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Conventionally, classifiers designed for face liveness detection are trained on real-world images, where
real-face images and corresponding face presentation attacks (PA) are very much overlapped.
However, a little research has been carried out in utilization of the combination of real-world face images
and face images generated by deep convolutional neural networks (CNN) for face liveness detection. In
this paper, we evaluate the adaptive fusion of convolutional-features learned by convolutional layers
from real-world face images and deep CNN generated face images for face liveness detection.
Additionally, we propose an adaptive convolutional-features fusion layer that adaptively balance the
fusion of convolutional-features of real-world face images and face images generated by deep CNN during
training. Our extensive experiments on the state-of-the-art face anti-spoofing databases, i.e., CASIA,
OULU and Replay-Attack face anti-spoofing databases with both intra-database and cross-database sce-
narios indicate promising performance of the proposed method on face liveness detection compared to
state-of-the-art methods.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

Face recognition utilizing state-of-the-art feature learning algo-
rithms [1–8] have gained remarkable accuracy in recent years.
However, the security of face recognition based systems has been
a major concern particularly in face biometric based user authen-
tication and security applications. While face recognition based
systems can classify different users based on their facial appear-
ance with remarkable accuracy; however, face recognition based
systems are unable to classify whether a given face represents a
genuine user’s face also known as live face, or an imposter is
impersonating as a genuine user by presenting a fake face also
known as spoof face of a genuine user in order to get an illegal
access to the genuine user’s assets. Thus, face liveness detection
has been an indispensable and key design requirement in modern
face recognition based systems used for access control.

Face liveness detection or face anti-spoofing algorithms and
systems that deal mainly with the detection of face spoofing
attacks are capable of efficiently classifying face presentation
attacks (PAs) that are captured under the similar conditions as
PA samples that the face liveness detection system is trained on.
However, these face liveness detection algorithms and systems
have low performance in unconstrained or cross-database face
liveness detection scenarios [9]. As a result, the realization of low
cost and reliable face liveness detection system is still an open
research issue.

In recent years, various algorithmic development for face liveness
detection systems have been reported. These developments can be
broadly classified into two domains: fixed features based face anti-
spoofing systems and deep features based face anti-spoofing sys-
tems [10]. Fixed features based face anti-spoofing systems exploit
hand-crafted features to perform classification between live face
and PA. On the other hand, deep features based face anti-spoofing
systems utilize deep neural networks, such as convolutional neural
networks (CNN), to classify a live face and PA [11]. Since, features
learned by deep neural networks are dynamic, they are currently
the most preferred choice for most face anti-spoofing systems [11–
13]. However, most of these studies either utilized a transfer learning
approach or trained CNN networks with binary supervision. As a
result, the performance of these systems in general degrades in
unconstrained face anti-spoofing scenarios.

Conventional face liveness detection systems are trained on
real-world live face images and their corresponding PA in existing
color spaces, such as RGB, YcbCr and HSV and their combination
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[14–16]. However, live face images and corresponding PA are very
much overlapped (because of the constraints imposed during color
image generation) in these existing color spaces. Therefore, it is
still an open research problem to find a color space or combination
of color spaces which can be best for face liveness detection in gen-
eral. Additionally, the problem of face liveness detection has been
studied as a binary-class classification problem. However, a binary
classification approach to face liveness detection is unable to
explain the latent capabilities of the classification model, like
CNN, in classifying a real face and a PA. Thus, when an extra super-
vision or additional information is available to the face liveness
detection classification model, the decision regarding the classifi-
cation of a face image being considered as live or PA can be
explained better. Further, the CNN models with additional level
of supervision have been shown to be effective for face liveness
detection in general [17].

Recently, it has been shown that the images generated by deep
neural networks like auto-encoder and generative adversarial net-
works (GAN) do not consider the constraints that are imposed dur-
ing real-world image generation [18]. Additionally, the work in
[19] proposed to supervise a CNN model for PA detection by learn-
ing a color generator that transform the existing color space to a
learned color space. By training a CNN model in the learned color
space, the authors achieved better performance than using RGB,
HSV and YCbCr color space for face liveness detection in intra-
database scenarios. While these results are encouraging for face
liveness detection; a robust and reliable face liveness detection
system that can perform well in unconstrained environment and
that can effectively detect unknown PA in general are still open
research problems [20].

To this end, we propose to exploit the adaptive fusion of convo-
lutional features of real-world face images and deep CNN based
auto-encoder generated (DNG) face images for face liveness detec-
tion as shown in Fig. 1. Particularly, we utilize the adaptive dispar-
ity and blending between the convolutional features of real-world
face images and DNG face images learned by convolutional layers
with shared weights in CNN for face liveness detection. As depicted
in Fig. 1, rather than using conventional fusion, we propose to con-
struct a special layer called adaptive convolutional-features fusion
layer, in the CNN, that adaptively learn to weight the disparity and
blending between the convolutional features of real-world face
images and DNG face images. The layers in CNN following the pro-
Fig. 1. Proposed approach for face liveness detection. The original face image I and corre
weights, followed by adaptive convolutional-features fusion layer that adaptively weigh
posed adaptive convolutional-features fusion layer are supervised
by the adaptive fusion of convolutional features of real-world face
images and DNG face images for face liveness detection. Our exten-
sive experimental analyses indicate that the proposed supervision
improves the performance of face liveness detection.

The main contribution of this paper can be summarized as
follows:

� We utilize a deep CNN network with an adaptive convolutional-
feature fusion layer that perform the weighted fusion between
convolutional features learned by the convolutional layers from
real-world face images and DNG face images.

� We evaluate the choice of adaptive kernel window for finding
suitable weights matrix for fusing convolutional features of
real-world face images and DNG face images for face liveness
detection. Additionally, we also evaluate the effect of weighted
blending and disparity (with different kernel window), of real-
world face images and DNG face images, on face liveness detec-
tion performance.

� We provide detail performance analyses of the proposed system
on face anti-spoofing problem in both intra-database and cross-
database scenarios. Furthermore, we also discuss the placement
of adaptive convolutional-feature fusion layer in a CNN network
and its effects in general on face liveness detection
performance.

The rest of this paper has been organized as follow: In Section 2
we review the state-of-the-art works done in face liveness detec-
tion. In Section 3, we provide the methodology for the proposed
approach for face liveness detection. In Section 4, we provide
experimental results and discussions. Finally, we concluded the
paper with conclusion and future work in Section 5.

2. Literature review

The recent success of deep neural networks in face anti-
spoofing applications has motivated us to group face anti-
spoofing techniques into three broad categories, i.e. fixed
features-based face anti-spoofing techniques, CNN features based
face anti-spoofing techniques and combined fixed features and
CNN features based face anti-spoofing techniques. Fixed features
based face anti-spoofing techniques utilized liveness cues in the
sponding DNG face image bI are passed through the convolution layers with shared
t the incoming convolutional-feature maps and passed it to later layers in CNN.
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face images to differentiate between a live face and PA. In these
systems, features are calculated using texture [21,22], spectral
properties [23] or motion cues in the face image [24]. However,
in CNN features based face anti-spoofing techniques, features are
dynamically calculated from the input data using back-
propagation techniques [25]. In combined fixed features based
and CNN features based face anti-spoofing techniques, a CNN net-
work is being trained on the fixed features extracted from the face
data [26]. Commonly used features in these techniques are HOG
[27] and LBP [28] and their variants. In the following paragraphs,
we review some of the state-of-the-art works done in recent years
in CNN based face anti-spoofing systems.

In [11], the authors proposed 3-layer and 2-layer CNN networks
for learning deep representation for iris, face and fingerprint spoof-
ing detection. They proposed to optimize CNN architectures and
weights that are suitable for detecting spoofing attacks in a partic-
ular modality. However, for face liveness detection in particular,
the authors only reported intra-database analysis. In a similar work
in [29], the authors proposed a 2-layer CNN network with a single
LSTM layer for face anti-spoofing application. The work reported in
[12] utilized a pre-trained AlexNet [30] for face liveness detection
with varying frame lengths and data augmentation techniques.
Similarly, the work in [13], utilized various architecture and layers
of pre-trained deep VGG network [31] with PCA for selecting useful
face signatures and an SVM classifier for classifying live face and
PA. In [32], the authors utilized a pre-trained ResNet-50 [33] with
an LSTM layer for PA detection.

Recently, the use of hand-crafted features, data-augmentation,
transfer learning and feature fusion techniques in CNN for face live-
ness detection have been researched. For example, the work in [34]
used the integration of various liveness cues like image quality, opti-
cal flow map and Shearlet based feature descriptors to train a CNN
network. In a similar work in [35], Shearlet based feature descriptors
were utilized for face liveness detection. In [36], the authors utilized
a combination of multi-level LBP (MLBP) and CNN features to train a
CNN for face liveness detection. In [37], the authors utilized the
energy contents of the pixels in a face image to produce a spatial-
temporal mapping that is used to train a CNN network for PA detec-
tion. In [38], the authors utilized combination of depth information
and deep features learned from a CNN to train an SVM classifier
for face liveness detection. In [39], the authors utilized LBP features
with a CNN to classify a live face and a PA. In [40], the authors uti-
lized the domain adaption techniques with CNN for face liveness
detection. Similarly in [41] and [42], the authors proposed a 3D-
CNN for learning spatial-temporal representation from face images
for face liveness detection. In [43], the authors utilized various
regions of face images along with depth information to detect the
liveness of the face. Similarly in [17], the authors utilized a CNN
for learning depth feature maps and an RNN network for estimating
the rPPG signal to discriminate between a live face and a fake face. In
[44], the authors used deep dictionary learning approach to detect
3D silicon mask based face attacks.

While these methods were all based on face liveness detection
in existing color spaces; recently in [19], the authors proposed to
learn a generator for transforming the existing color space into a
new learned color like space. Further, they used triplet loss to
supervise a three Siamese CNN architectures for face liveness
detection. However, three CNN architectures might not be efficient,
particularly in mobile applications.

3. Methodology

In this section, we first analyze the DNG face images generated
by deep CNN auto-encoder followed by our proposed pipeline, as
shown in Fig. 1, of utilizing a combination of these DNG face
images and real-world face images for face liveness detection.
3.1. Evalution of real images and DNG images

Let the real-world face image is represented by I, and a deep
CNN auto-encoder is represented by M. Then, the resultant DNG

face image bI and the corresponding residual Res can be defined
by using Eq. (1).

bI ¼ M � Ið Þ þ Res ð1Þ
We utilize the deep CNN auto-encoder defined in [45] for the

proposed work. However compared to [45], we train the auto-
encoder with only RGB face images and mean square error loss
as opposed to a combination of RGB and HSV face images with l1
loss. This is done in order to examine the RGB color space of both
real-world face images and DNG face images.

Further, the real-world images andDNG images possess disparities
in each R, G and B components. This is because the real-world images
are captured, decomposed and digitized from the real world, whereas
DNG images are produced from the auto-encoder like structures that
do not consider such constraints [18]. Therefore, the auto-encoder
provide amapping of the real-world color space into a generated color
space [19].Wefirst examine the disparities in the color space between

the original face image I and the DNG face image bI generated by the
auto-encoder using similarity index histogram [18], followed by uti-
lizing these disparities for face liveness detection.

Let suppose the histogram of the color component c of ith

real-world face image is represented as hc
o;i, and the corresponding

histogram of color component c in generated color space, by the
auto-encoder, is represented as hc

g;i. Then the mean histograms of
all real-world face images and the corresponding auto-encoder gen-
erated DNG face images, in c color component, are represented as:

lhco
¼ 1

N

X
i
hc
o;i; c ¼ R;G;Bf g ð2Þ

lhcg
¼ 1

N

X
i
hc
g;i; c ¼ R;G;Bf g ð3Þ

The similarity index SIci for the ith histogram for each color com-
ponent of the original image and the corresponding auto-encoder
generated image is represented by the following equations.

SIci ¼
D hc

o;i;lhco

� �

D hc
o;i;lhcg

� � ð4Þ

D hp; hq
� � ¼ 1

2

X
x

hp xð Þ � hq xð Þ� �2
hp xð Þ þ hq xð Þ� ð5Þ

The D in Eq. (5) represents the chi-square distance between the
two histograms. After obtaining the similarity index SIci for each c

color component of each ith real-world face image I and the corre-

sponding auto-encoder generated DNG face image bI , we form a
similarity index histogram Pc

o and Pc
g for each color component c

of the original face images and the auto-encoder generated DNG
face images. Fig. 2 shows the similarity index histograms for live
images and corresponding PA in each original and deep CNN
auto-encoder generated R, G and B color spaces for CASIA database
[46]. As shown in the Fig. 2, there is a clear disparity between the
three-color components of RGB face images and the images gener-
ated by the auto-encoder. Further, we tested the deep CNN auto-
encoder trained on CASIA database and tested on Replay-Attack
database [47]. Fig. 3 shows the similarity index histogram for these
results. It can be seen in the Fig. 3 that the disparity among each
color component increases by a larger margin. From these results,
we conclude that the DNG face images in cross-database testing
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Fig. 2. (a) SI histogram for individual color component of live face image and corresponding auto-encoder generated image. (b) SI histogram for individual color component of
PA face image and corresponding auto-encoder generated image.
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show clear disparity (in the color components) between its original
counter parts. Further, we can utilize these disparities to supervise
a CNN for face liveness detection.

3.2. Adaptive convolutional-feature fusion layer

The aim of adaptive convolutional-feature fusion layer is to
learn suitable weights for appropriate fusion of features learned
by convolution layers from input real world face images and
DNG face images. The proposed adaptive convolutional-feature
fusion layer in the proposed work either blend the convolutional-
feature maps or compute the disparity between the
convolutional-feature maps. The blending and disparity are collec-
tively defined by the following equations.

f ¼ vx� 1� vð Þbx ð6Þ

v ¼ r wT x; bx� �� � ð7Þ
In Eq. (6), x represents the feature maps learned by convolution

layer from real-world face images, while bx represents the feature
maps learned by the same convolution layer from DNG face
images. The :½ � in Eq. (7) represents the concatenation operation,
and wT represents the weight matrix followed by sigmoid activa-
tion r for learning suitable weights from concatenated convolu-
tional feature maps of both real-world face images and DNG face
images. Thus, we provide an extra level of supervision to the later
convolution layers (following the adaptive convolutional-features
fusion layer) in the CNN to focus on the blending/disparity of the
feature maps of the preceding layers rather than the feature maps
itself. This is particularly useful for face liveness detection as we
need discriminative clues to distinguish a live face from a fake one.

The gradient of the error function E with respect to the weight
matrixwT and input x and bx can be easily computed for both blend-
ing and disparity operations by using Eqs. (8)–(10).
@E
@w

¼ @E
@f

� @f
@w

¼ df � v 1� vð Þ x� bx� � ð8Þ

@E
@x

¼ @E
@f

� @f
@x

¼ df � v 1þ xwT 1;0½ � 1� vð Þ� � ð9Þ

@E
@bx ¼ @E

@f
� @f
@bx ¼ df � 1� v 1þ bxwT 0;1½ � 1� vð Þ� �� � ð10Þ

df ¼ @E
@f in Eqs. (8)–(10) represents the error propagated back from

the following layer.

3.3. CNN architecture

The proposed CNN has been shown in Table 1. The input to the
proposed CNN is a real-world face image I and corresponding DNG

face image bI from the auto-encoder. We utilized the auto-encoder
structure proposed in [45]. As shown in Table 1, the first two con-
volutional layer share their weights followed by a fusion layer that
either blend or calculate the disparity among the feature maps of
the preceding convolutional layers. Further, to ease the flow of gra-
dient across the CNN architecture, we further map the 3 convolu-
tional layers, following the fusion layer, to output 2 feature maps
using 1� 1 convolutional layers. At the end of the CNN architec-
ture, all the feature maps from convolutional layers 4, 5, 6 and 7
are concatenated followed by global average pooling layer that
average all the feature maps and provide an output vector, which
is then fed to the fully-connected layer with 2-way soft-max acti-
vation. Since global average pooling has no parameter to learn, a
direct relationship can be established between the convolution lay-
ers and output of soft-max.

We further used a dropout of 0.2 after each max-pooling layer
and regularization factor of 0.0005 in each convolution layer
except for the adaptive convolutional-feature fusion layer. For



BGR
(a) 

BGR
(b)

Fig. 3. (a) SI histogram for individual color component of live face image and corresponding auto-encoder generated image. (b) SI histogram for individual color component of
PA face image and corresponding auto-encoder generated image.

Table 1
Configuration of proposed cnn architecture.

Layer name Kernel
size

Output
channel

Input

Conv_d1 3 � 3 16 I(u,m)
Conv_d1 3 � 3 16 Î u; mð Þ
Fusion layer – 32 [Conv_d1, Conv_d1]

CNN
Conv_1 3 � 3 32 Fusion Layer
Max-pool_1 2 � 2 32 Conv_1
Conv_2 3 � 3 64 Max-pool_1
Max-pool_2 2 � 2 64 Conv_2
Conv_3 3 � 3 128 Max-pool_2
Max-pool_3 2 � 2 128 Conv_3
Conv_4 1 � 1 2 Max-pool_3
Conv_5 1 � 1 2 Conv_1
Conv_6 1 � 1 2 Conv_2
Conv_7 1 � 1 2 Conv_3

F1 = concatenate [Conv_4, Conv_5, Conv_6, Conv_7]
Global Average Pooling – 8 F1
Fc1 10 2 Global Average Pooling
2 way soft-max
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the case of using only RGB input data, we remove the fusion layer,
and the duplicate of conv_d1.
3.4. Training

We first train the auto-encoder only on live face images for each
face anti-spoofing database. Afterwards, we use the pre-trained
auto-encoder to produce the DNG face images during training of
the rest of the CNN. We train the proposed CNN for a total of 20
epochs. The initial learning rate was set to 0.01, which is reduced
by a factor of 0.1 after 10th and 15th epoch. The batch-size was
set to 32. Before feeding the training data to the proposed CNN,
samples in the training data were randomly shuffled. The proposed
network took approximately 40 min to train on GTX 1080 GPU.
Each epoch took approximately between 120 s to 128 s depending
on the size of the input image.
4. Experiments and discussions

We first perform a comprehensive analysis of the proposed CNN
in intra-database scenarios followed by a cross-database analysis.
Further, we provide an ablation study and discussion on analyzing
the placement of fusion layer in a CNN network. For analysis of the
proposed system, we utilize three state-of-the-art face anti-
spoofing databases, CASIA-FASD [46], Replay-Attack [47] and
OULU-NPU [48]. A brief introduction of these databases is given
in the following sub-sections.

4.1. Face Anti-spoofing database

(1) CASIA-FASD

This video face anti-spoofing database contain 50 subjects with
three PA types, i.e. photo-attack, cut photo-attack and display med-
ium attack. Further, each category of PA are produced in three dif-
ferent imaging quality, i.e. low quality, normal quality, and high
qualtiy. The training set consist of 20 subjects, while the testing
set consist of 30 subjects.

(2) Idiap Replay-Attack database

This video face anti-spoofing database also contain 50 subjects
with three PA types, i.e. mobile attack, ipad attack and printed
photo attack. Further, two different illumination conditions were
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provided, i.e. controlled and adverse. The training set and develop-
ment set contain 60 real access and 300 attack videos while the
testing set contain 80 real access and 400 attack videos.

(3) OULU

This video face anti-spoofing database contain 55 subjects with
2 PA types, i.e. printed and display that are captured under two dif-
ferent illumination conditions and background scenes. The training
set and test set contain 20 subjects, while the development set
contain 15 subjects.

4.2. Evalution protocol

We evaluated the performance of the proposed system using
Half Total Error Rate (HTER), Equal Error Rate (EER), Bona Fide Pre-
sentation Classification Error Rate (BPCER), Attack Presentation
Classification Error Rate (APCER) and Average Classification Error
Rate (ACER). For intra-database evaluation, we utilized the BPCER,
APCER and their average ACER metric. For cross-database evalua-
tion, we utilized HTER value. Since HTER is threshold dependent,
the threshold computed at EER point on the development set is
used to calculate HTER on the database under consideration.

4.3. Preliminary comparison: Choice of wT and blending vs disparity

Our preliminary experiments on state-of-the-art OULU face anti-
spoofing database indicated the effectiveness of using the adaptive
convolutional-features fusion of features learned by convolution lay-
ers from real world and deep generated face images as compared to
using RGB face images alone. From Table 2, it can be noticed that the
APCER using only RGB face image data is much higher than as com-
pared to using blending/disparity of the convolutional-features
learned by RGB face image data and corresponding DNG face image
data. Fig. 4 shows the sample of real-world live face image and cor-
responding samples of real-world PA along with the feature maps
produced by convolution layer from real-world RGB face image,
and the disparity feature maps produced by the proposed fusion
layer from RGB and DNG input face images. It can be seen from
Fig. 4(c) that the proposed fusion layer focus on the most discrimina-
tive regions in the face images. We further noticed that the disparity
with a window size of 3� 3 provided better performance as com-
pared to performing blending/disparity of convolutional-features
with a higher window size.

A quick comment on the choice of using OULU-NPU database is
that, this database contains an equal proportion of samples of dif-
ferent PA and it is more challenging as compared to other state-of-
the-art face anti-spoofing databases.

4.4. Intra-database face liveness detection

For the intra-database face liveness detection analysis, we uti-
lized the BPCER, APCER and their average ACER metric. The operat-
ing threshold value for the test set was determined using the EER
point on the development set. Since, CASIA dataset has no develop-
ment set, therefore the BPCER, APCER and ACER values have been
reported at EER point.

Table 3 shows the performance of the proposed method in
intra-database face liveness detection scenarios. It can be observed
from Table 3, that the proposed method achieved the best lower
ACER of 5.72%, 0.29% and 0.30% on OULU, CASIA and Replay-
Attack databases. Additionally, from Table 3, it can be observed
that the proposed method performed better on OULU dataset as
compared to Replay-Attack and CASIA face anti-spoofing datasets.
The reason is because the OULU database has more variations and
capturing conditions and is more challenging as compared CASIA
and Replay-Attack database. Further, the intra-database analysis
only provides an upper bound on the performance of face anti-
spoofing system. Therefore, a cross-database analysis is needed
to further verify the performance in un-constrained scenarios
and to check stability of the face anti-spoofing system.

4.5. Cross-database face liveness detection

For the cross-database analysis, we trained the face anti-
spoofing system on one database and test it on the other database.
The operating threshold was determined by development set or
the testing set of the face anti-spoofing database on which the face
anti-spoofing system was trained on.

Table 4 shows the cross-database results on all three databases.
From Table 4, we can see that the proposed system trained with
OULU database achieved much better performance on Replay-
Attack with an all-time lower HTER of 9.03% and CASIA database
with an HTER of 12.81% which are consistent with the intra-
database results of Table 3. On the other hand, the proposed sys-
tem trained on CASIA database and Replay-Attack database
whether on RGB data or using convolutional-features fusion pro-
vide inconsistent results. This suggested that there is a certain bias
in these databases toward a specific attack type. Further analysis of
Replay-Attack and CASIA face anti-spoofing databases revealed the
imbalance between the attack samples in these databases. While
CASIA database utilize more printed attack, i.e. print-photo and
cut-photo,1 the Replay-Attack database is more biased toward the
screen-based attacks. On contrary, the OULU database contains an
equal number of samples of both printed attacks and display attacks.
Therefore, the proposed method trained on OULU database provide
consistent performance in both intra-database as well as cross-
database scenarios.

4.6. Ablation study on placement of fusion layer in CNN

We further investigated the placement of the fusion layer in the
CNN network. Particularly, we investigated the placement of
convolution-features fusion layer after convolution layer 1, 2, and
3. This placement effectively created Siamese convolutional layers
as shown in the Fig. 5. Table 5 shows the performance of transfer-
ring the adaptive convolutional-features fusion layer to the higher
layers in a CNN. From Table 5, it can be observed that the as we
move the adaptive convolutional-feature fusion layer to the higher
layers in a CNN, the overall performance of the proposed system
degrades. One possible reason is that the real-world input face
image features and its corresponding DNG face image features at
a lower convolution layers have more generalized and discrimina-
tive clues than at higher convolution layers. Further, the placement
of the adaptive convolutional-features fusion layer at the lower
level in CNN is more economical in terms of total number of train-
able parameters as compared to placing the adaptive
convolutional-features fusion layer at the higher layer.

4.7. Comparison with state-of-the-art method

We further compared the performance of the proposed method
with state-of-the-art face liveness detection methods in Table 6. Par-
ticularly, we compared the performance of the proposed method
with the work in [17,40,44,49–51] in cross-database scenarios on
CASIA and Replay-Attack database. As shown in Table 6, the pro-
posed method provides better performance in terms of HTER (%)
as compared to other state-of-the-art methods. On CASIA database,
we achieved a lower HTER of 25.20%, while a lower HTER of



Table 2
Performance comparison in % using different kernel windows for blending and disparity operations among convoltuional-feature maps.

Input OULU (dev) OULU (test)

BPCER APCER ACER BPCER APCER ACER

RGB 7.37 1.87 4.62 9.44 3.36 6.40
Blend 3 � 3 5.76 1.42 3.50 9.40 2.79 6.10
Blend 5 � 5 5.02 1.25 3.13 9.89 2.26 6.08
Disparity 3 � 3 4.04 1.01 2.52 9.54 1.90 5.72
Disparity 5 � 5 5.35 1.35 3.35 10.46 1.83 6.15

Live  Printed 1 Printed 2 Display 1 Display 2 

(a) 

(b) 

(c)

Fig. 4. (a) Sample of live face and corresponding PA in OULU database. (b) Feature maps output by first convolution layer in CNN with RGB face input. (c) Feature maps output
by proposed adaptive convolutional-features fusion layer after the first convolution layer in CNN with RGB and DNG face images as inputs.

Table 3
Intra-database performance in (%) on state-of-the-art face anti-spoofing databases.

Input OULU (development) OULU (test)

BPCER APCER ACER BPCER APCER ACER

RGB 5.85 1.45 3.66 10.78 2.88 6.83
Blend 5.76 1.42 3.50 9.40 2.79 6.10
Disparity 4.04 1.01 2.52 9.54 1.90 5.72

– CASIA (test)
RGB – – – 0.40 0.12 0.26
Blend – – – 0.70 0.23 0.47
Disparity 0.43 0.14 0.29

Replay-attack (development) Replay attack (test)

RGB 1.61 0.11 0.87 1.30 0.03 0.66
Blend 0.67 0.08 0.38 2.27 0.19 1.23
Disparity 2.33 0.37 1.35 0.20 0.40 0.30

Table 4
HTER in (%) for cross-database performance.

Training Set Database RGB Blend Disparity

OULU CASIA 10.95 9.29 9.03
Replay-Attack 22.70 23.31 12.81

CASIA OULU 26.80 20.10 18.73
Replay-Attack 22.96 11.33 11.26

Replay-Attack OULU 10.73 30.00 21.68
CASIA 17.95 28.23 25.20
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11.26% was achieved with Replay-Attack database. Further, it can be
noticed that the disparity between the convolutional-features of
real-world face images and DNG face images using adaptive fusion
layer provide better performance than blending between the
convolutional-features. Additionally, the HTER on CASIA and
Replay-Attack databases has been reduced to 9.03% and 12.81%,
when the proposed system was trained on OULU database and
tested on Replay-Attack and CASIA face anti-spoofing database.



Fig. 5. The transfer of fusion layer to the deeper layers. When the fusion layer is moved to the next layer, the previous layers are duplicated with shared weights but with
different inputs.

Table 5
Performance in (%) by transferring the adaptive convolutional-feature fusion layer to deeper convolutional layers.

Input OULU (dev) OULU (test)

BPCER (%) APCER (%) ACER (%) BPCER (%) APCER (%) ACER (%)

Level 1
Blend 5.76 1.42 3.50 9.40 2.79 6.10
Disparity 4.04 1.01 2.52 9.54 1.90 5.72

Level 2
Blend 6.56 1.65 4.10 10.52 2.53 6.53
Disparity 6.44 1.64 4.04 9.71 2.75 6.23

Level 3
Blend 7.68 1.94 4.78 10.89 2.90 6.89
Disparity 5.81 2.74 4.28 8.82 3.34 6.08

Table 6
Comparison of the proposed method and state-of-the-art face liveness detection
methods. HTER in (%) on cross-database scenarios.

Method *CASIA **Replay-attack

Li et al. [40] 36.0 27.4
Manjain et al. [44] 27.4 22.8
Pinto et al. [49] 50.0 34.4
Siddiqui et al. [50] 44.6 35.4
Boulkenafet et al. [51] 37.7 30.3
Liu et al. [17] 28.4 27.6
Proposed (Blend) 28.2 11.3
Proposed (Disparity) 25.2 11.3
Proposed (Blend) 9.3y 23.2y

Proposed (Disparity) 9.0y 12.8y

* Train set: Replay Attack.
** Train set: CASIA.

y Train set: OULU.
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5. Conclusion and future work

In this paper, we proposed a framework for exploiting the adap-
tive fusion of convolutional features fusion of real-world and DNG
face images for face liveness detection. Instead of using only RGB
face images, the proposed method utilized the disparities and
blending among the convolutional-feature maps of real-world face
images and DNG face images. Extensive experimental results with
state-of-the-art face anti-spoofing databases in both intra-
database and cross-database scenarios indicated that the proposed
method is effective in both intra-database and cross-database sce-
narios. We further noticed that the placement of adaptive
convolutional-feature fusion layer in the early layers of CNN boost
the overall performance of the proposed method for face liveness
detection task. Additionally, we found that the placement of adap-
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tive convolutional-feature fusion layer at the initial level in CNN
provide better performance and is more economical in terms of
network parameters as compared to placing them at higher levels.

In the proposed work, we only utilize the real-world and corre-
sponding DNG face images. However, a broader combination of
real-world face images and corresponding DNG face images gener-
ated in other feature space such as LBP, HOG and Shearlet and their
effectiveness for face liveness detection is a good direction for the
future work.
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