 2 Average precision for spoofing attack classification (the bold
values are the best performance).

Method Real Type1 Type2 Type3 mAP

Raghavendra 0.556 0.6 1 0.527 0.671

Litong 0.767 0.709 0.75 0.88 0.777

LBP-eye 0.604 0.357 0.85 0.7 0.628

LBP-face 0.718 0.563 0.641 0.938 0.715

ConvCamera 0.919 0.293 0.905 0.951 0.767

Microlens 0.908 0.966 0.903 1 0.944

Raydiff 0.868 0.722 0.808 0.675 0.768
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classify the classes. The conventional 2-D image cannot well
provide this information. Moreover, the high-quality printed
photo can reproduce the face image very well, so the texture
analysis-based methods, such as LBP base method, cannot
perform well. The focus plane analysis method,22 named
“Raghavendra” in Table 2, can provide the accurate result
for type 2 attack as this type attack has the depth changing
that is the same with the real face; however, it cannot handle
the other types of attacks very well. The “ConvCamera” has
good performance for all types of attacks except the type 1
attack. The proposed microlens-based method still can get
the highest mAP value. Although the precision of each
class is not the highest, all of them are close to the highest
value. The microlens image can well provide the discrimina-
tive information of the different classes and the CNNs model
can utilize it well to get good performance.

5 Conclusion
This paper introduced a CNNs-based model as a classifier for
LFC-based facial liveness detection. We designed two differ-
ent features from the raw data of the light-field image:
the microlens image and the ray difference image, as the
raw light-field image data is not suitable for the existing
CNNs model. Furthermore, we build a light-field image data-
base for facial liveness detection. The experimental results
show that our designed method—microlens method and
CNNs can get lower ACER for the liveness detection
(0.028 ACER) and higher precision for the spoofing attack
classification (0.944 mAP) comparing with other current
methods. Introducing CNNs in liveness detection, which
is highly related to face recognition-based security access
system, is valuable and promising to make liveness detection
into the real product. The 3-D facial mask or mannequin
attack has been raised, which can well manipulate the 3-D
information of the whole face. The proposed method,
which concentrates on the eye area, can be implemented
to the iris liveness detection to further improve the robustness
of the detection system in the future.
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