
1

1ICFPT07 12/11/07

High-Performance
Reconfigurable Computing

Tarek El-Ghazawi
Director, Institute for Massively Parallel Applications and Computing

Technology (IMPACT)
Co-Director, NSF Center for High-Performance Reconfigurable

Computing (CHREC)

The George Washington University

2ICFPT07 12/11/07

Acknowledgements

ARSC, AMI, Cray, DoD, HPTi, NASA, NSF/CHREC,
SGI, SRC, Star Bridge, Xtreme Data, many others

2

3ICFPT07 12/11/07

Outline

Architectures and Systems

Tools and Programming

Applications

Performance

Wrap-up

4ICFPT07 12/11/07

Reconfigurable Supercomputing (RSC)

Efficient high performance computing using
parallel and distributed systems of both
reconfigurable hardware resources and
conventional microprocessors

This tutorial establishes the current status, the
direction taken, and the potential for RSC

3

5ICFPT07 12/11/07

Top 500 Supercomputers

146430102800200713728

Cluster Platform
3000 BL460c,
Xeon 53xx
2.66GHz,
Infiniband
HP

Government Agency
Sweden5

170880117900200714240

Cluster Platform
3000 BL460c,
Xeon 53xx 3GHz,
Infiniband
HP

Computational Research
Laboratories, TATA
SONS
India

4

172032126900200714336
SGI Altix ICE
8200, Xeon quad
core 3.0 GHz
SGI

SGI/New Mexico
Computing Applications
Center (NMCAC)
United States

3

222822167300200765536
Blue Gene/P
Solution
IBM

Forschungszentrum
Juelich (FZJ)
Germany

2

5963784782002007212992
eServer Blue
Gene Solution
IBM

DOE/NNSA/LLNL
United States1

RpeakRmaxYearProcessorsComputerSiteRank

6ICFPT07 12/11/07

Reconfigurable Computers
The microchip that rewires itself

Scientific American – June 1997
0Computers that modify their

hardware circuits as they operate
are opening a new era in
computer design.

0Reconfigurable computers
architecture is based on FPGAs
(Field Programmable Gate
Arrays)

Source: [Sci97]

4

7ICFPT07 12/11/07

Execution Model for HPRCs

Fine grain computations with the RP, others with the MP

Interaction between RP and MP can be blocking or asynhronous

This scenario is replicated across the whole system and standard
HPC parallel programming paradigms used for interactions

PC

μP
RP

Piplines, Systolic Arrays, SIMD, ...

•Transfer of Control
•Input Data

•Output Data
•Transfer of Control

8ICFPT07 12/11/07

Synergism between μP and RPs

Harder

Relatively Easy

(S.W./Parallel
Programming)

Applications
Partitioning

COTS, multipurposeCOTS, multipurposeCommercial
Availability

Hardware→Data Flow

Spatial – Unfolding

parallel operations with

changeable hardware

Software→Control Flow

(von Neumann)

Temporal – reuse of

fixed hardware

Processing Style

Fine-Grain

Relatively Slow

Increasing Speed

Coarse-Grain

Very Fast

Saturating Rate

Parallelism Exploited

Clocking Rate

RP(FPGA-based)µP

5

9ICFPT07 12/11/07

Capacity Trends

Year
1985

X
ili

nx
 D

ev
ic

e
C

om
pl

ex
ity

XC2000
50 MHz
1K gates

XC4000
100 MHz

250K gates

Virtex
200 MHz
1M gates

Virtex-II
450 MHz
8M gates

Spartan
80 MHz

40K gates

Spartan-II
200 MHz

200K gates

Spartan-3
326 MHz
5M gates

19911987

XC3000
85 MHz

7.5K gates

Virtex-E
240 MHz
4M gates

XC5200
50 MHz

23K gates

1995 1998 1999 2000 2002 2003

Virtex-II Pro
450 MHz
8M gates*

2004 2006

Virtex-4
500 MHz

16M gates*

Virtex-5
550 MHz

24M gates*

Source: http://class.ece.iastate.edu/cpre583/lectures/Lect-01.ppt

10ICFPT07 12/11/07

WHAT’S NEW IN THE VIRTEX-5 FPGA FAMILY

6

11ICFPT07 12/11/07

The Design Cycle
(That we want you to avoid !)

Design and implement
a simple encryption
unit with RC5 cipher
with fixed key

Library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity RC5_core is
port(

clock, reset, encr_decr: in std_logic;
data_input: in std_logic_vector(31 downto 0);
data_output: out std_logic_vector(31 downto 0);
out_full: in std_logic;
key_input: in std_logic_vector(31 downto 0);
key_read: out std_logic;

);
end RC5_core;

Specification

HDL (Hardware
Description Language)
model

Post-synthesis simulation
Synthesis

Functional simulation

netlist

12ICFPT07 12/11/07

Timing simulation

On board testing

Implementation
(Mapping, Placing & Routing)

Downloading and Testing

The Design Cycle
(That we want you to avoid !)

7

13ICFPT07 12/11/07

General Architecture of an FPGA-Based Board

B
U

S

Processing
Element
(PE#0)

Processing
Element
(PE#1)

Processing
Element
(PE#N-1)

COMMON MEMORY / INTERCONNECT NETWORK

LOCAL
MEMORY

LOCAL
MEMORY

LOCAL
MEMORY

CLK

BUS INTERFACE
CONTROLLER

I/O CARD

14ICFPT07 12/11/07

Reconfigurable Computing Boards
(Accelerators)

Boards may have one or several interconnected
FPGA chips

Support different bus standards, e.g. PCI, PCI-X,
VME

May have direct real-time data I/O through a
daughter board

Boards may have local onboard memory (OBM)
to handle large data while avoiding the system
bus (e.g. PCI) bottleneck

8

15ICFPT07 12/11/07

Many boards per node can be supported

Host program (e.g. C) to interface user (and μP)
with board via a board API

Driver API functions may include functionalities
such as Reset, Open, Close, Set Clocks, DMA,
Read, Write, Download Configurations, Interrupt,
Readback

Reconfigurable Computing Boards
(Accelerators)

16ICFPT07 12/11/07

Some Reconfigurable Boards Vendors

ANNAPOLIS MICRO SYSTEMS, INC. (http://www.annapmicro.com)
University of Southern California -USC/ISI (http://www.east.isi.edu)
AMONTEC (http://www.amontec.com/chameleon.shtml)
XESS Corporation (http://www.xess.com)
CELOXICA (http://www.celoxica.com)
CESYS (http://www.cesys.com)
TRAQUAIR (http://www.traquair.com)
SILICON SOFTWARE: (http://www.silicon-software.com)
ALPHA DATA: (http://www.alpha-data.com)
Associated Professional Systems: (http://www.associatedpro.com)
NALLATECH: (http://www.nallatech.com)

9

17ICFPT07 12/11/07

Representative Example
Boards

From Annapolis Micro Systems (AMI)
http://www.annapmicro.com

&
Nallatech

http://www.nallatech.com

18ICFPT07 12/11/07

Source: [AMS02]

WILDFORCETM

256k x 32
dual port

RAM
Xilinx 4062XL’s

10

19ICFPT07 12/11/07

Source: [AMS02]

20ICFPT07 12/11/07

WILDSTARTM II for VME

Copyright Annapolis Micro Systems, Inc. 2002

PE 2
VIRTEXTM II

 XC2V 6000, 8000

Backplane I/O
P0

Backplane I/O
P2

DDR2
SRAM

2, 4 MB

36 DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36DDR2

SRAM
2, 4 MB

DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36

36

36

Prog
Osc

3

DDR
SDRAM
64 MB

32

88 88

PE 1
VIRTEXTM II

 XC2V 6000, 8000

I/O #1

DDR2
SRAM

2, 4 MB

36 DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36DDR2

SRAM
2, 4 MB

DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36

36

36

Prog
Osc

3

DDR
SDRAM
64 MB

32

168

PE 0
VIRTEXTM II

 XC2V 6000, 8000

I/O #0

DDR2
SRAM

2, 4 MB

36 DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36DDR2

SRAM
2, 4 MB

DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB

36

36

Prog
Osc

3

DDR
SDRAM
64 MB

32

168

172 172

36 36 3636

VME BUS

PCI
Controller

32/64 Bits 33/66 MHz

32 32 32

32 32

172

PCI to VME Bridge

Flash

Flash Flash Flash
1616 16

Master
Clock

Generator

PCLK
MCLK
ICLK

16
Differential
Single Ended

Source: [AMS02]

11

21ICFPT07 12/11/07

WILDSTAR™ II Pro

Reproduced and displayed with permission

22ICFPT07 12/11/07

WILDSTAR™ II Pro

Reproduced and displayed with permission

12

23ICFPT07 12/11/07

Nallatech's BenNUEY-PCI-4E

24ICFPT07 12/11/07

Clusters and Networks of
Reconfigurable Computers

(NORCs)

13

25ICFPT07 12/11/07

Networks of Reconfigurable
Computers (NORCs)

Expensive reconfigurable workstations can be at
times underutilized
Large problems may need to be spread over a
number of workstations
Many problems may need a high throughput
environment
So, need S/W system to remotely schedule and
monitor reconfigurable tasks, send data and bit-
streams, and collect results

26ICFPT07 12/11/07

Example : GWU/GMU Extended JMS

http://www.gwu.edu/~hpc/lsf/
http://ece.gmu.edu/lucite/

Team from GWU and GMU with DoD support

Considered extending job management systems
(JMS’s) to recognize reconfigurable computing
resources and support the needed functionalities

Evaluated many implementations of JMS’s and
selected LSF (Load Sharing Facility) for
implementation

14

27ICFPT07 12/11/07

Networked Reconfigurable Resources
Management System

28ICFPT07 12/11/07

Architecture of a typical Job Management
System

Jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

Available
Resources

Resource
Requirements

Scheduling
Policies

Job
DispatcherResource Allocation

and Job Execution

Resource Manager

15

29ICFPT07 12/11/07

LSF

LSF (Load Sharing Facility) is the product of Platform
Computing
LSF is a layer of software services on top of UNIX
and Windows NT operating systems
The LSF Suite is a set of software modules that
manage distributed computing resources and
workloads
LSF creates a single system view on a network of
heterogeneous computers so that the whole network
of computing resources can be utilized effectively
and managed easily

30ICFPT07 12/11/07

General Architecture of LSF

Subm ission host

B atch A PI

M aster host

M L IM

M B D

Execution host

SB D

C hild SB D

L IM

R E S

U ser job

LIM – Load Inform ation M anager
M LIM – M aster LIM
M BD – M aster Batch D aem on
SBD – Slave Batch D aem on
R E S – R em ote Execution Server

queue

Load
inform ation

other
hosts

other
hosts

bsub app

Subm ission host

B atch A PI

M aster host

M L IM

M B D

Execution host

SB D

C hild SB D

L IM

R E S

U ser job

LIM – Load Inform ation M anager
M LIM – M aster LIM
M BD – M aster Batch D aem on
SBD – Slave Batch D aem on
R E S – R em ote Execution Server

queue

Load
inform ation

other
hosts

other
hosts

bsub app

16

31ICFPT07 12/11/07

Extension of LSF to Reconfigurable Hardware

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RESqueue

Load
information

other
hosts

other
hosts Universal ELIM

FPGA
board

Status
of the
board

Remote
user

bsub

board independent

board
dependent
plug-in

RUser job

Board 2 driver

Local
user Board 2 API

LUser job

Board 2 API

Board
API

2

32ICFPT07 12/11/07

Linux RH7.0 – PIII

450 MHz, 512 MB RAM

Execution Host 1

Submission & Master Host

Windows XP – PIV 1.3 GHz, 256 MB RAM

GWU/GMU NORCs Testbed Used in Experiments

SLAAC-1V

FIREBIRD V1000

WILDFORCE

LINUX 2.2.5 – PII 450 MHz, 256 MB RAM

Windows 2000 – PII 400 MHz, 128 MB RAM

SLAAC-1V

Windows XP – PIV 1.3 GHz, 256 MB RAM

Execution Host 2

Execution Host 3

Execution Host 4

HPCL 2

HPCL 3

HPCL 5

HPCL 6
FIREBIRD V2000

Workloads included crypto
analysis and image
processing (edge detection)

17

33ICFPT07 12/11/07

Parallel DES Breaker
Ciphertext=0X 8CA64DE9C1B123A7 Plaintext=0X 0000000000000000

Search Space from 0X 1010100C5663702 to 10101013C9BCB00
Key found = 0X 0101010101010101

Estimated speed-up
over Pentium 4 > 500

34ICFPT07 12/11/07

Reconfigurable Computing
Clusters

18

35ICFPT07 12/11/07

Reconfigurable Beowulf Clusters

“Do-It-Yourself Supercomputers” - Science 1996
Built around:
0Pile of PCs (POP)
0Dedicated Commodity Network

LAN
Myrinet, Infiniband, …..

0Free Unix: Linux
0Free and COTS Parallel Programming and

performance Tools

COTS Hardware permits rapid development and
technology tracking
COTS reconfigurable boards as accelerators at each
node

36ICFPT07 12/11/07

Example 1: HPTi Solution
Delivered and Benchmarked

http://www.hpti.com/

Source: [HPTi, MAPLD04]

19

© HPTi, 2004 37

Delivered and Benchmarked

48 nodes
2u, back-to-back (net
1u/node)
96 FPGA’s
Annapolis Micro
Xilinx Virtex II
34 Tera-Ops
In use today
All Commodity Parts

38ICFPT07 12/11/07

Tower of Power

http://ccm.ece.vt.edu/

16-node cluster of PCs

WILDFORCE board on each PC

Myrinet network connecting all PCs

Runs ACS API (platform independent
API for the configuration and control
of multi-board systems)

Source: [ACS01]

20

39ICFPT07 12/11/07

SLAAC RRP (Research Reference Platform)

Source: [ISI 01]

Dell GXI

WILDFORCE

Dell GXI

WILDFORCE

Dell GXI

WILDSTAR

Dell GXI

SLAAC1

Dell GXI

SLAAC1

Ethernet
Intelligent

Hub
100 Mbps

Myrinet
LAN/SAN

Switch

128 Gbps

128 Gbps

128 Gbps

128 Gbps

128 Gbps
http://www.east.isi.edu/

40ICFPT07 12/11/07

Scalable Reconfigurable
Systems

21

41ICFPT07 12/11/07

Reconfigurable Supercomputers at GWU

SRC- 6

SRC- 6E

XD1

HC-36

Altix-350

Altix-4700

42ICFPT07 12/11/07

Scalable Reconfigurable Systems

Large numbers of reconfigurable processors and
microprocessors
Everything can be configured
0Functional units
0Interconnects
0Interfaces

High-level of scalability
Suitable for a wide range of applications
Everything can be reconfigured over and over at run time
(Run-Time Reconfiguration) to suite underlying applications
Can be easily programmed by application scientists, at least in
the same way of programming conventional parallel
computers

22

43ICFPT07 12/11/07

An Architectural
Classification for High-

Performance
Reconfigurable Computers

44ICFPT07 12/11/07

A Classification for High-Performance
Reconfigurable Computers (HPRCs)

HPRCs

Uniform Node
Non-Uniform Systems (UNNS)

Non-Uniform Node
Uniform Systems (NNUS)

Attached Processors
Scalable Systems

SRC 6E and
SBS HCs

SRC 6, SRC 7
and SGI RASC

Cray XD1, Cray XT4,
Linux Networx SS1200

Tarek El-Ghazawi, Esam El-Araby, Miaoqing Huang, Kris Gaj, Volodymyr Kindratenko, Duncan Buell,
"The Promise of High-Performance Reconfigurable Computing", IEEE Computer (In Press).

23

45ICFPT07 12/11/07

1. Uniform Node Non-Uniform Systems
(UNNS)

μP Subsystem RP Subsystem

…μP 1 μP N …RP 1 RP N

a. Non-Scalable (or Attached
Processor) Architecture

Examples: SRC 6E and SBS HC

46ICFPT07 12/11/07

b. Scalable System

μP Node

…μP 1 μP N

RP Node

…RP 1 RP N

RP Node

…RP 1 RP N

μP Node

…μP 1 μP N

IN and/or GSM

Examples: SRC 6, SGI Altix/RASC

1. Uniform Node Non-Uniform Systems
(UNNS)

24

47ICFPT07 12/11/07

IN and/or GSM

μP RP μP

RP

RP

μP

3 Node Architecture Options

Example: Cray XD1, XT4

μP RPμP RP

2. Non-Uniform Node Uniform Systems
(NNUS)

48ICFPT07 12/11/07

Example1: SRC Systems
http://www.srccomp.com/

Source: [SRC, MAPLD04]

25

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

49

Example1: SRC 6 SystemExample1: SRC 6 System
http://http://www.srccomp.comwww.srccomp.com//

Source: [SRC, MAPLD04]

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

50

SRC MAPSRC MAP™™ Reconfigurable ProcessorReconfigurable Processor

Source: [SRC, MAPLD04]

26

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

51

SNAP

Computer
Memory
(8 GB)

P4
(2.8GHz)

P4
(2.8GHz)

/ /22400
MB/s

MIOC

L2L2

4256 MB/s

// 4256 MB/s1064 MB/s

DDR
Interface

PCI-X

Control
FPGA

XC2V6000

2128 MB/s

On-Board Memory
(24 MB)

/4800 MB/s
(6x64 bits)

FPGA 1
XC2V6000

FPGA 2
XC2V6000

/

4800 MB/s
(6x 64 bits)

/

4800 MB/s
(6x 64 bits)

2400 MB/s
(192 bits)

/

/ /

(108 bits)

Chain
Ports 2400 MB/s

(108 bits)

/

1064 MB/s

½ MAP
Board

uP
Board

22400
MB/s

SRC Hardware ArchitectureSRC Hardware Architecture

Source: [SRC, MAPLD04]

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

52

Wide Area Wide Area
NetworkNetworkDiskDisk

Storage Area Storage Area
NetworkNetwork

Local Area Local Area
NetworkNetwork

PCIPCI--XX

MAPstationMAPstation

MAPMAP®®

μμPP

MemoryMemory

SNAPSNAP™™

GPIOGPIO
PortsPorts

SRC SRC MAPstationMAPstation™™

SRCSRC--6 uses standard external network connections6 uses standard external network connections

MAPstationMAPstation ConfigurationsConfigurations

Tower
2U

Single MAP WorkstationSingle MAP Workstation

Source: [SRC, MAPLD04]

27

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

53

Storage Area Storage Area
Network Network

Local Area Local Area
Network Network

Wide Area Wide Area
Network Network DiskDisk

CustomersCustomers’’ Existing NetworksExisting Networks

HiHi--Bar sustains 1.4 GB/s per portBar sustains 1.4 GB/s per port
Up to 256 input and 256 output portsUp to 256 input and 256 output ports
Common Memory (CM) has controller with DMA capabilityCommon Memory (CM) has controller with DMA capability
Up to 8 GB DDR SDRAM supported per CM nodeUp to 8 GB DDR SDRAM supported per CM node

PCIPCI--XXPCIPCI--XX

SRC HiSRC Hi--BarBarTMTM Based SystemsBased Systems

MAPMAP®®

SRCSRC--66

MAPMAP

μμPP

MemoryMemory

SNAPSNAP™™

μμPP

MemoryMemory

SNAPSNAP

Gig EthernetGig Ethernet
etc.etc.

Common Common
MemoryMemory

ChainingChaining
GPIOGPIO

Common Common
MemoryMemory

SRC HiSRC Hi--Bar SwitchBar Switch

Source: [SRC, MAPLD04]

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

54

Wide Area Wide Area
NetworkNetworkDiskDisk

Storage Area Storage Area
NetworkNetwork

Local Area Local Area
NetworkNetwork

SRC SRC MAPstationMAPstation™™ with Hiwith Hi--BarBar™™

MAPstation towers hold up to 3 MAP or memory nodesMAPstation towers hold up to 3 MAP or memory nodes

MAPstationMAPstation TowerTowerMAPstation with 2 MAPs and Common MemoryMAPstation with 2 MAPs and Common Memory

PCIPCI--X/EXPX/EXP

μμPP

MemoryMemory

SNAPSNAP™™

MAPMAP®®

GPIOGPIO
PortsPorts

SRC HiSRC Hi--BarBar™™ SwitchSwitch

MEMORYMEMORY MAPMAP®®

GPIOGPIO
PortsPorts

Source: [SRC, MAPLD04]

28

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

55

SRC Compilation ProcessSRC Compilation Process

Object
files

Application sources Macro sources

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f files .vhd or .v files

Object
files

Application sources Macro sources

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f files .vhd or .v files

56ICFPT07 12/11/07

Overview

29

Copyright© 2005 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

SRC-7

• Focus on higher bandwidth
– Faster interconnect
– More memory accesses

• Maintains software compatibility

Copyright© 2005 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

Sustained Payload Bandwidths

SRC-6

SRC-7

μP to Hi-Bar®

Hi-Bar® Switch
(per Input or Output port)

MAP Main I/O

MAP User Logic OBM

MAP GPIO

3600 MB/s

3600 MB/s

14400 MB/s

10300 MB/s

24000
MB/s

157%

157%

414%

115%

275%

30

Copyright© 2005 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

Series H MAP®

Eight Banks On-Board Memory
(64 MB SRAM)

4.2
GB/s

GPIO
12 GB/s

Controller
EP2S130

User Logic 1
55 Mgates
EP2S180

User Logic 2
55 Mgates
EP2S180

14.4 GB/s
sustained payload
(7.2 GB/s per pair)

MAP
SDRAM

1 GB
SDRAM

1 GB4.2
GB/s

19.2 GB/s (2.4 x8)

14.4 GB/s

Series H MAP
5.25” Drive Bay Enclosure

• 1 or 2 LVDS main I/O ports

• 150 MHz nominal User Logic speed

• 16 simultaneous SRAM OBM references

• 2 dedicated 64 bit Bridge Ports

• 2 simultaneously accessible DDR2
SDRAM OBCM banks

– Initial release is 512 MB, 1 GB to follow

• Streaming supported between I/O,
OBCM, User Logic, OBM and GPIOX

• Simultaneous input and output DMAs

• GPIO eXpansion (GPIOX) cards

4.8
GB/s

Copyright© 2005 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

Storage Area Storage Area
Network Network

Local Area Local Area
Network Network

Wide Area Wide Area
Network Network DiskDisk

Customers’ Existing Networks

• Hi-Bar sustains 3.6 GB/s payload per path with 180 ns latency per tier
• 2 tiers support 256 nodes
• MAP can use 1 or 2 Hi-Bar ports
• GPIO can be chained or used for direct data input to MAP

PCI ExpressPCI ExpressPCI ExpressPCI Express

SRC-7 Hi-BarTM Based Systems

SRC-7
μμPP

MemoryMemory

SNAPSNAP™™

μμPP

MemoryMemory

SNAPSNAP

Gig EthernetGig Ethernet
etc.etc.

Common Common
MemoryMemory

SRCSRC--7 Hi7 Hi--Bar SwitchBar Switch

3.63.6
GB/sGB/s

7.27.2
GB/sGB/s

ChainingChaining
GPIOGPIO 5.25.2

GB/sGB/s

GPIOXGPIOX GPIOXGPIOX

MAPMAP

7.27.2
GB/sGB/s

MAPMAP®® HBHB
DiskDisk

3.63.6
GB/sGB/s

7.27.2
GB/sGB/s

7.27.2
GB/sGB/s

31

Copyright© 2005 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com

SRC-7 MAP Capability

14.4 GB/s

2048 MB

12
GB/s

35 GF

110 Mgates
(359K LUT/FF)

70 GF

19.2 GB/s

SRC-6
Series C

SRC-6
Series E

SRC-7
Altera Based

Total Local
Memory OBM SRAM Size

User Logic Mgates

User Logic
OBM SRAM BW

Sustained
GPIO Payload BW

DPFP Perf

Sustained
Interface

Payload BW

SPFP Perf

64 MB

62ICFPT07 12/11/07

Example 2: Cray XD1
(OctigaBay 12K)

http://www.cray.com

Source: [Cray, MAPLD04]

32

63

Cray XD1 (Cray XD1 (Cray XD1 (OctigaBayOctigaBayOctigaBay 12K)12K)12K)

Source: [Cray, MAPLD04]

64

Application Acceleration CoApplication Acceleration CoApplication Acceleration Co---ProcessorProcessorProcessor

QDR SRAM

3.2 GB/s

Application Acceleration FPGA
Xilinx Virtex II Pro

AMD Opteron
HyperTransport

Cray RapidArray Interconnect

3.2 GB/s

2 GB/s2 GB/s

3.2 GB/s

RAP

3.2 GB/s

3.2 GB/s

3.2 GB/sRapidArray

Source: [Cray, MAPLD04]

33

65

Cray XD1 SolutionsCray XD1 SolutionsCray XD1 Solutions

Source: [Cray, MAPLD04]

66

Cray XD1 SystemCray XD1 SystemCray XD1 System

Multiple Chassis Connected to RapidArray FabricMultiple Chassis Connected to RapidArray Fabric

Fat Tree

Direct Connect

Source: [Cray, MAPLD04]

34

67

Application Acceleration InterfaceApplication Acceleration InterfaceApplication Acceleration Interface
User
Logic

ADDR(20:0)
D(35:0)
Q(35:0)

TX

RX

RapidArray

ADDR(20:0)
D(35:0)
Q(35:0)

ADDR(20:0)
D(35:0)
Q(35:0)

ADDR(20:0)
D(35:0)
Q(35:0)

RapidArray
Transport

Core
QDR RAM

Interface Core

QDR
SRAM

RAP

• XC2VP30 running at 200 MHz.
• 4 QDR II RAM with over 400 HSTL-I I/O at 200 MHz DDR (400 MTransfers/s).
• 16 bit RapidArray I/F at 400 MHz DDR (800 MTransfers/s.)
• QDR and RapidArray I/F take up <20 % of XC2VP30. The rest is available for user applications.

Source: [Cray, MAPLD04]

68

FPGA Linux APIFPGA Linux APIFPGA Linux API

Admininstration Commands
fpga_open - allocates and opens fpga
fpga_close - closes allocated fpga
fpga_load - loads binary into fpga
fpga_is_loaded - queries the programming state of the FPGA
fpga_uload - clears the configuration in FPGA (hard-reset)

Operation/Control Commands
fpga_start - start fpga (release from reset)
fpga_reset - soft-resets the FPGA

Mapping Commands
fpga_set_ftrmem - maps application virtual address to allow access by FPGA
fpga_memmap - maps FPGA ram into application virtual space
fpga_mem_sync - forces completion of outstanding transactions to mapped FPGA memory

Data Commands
fpga_wrt_appif_val - writes data into application interface (register space)
fpga_rd_appif_val - reads data from application interface (register space)

Status Commands
fpga_status - gets status of fpga

Source: [Cray, MAPLD04]

35

69

Standard FPGA Development ToolsStandard FPGA Development ToolsStandard FPGA Development Tools

VHDL,
Verilog,
C

Modelsim

Synplicity,
Leonardo,
Precision,
Xilinx ISE

Xilinx ISE

Simulate

ImplementSynthesizeHDL

Xilinx
ChipScope

From Command line
or Application

Cores

Download

Verify

RA I/F,
QDR SRAM I/F 0100010101

1010101011
0100101011
0101011010
1001110101
0110101010

Binary File

Metadata

Source: [Cray, MAPLD04]

70

Additional High Level ToolsAdditional High Level ToolsAdditional High Level Tools

Source: [Cray, MAPLD04]

36

Software Development Flow

Synthesize

HDL

Implement 0100010101
1010101011
0100101011
0101011010

bit stream

for(i=0;i<n;i++){
s(i)=x*type(i)
}
for(i=0;i<n;i++){
for(k=1;k<m;k++){
if(mat(k)<s(i))
s(i)=s(i)–pv(k);
}
}

C source FPGA Tool

C source

Simulation

DRC RPSysCore

MPI include

MPI Library

0100010101
1010101011
0100101011
0101011010

a.out

Compile
cc
code.c

Link
ld
code.o

Load/Run

Simulation

Source: [Cray, SC07]

XT4 Scalable Interconnect

C

C

C

S

S
A

A

A

A

A

A

C = Compute Nodes
S = Service Nodes
A = Accelerator Nodes

Source: [Cray, SC07]

37

Cray XT4 Node

9.6 GB/sec

9.
6

G
B

/s
ec

9.6 GB/sec

9.6 GB/sec 9.6 GB/sec

9.
6

G
B

/s
ec

2 – 8 GB

12.8 GB/sec direct
connect memory
(DDR 800)

6.4 GB/sec direct connect
HyperTransport

Cray
SeaStar2+

Interconnect

4-way SMP
>35 Gflops per node
Up to 8 GB per
node
OpenMP Support
within socket

Source: [Cray, SC07]

9.6 GB/sec

9.
6

G
B

/s
ec

9.6 GB/sec

9.6 GB/sec 96 GB/sec

9.
6

G
B

/s
ec

Cray
SeaStar2+

Interconnect

6.4 GB/sec
HyperTransport

DRC Reconfigurable
Processing Unit

1-4 GB local
RPU memory

Cray XR1 Reconfigurable Blade

Source: [Cray, SC07]

38

75

76ICFPT07 12/11/07

Example 3: SGI Altix
http://www.sgi.com/servers/altix/

Source: [SGI, MAPLD04]

39

SGI Systems
http://www.sgi.com

System Architecture

C

C

C

C

C

C

C

C

C

C

C

V
RR

RR

IOIO

IO IORASC RASC

RASCRASC

• NUMAlink system interconnect

• General-purpose compute nodes

• Peer-attached general purpose I/O

• Integrated graphics/visualization

• Reconfigurable Application Specific
Computing

R

C

IO

RASC

V

40

NUMALink Topology

NUMAlink interconnect at
the lowest hierarchy level

NUMALink topology of a 512-processor dual “Fat-Tree”

RASC Architecture

41

TIO

NUMAlink Connectors

Algorithm
FPGA

Loader
FPGA

SSP

2 – 8 MB
QDR SRAM

2 –
8 M

B

Q
D

R
 SR

A
M

PCI 66MHz 2 – 8 MB
QDR SRAM

Current Product – SGI® RASC™ Technology (Athena)

2 -8 M
B

Q

D
R

 SR
A

M

Algorithm FPGA Virtex2 6000 -6

42

Design Flow
(HDLs)

IA-32 Linux

Machine

Design iterations

Design Entry
(Verilog, VHDL)

Design Synthesis
(Synplify Pro,

Amplify)

Design
Implementation

(ISE)

Design Verification

Behavioral Simulation
(VCS, Modelsim)

Static Timing Analysis
(ISE Timing Analyzer)

.v, .vhd
.v, .vhd

.edf

.ncd, .pcf

.bin

Metadata
Processing

(Python)

.v, .vhd

.cfg

Altix Device Programming
(RASC Abstraction Layer,

Device Manager, Device Driver)

Real-time
Verification

(gdb)

.c

Design Flow
(HLLs)

IA-32
Linux

Machine

RTL Generation and
Integration with Core Services

Design Synthesis
(Synplify Pro,

Amplify)

Design Verification

Behavioral Simulation
(VCS, Modelsim)

Static Timing Analysis
(ISE Timing Analyzer)

.v, .vhd
.v,

.vhd

.edf

.ncd,
.pcf

.bin

Metadata
Processing

(Python)

.v,
.vhd

.cfg

Altix Device Programming
(RASC Abstraction Layer,

Device Manager, Device Driver)

Real-time
Verification

(gdb)

.c

Design Implementation
(ISE)

HLL Design Entry
(Handel-C, Impulse C, Mitrion C, Viva)

43

SGI® RASC™ RC100 Blade
Computation Blade

TIO

TIO

NL4

NL4

Loader
NL4

PCI

SSP

SSP

Selmap

Selmap

V4LX200

V4LX200

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM SRAM

SRAM

SSAM

SRAM

Note: both QDR SRAM
and DDR2 SDRAM
supported

Product plans and information are preliminary and subject to change without notice

SGI® RASC™ Specifications

Linux® OS (on host server)Linux® OS (on host server)O/S

Blade Form Factor
10-U Altix® 4000 IRU
Up to 8 RC100 blades per IRU

Rack-Mountable Form Factor
2 blade slot chassis
3U (5.25" H x 19"W x 26"D)

Rack-Mountable Form Factor
EIA slide-mountable
2U (3.5" H x 19"W x 26"D)

Dimensions

Up to 8 RC100 blades per system
More available with custom configurationUp to 2 units per systemMax Config

Dual NUMAlink™ 4 ports Dual NUMAlink™ 4 portsI/O

80MB QDR SRAM OR
20GB DDR2 SDRAM 16MB QDR SRAMMemory

SGI® Altix® 4000
SGI® Altix® 3700 Bx2 or 350 *
Silicon Graphics Prism™*+

SGI® Altix® 3700 Bx2 or 350
Silicon Graphics Prism™Host System

Two per bladeOne per brickNo. of FPGAs
Xilinx Virtex-4 LX200Xilinx Virtex II-6000FPGA

SGI® RASC™ RC100 BladeSGI® RASC™ Module (Ver. 1)

* with available 2 blade slot upgrade chassis
+ rack mounted version only

Product plans and information are preliminary and subject to change without notice

44

SGI® Altix™ 4700 Server
Independent Scaling in Any Direction

RC100I/O

MemoryGraphics

C
o

m
p

u
te

• 12 RC100
Blades in
Single
Rack

• 12 RC100
Blades/SSI

• 2 Compute
Blades/RC
100

• 1.8TFLOP/
Rack (4GB
DIMMs)

• Minimum of
16 Sockets
in Any
System

• 16 I/O
Blades in a
Single
Rack

• 16 I/O
Blades/SSI

• 16
Graphics
Pipes/Rack

• 1 Compute
Socket Per
Graphics
Pipe • 64 Sockets / Rack

• Minimum of 16 Sockets /System

• Scales in 4 Socket Increments

Altix® 4700:
5D Independent

Scalability

88ICFPT07 12/11/07

Example 4: The Starbridge Hybrid
Computer 62m

http://www.starbridgesystems.com/

Source: [SGI, MAPLD04]

45

89ICFPT07 12/11/07

Hypercomputers:
High-Performance FPGA Accelerators

Source: [SBS, MAPLD04]

90ICFPT07 12/11/07

Structure of an FPGA Processing Element

Source: [SBS, MAPLD04]

46

91ICFPT07 12/11/07

Structure of a Processing Element Quad

Source: [SBS, MAPLD04]

92ICFPT07 12/11/07

Hypercomputer Architecture

Source: [SBS, MAPLD04]

47

93ICFPT07 12/11/07

28

Com puter
M em ory
(4 GB)

Xeon
(1G H z)

X eon
(1G H z)

PC I

μP
B oard

U ser
PE (x1 /x5)
XC 2V6000

FPG A B oard

Sin gle Q uad

Bus
C ontroler

X C 2V4000
/

/

/64

32

U ser
PE (x2 /x6)
XC 2V6000

/ 64

U ser
PE (x3 /x7)
XC 2V6000

U ser
PE (x4 /x8)
XC 2V6000

94// C lock
Bus

15

Connecto r J1-J10
(560 P IN I/O)

XP O IN T
X C 2V6000

Router
X C 2V4000

/
/

/

/

/
/

/
/

50

50

50

50

50

50

69

69

69

69

/

/
/

/

/

/
/

/

/

/

/

6 4

64

64

32

32

32

94

94

94

/

PCIX Bus

64

M IO C

L2L2

Star Bridge Hardware Architecture

Xeon
2.2GHz

Xeon
2.2GHz

HC-36m

Source: [SBS, MAPLD04]

94ICFPT07 12/11/07

Library

Object

Sheets

48

95

Place & Route

.bin files

.ngo files

Application
executable

Configuration
bitstreams

Netlists

Star Bridge Software Environment

VIVA

Graphical User
Interface

User input

Xilinx

96ICFPT07 12/11/07

Emerging Directions

49

97ICFPT07 12/11/07

AMD Torrenza
(http://enterprise.amd.com/us-en/AMD-Business/Technology-Home/Torrenza.aspx)

Fit into existing AMD Opteron
Socket

Leverages HyperTransport Link

Projected Growth of HT and PCIe Coprocessing
in x86-based Servers (Excluding GPUs)

Source: [In Stat, 5/07]

Source: [AMD, 5/07]

Source: [In Stat, 5/07]

98ICFPT07 12/11/07

AMD Torrenza
(http://enterprise.amd.com/us-en/AMD-Business/Technology-Home/Torrenza.aspx)

Public Torrenza Participants
Source: [AMD, 5/07]

Source: [In Stat, 5/07]

50

99ICFPT07 12/11/07

Intel® QuickAssist Technology
(http://www.intel.com/technology/platforms/quickassist/index.htm)

A comprehensive initiative
0 A family of interrelated Intel and industry standard technologies

Enables optimized use and deployment of accelerators on Intel® platforms
0 Accelerated performance for demanding applications with Front Side Bus (FSB)

attached Field Programmable Gate Arrays (FSB-FPGA) hardware modules
0 Fits into existing Xeon Socket
0 Leverages FSB link

FSB ≡ Front Side Bus
TPV ≡ Third-Party Vendor

100ICFPT07 12/11/07

Intel® QuickAssist Technology
(http://www.intel.com/technology/platforms/quickassist/index.htm)

FSB ≡ Front Side Bus
FAP ≡ FSB-FPGA Accelerator Platform
AHM ≡ Accelerator Hardware Module
AFU ≡ Accelerator Function Unit
AAL ≡ Accelerator Abstraction Layer
TPV ≡ Third-Party Vendor

FAP System Architecture

51

101ICFPT07 12/11/07

DRC System
(http://www.drccomputer.com/)

102ICFPT07 12/11/07

PLD

Flash Memory

DRC Module Details

Xilinx Virtex4 LX200

RLDRAM

DDR2 DRAM
(not present on XT/FPGA)

52

103ICFPT07 12/11/07

FPGA uses all motherboard resources meant for CPU:
− Intel Processors: Front Side Bus links, memory interface, power supply, heat-sink
− AMD Processors: HyperTransport Links, Memory interface, power supply, heat-sink

Usable with any compatible validated Intel®
Xeon® or AMD Opteron server
Mix and match modules and CPUs on quad-socket systems

XtremeData
(http://www.xtremedatainc.com/)

104ICFPT07 12/11/07

Processor Socket Module Features Availability

AMD

Socket E 2S180 Now

Socket F
2S130 and 2S180

32MB QDRII
20MB/S Mem B/W

Q42007

Intel

Dual Processor
Scalable Footprint

3S80E – 3S340
Any combo of two +

Bridge
17MB/S Mem B/W

Q42007

Multi-processor
Scalable Footprint

3S80E – 3S340
Any combo of two +

Bridge
17MB/S Mem B/W

Q12008

Current and Future of XtremeData….

Only Company that supports AMD and Intel accelerators

Chosen by Intel to receive FSB license

53

105ICFPT07 12/11/07

Outline

Architectures and Systems

Tools and Programming

Applications

Performance

Wrap-up

106ICFPT07 12/11/07
106106

HLLs Classification

54

107ICFPT07 12/11/07

Programming Models: Expressing Parallelism
and Locality in Imperative Languages

Message Passing Shared Memory DSM/PGAS

Process/Thread

Address Space

Introduction to MAP C
• Available only for SRC machines
• MAP FORTRAN also exists
• MAP C differs from ANSI C

– Some ANSI C features are not available
• No global variables
• No external function calls

– Other than user-defined or SRC-defined macros, or inlined
functions

• No structures
• No switch statement, etc.

– Extensive use of concepts and macros not
present in C

55

SRC Compilation Process

Object
files

Application sources Macro sources

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f files .vhd or .v files

Object
files

Application sources Macro sources

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f files .vhd or .v files

MAP Routines
• Microprocessor side

– .c File
– Function prototype

• void subr(int64_t*, int);

– Allocation of MAP
• int map_allocate(int nm);
• int map_free(int nm);

– Calling MAP function
• subr(array, mapnum);

• MAP side
– .mc File
– Function implementation

void subr(int64_t A[], int mn)
{

// code goes here

}

56

Parallel Sections
• Sequential code

– By default, only one
code block is active at
any time

• Parallel code sections
– Multiple code sections

can be active at the
same time

block #1

block #2

block #3to
ta

l t
im

e
to

 e
xe

cu
te

block #1 block #2 block #3

fork

join
to

ta
l t

im
e

to
 e

xe
cu

te

Parallel Sections
#pragma src parallel sections
{

#pragma src section
{

sum1 = a + b;
}

#pragma src section
{

sum2 = a - b;
}

#pragma src section
{

prod1 = a * b;
}

}

res = sum1 + sum2 + prod1;

57

Streams
• Streams mechanics • Code example

Stream_64 S0;
#pragma src parallel sections
{

#pragma src section
{

for (i=0;i<10;i++) {
res1 = A[i] << 2;
put_stream(&S0, res1, 1);

}
}

#pragma src section
{

for (j=0;j<10;j++) {
get_stream(&S0, &val);
B[j] = val + 100;

}
}

}

producer loop

put_stream

consumer loop

get_stream

FIFO

data

data

valid

valid

stall

take

loop_driver

loop_driver

Data storage
• Scalar values can be stored in the “registers” –

memory created on-chip from LUTs
– float val1, val2;

• Arrays can be stored in OBM
– OBM_BANK_A (AL, long long, 128)
– OBM_BANK_B_2_arrays (Bi, int64_t, 128,

double Bd, 2048)
• accessible as AL[i], Bi[j], Bd[k]

• or BRAM
– int Ci[128];
– float Cd[2048];

• accessible as Ci[i], Cd[j]

58

Data movement
• Scalar values via MAP function arguments

– void subr(int64_t A[], int n, int64_t *time, int
mapnum)

• Arrays via DMA transfer to OBM
– DMA_CPU (CM2OBM, AL,

MAP_OBM_stripe(1,"A"), A, 1,
n*sizeof(int64_t), 0);

• Arrays via streams
– stream_dma_cpu(&S0, PORT_TO_STREAM,

AL, DMA_A, A, 1, n*sizeof(int64_t));
– get_stream(&S0, &val);

Data movement: DMA transfer
void subr(int64_t A[], int64_t C[], int n, int64_t *time, int mapnum)
{

…
OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE)
OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE)
…
DMA_CPU (CM2OBM, AL, MAP_OBM_stripe(1,"A"), A, 1, n*sizeof(int64_t), 0);
wait_DMA (0);
…
// do something useful
…
*time = *time + (t1 - t0);
…
DMA_CPU (OBM2CM, CL, MAP_OBM_stripe(1,"C"), C, 1, n*sizeof(int64_t), 0);
wait_DMA (0);
…

}

59

Data movement: streaming
void subr(int64_t A[], int64_t C[], int n, int64_t *time, int mapnum) {

…
OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE)
int64_t a[SIZE]; // SIZE >= n
Stream_64 S0;
…
#pragma src parallel sections
{

#pragma src section
{

stream_dma_cpu(&S0, PORT_TO_STREAM, AL, DMA_A, A, 1, n*sizeof(int64_t));
}

#pragma src section
{

for (i = 0; i < n; i++)
{

get_stream(&S0, &a[i]);
.. Operate on Data ..

}
}

}

Data packing/unpacking
• Data access element size for OBM and streams

is 64-bit wide
• Various split/combine macros allow splitting

and combining scalar values, for example:

int64_t v;
int i;
float f;
comb_32to64_int_flt(1234, 0.1234f, &v);
split_64to32_int_flt(v, &i, &f);
result:

i = 1234
f = 0.1234

60

Loops
for (i = 0; i < n; i++) {

A[i] = B[i] * C[i];
}

while (i < n) {
A[i] = B[i] * C[i];
i++;

}

break
continue

do {
A[i] = B[i] * C[i];
i++;

} while (i < n);

for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {

A[i] += B[i] * C[j];
}

}

Introduction to Impulse-C

61

What is Impulse C?

Not a new language

A Subset of ISO C + a library, just like MPI

A library of functions compatible with standard C
Functions for application partitioning
Functions for creating and configuring the application architecture

Functions for creating processes and streams
Functions for connecting streams
Functions for mapping into the vendor platform

Functions for desktop simulation and instrumentation

A software-to-hardware compiler

Impulse-C Programming Model
Communicating Sequential Processes
(CSP) Programming Model, also like MPI

Supports parallelism at the process level
As much parallelism as possible is exploited
within the processes via automated
scheduling/pipelining by the compiler
Streams for interprocess (inter-functional
units) communications

Buffered communication channels (FIFOs)
In a sense similar to MPI messages, but may be
more like Unix pipes

62

Programming Model

S/W process

H/W process

H/W process

H/W process

S/W process

Programming with Impulse C

1. Use Impulse C functions
to partition the application
into hardware and software
processes
• Create the processes
• Create input and output

Streams
• Connect the streams

2. Use Impulse C to compile
hardware processes to HDL
and generate hardware stream
and memory interfaces.

Generate
FPGA

hardware

C language
applications

HDL
files

Impulse
Platform
Libraries

Generate
hardware
interfaces

Generate
software

interfaces

Software
libraries

HDL
files

63

Elements of an Impulse-C Application
main()

Entry point for the software side of the application
Configuration function

e.g. config()
Defines the parallel Impulse C processes
Creates streams
Connects stream

co_initialize()

Creates the entire application H/W architecture targeting
a specific platform

co_execute()

Starts the parallel Impulse C processes
One or more Impulse C processes

Define the behavior of the application, including test
producer and consumer functions as required

Impulse C Process Coding Style

Written as a C function
Accepts pointers to streams, signals,
memories, etc.
Accepts optional compile-time parameters
No return value

void des_ic(co_stream filter_in, co_stream filter_out) {
int32 data;
co_stream_open(filter_in, O_RDONLY, INT_TYPE(32));
co_stream_open(filter_out, O_WRONLY, INT_TYPE(32));
while (co_stream_read(filter_in, &data, sizeof(int32))) {
. . . // Process the data here

co_stream_write(filter_out, &data, sizeof(int32));
}
co_stream_close(filter_in);
co_stream_close(filter_out);

}

64

Example: FIR Filter

Data and coefficients passed into filter via data
stream

Could also use shared memory

Algorithm written using untimed, hardware-
independent C code

Using coding styles familiar to C programmers

Software test bench written in C to test functionality
In software simulation
In actual hardware

FIR Filter Functional Test

Test
producer

FIR
filter

Test
consumer

S/W H/W S/W

Test
coefficients

Test
waveform

Test
waveform

This test can be performed in desktop simulation
(using Visual Studio or some other C environment)
or can be performed using an embedded processor
for the producer/consumer modules.

65

void fir(co_stream filter_in, co_stream filter_out) {
int32 coef[TAPS]; int32 firbuffer[TAPS];
int32 nSample, nFiltered, accum, tap;

co_stream_open(filter_in, O_RDONLY, INT_TYPE(32));
co_stream_open(filter_out, O_WRONLY, INT_TYPE(32));
// First fill the coef array with the coefficients...
for (tap = 0; tap < TAPS; tap++) {

co_stream_read(filter_in, &nSample, sizeof(int32));
coef[tap] = nSample;

}
// Now fill the firbuffer array with the first n values...
for (tap = 1; tap < TAPS; tap++) {

co_stream_read(filter_in, &nSample, sizeof(int32));
firbuffer[tap-1] = nSample;

}
// Now we have an almost full buffer and can start processing waveform samples…
while (co_stream_read(filter_in, &nSample, sizeof(int32)) == co_err_none) {

firbuffer[TAPS-1] = nSample;
for (accum = 0; tap = 0; tap < TAPS; tap++) {

accum += firbuffer[tap] * coef[tap];
}
nFiltered = accum >> 2;
co_stream_write(filter_out, &nFiltered, sizeof(int32));
for (tap = 1; tap < TAPS; tap++) {

firbuffer[tap-1] = firbuffer[tap];
}

}
co_stream_close(filter_in);
co_stream_close(filter_out);

}

Declare stream interfaces

Open the streams

Read in the coefficients

Read in the first n values

Process the incoming stream
and perform the filter operation
to generate outputs

When done, close the streams

void config_fir(void *arg)
{

co_stream waveform_raw;
co_stream waveform_filtered;

co_process producer_process;
co_process fir_process;
co_process consumer_process;

waveform_raw = co_stream_create("waveform_raw", INT_TYPE(32), BUFSIZE);
waveform_filtered = co_stream_create("waveform_filtered", INT_TYPE(32), BUFSIZE);

producer_process = co_process_create("producer_process", (co_function)test_producer,
1, waveform_raw);

fir_process = co_process_create("filter_process", (co_function)fir,
2, waveform_raw, waveform_filtered);

consumer_process = co_process_create("consumer_process",(co_function)test_consumer,
1, waveform_filtered);

// Assign processes to hardware elements
co_process_config(fir_process, co_loc, "PE0");

}

Impulse C Configuration Function

stream declarations

process declarations

stream creation

process creation and
stream connection

process configuration (hardware)

66

Desktop Simulation
Impulse C is standard C with the addition of the Impulse C libraries, which
means that any standard C development environment can be used for
functional verification and debugging.

Visual Studio
Impulse
Application Monitor

Optimization Exploration
Dataflow graph shows hardware
structures generated from C code

Explorer window shows blocks
and stages of C source code

C code block summary shows
results of optimization

Pipeline effective rate graph helps
analyze performance

67

Cycle-Accurate Debugging

Expanded source code
window shows active
pipeline stages for each
cycle (in red)

Stream I/O and pipeline
status window monitors
current status

Variable watch window
allows the observation
of specific data objects

134ICFPT07 12/11/07

Introduction to Mitrion-C

68

135ICFPT07 12/11/07

Mitrion-C Overview
Looks like C, very similar syntax

Behaves differently,
0Mitrion C is a single assignment language, uses

a functional programming model, it is data
driven and not program counter driven
0Data driven computations are inherently parallel
0C is an imperative language, algorithm is

described in terms of sequential statements and
execution has states
0C is inherently sequential and expressing

parallelism requires extensions to the language

136ICFPT07 12/11/07

Mitrion-C and C Are
Syntactically Similar

Mitrion-C is a C-family language but not ISO-C

Basic syntax is similar to other C-family
languages
0Blocks are surrounded by { }
0Assignments are made by =
0Statements end with ;
0Common Selection and Iteration Statements

are available (if, for, while), but the
semantics are different
0Common C operators are supported
0C-style comments (but nesting is allowed)

69

137ICFPT07 12/11/07

Differences Between Mitrion-C
and C

Single assignment for variables
Order is data driven not dependency driven

main() is the only point of input and output to
the program

No pointers, pointers do not lend themselves to
FPGAs

No dynamic allocation

Recursion only with statically known depth, need
to know the resources ahead of time

Flexible bit width supported for scalar types

138ICFPT07 12/11/07

Single Assignment

A variable may only be assigned once
0Operations occur concurrently
0Multiple assignments of variables can cause

inconsistency

x = 125;

a = x*4;

x = b+6; // Error!

// Is x b+6 or 125?

70

139ICFPT07 12/11/07

Data Driven Model

(int:33, int:32) sqradd(int:32 s, int:16 a)
{

sum = s + sqr;
sqr = a*a;

} (sum, sqr);

uint:22<30> main() //returns a list of 30 22-bit items
{

uint:22 prev = 1;
uint:22 fib = 1;

uint:22<30> fibonacci = for(i in <1..30>)
{
fib = fib+prev;
prev = fib;

} ><fib;

} fibonacci;

140ICFPT07 12/11/07

Scoping and Blocks

Blocks are used as body for if, while, for, ...
uint:4 q = 0;

int:16 x = if(i > 5)

{

q = f(a, i); // Shadows parent q

} q // Return q and place it in x

else { ... };

// q has the value 0 here

Each block defines a scope
Only returned values and nothing else can exit
the block
Reassignments shadow outer variables (create local
variables of the same name)
0 Can not modify outer variable

Parent Scope

Child Scope

71

141ICFPT07 12/11/07

Loops and Collections

Wide parallelPipelinedforeach

Sequential

List

Unrolledfor

Vector

Introduction to DSPlogic
RC Toolbox

72

73

74

75

76

77

HLLs Productivity Study
Classic HDLs

VHDL/Verilog

Text-based HLLs
Impulse-C

Handel-C

Carte-C

Mitrion-C

Graphical tools
SysGen

DSPLogic
Dataflow Languages

Functional Languages

Imperative Languages

Evaluation Metrics and Parameters

Ease-of-Use
Acquisition time
Development time

Efficiency (Quality of performance)
Synthesized frequency
Area utilization

78

Using the Evaluation Framework

156ICFPT07 12/11/07

Outline

Architectures and Systems

Tools and Programming

Applications
0Remote Sensing

Discrete Wavelet Transform (DWT)
Wavelet-Based Hyperspectral Dimension Reduction
Image Registration
Cloud Detection

0Bioinformatics

Performance

Wrap-up

79

157ICFPT07 12/11/07

Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics

158ICFPT07 12/11/07

The input image is first convolved along the rows by the two filters L and H and
decimated along the columns by two resulting in two "column-decimated" images
L and H

Each of the two images, L and H, is then convolved along the columns by the two
filters L and H and decimated along the rows by two

This decomposition results into four images, LL, LH, HL and HH

The LL image is taken as the new input to perform the next level of decomposition

Multi-Resolution DWT Decomposition
(Mallat Algorithm)

80

159ICFPT07 12/11/07

DWT Decomposition
(One Engine One FPGA)

Image Size = 512 X 512 pixels

160ICFPT07 12/11/07

DWT Decomposition (cnt’d)
(Cray-XD1)

81

161ICFPT07 12/11/07

Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics

162ICFPT07 12/11/07

Multi-Spectral Imagery 10’s
of bands (MODIS ≡ 36 bands,
SeaWiFS ≡ 8 bands, IKONOS ≡
5 bands)

Hyperspectral Imagery 100’s-
1000’s of bands (AVIRIS ≡ 224
bands, AIRS ≡ 2378 bands)
0Challenges (Curse of

Dimensionality)
0Solution

On-Board Dimension Reduction
0Needs

Higher performance
Lower form / wrap factors
Higher flexibility

Multispectral / Hyperspectral Imagery Comparison

HPRCs

Hyperspectral Dimension Reduction

82

163ICFPT07 12/11/07

Hyperspectral Dimension Reduction
(Techniques)

Principal Component
Analysis (PCA):
0Most Common Method

Dimension Reduction
0Complex and Global

computations: difficult for
parallel processing and
hardware implementations

0Does Not Preserve Spectral
Signatures

Wavelet-Based Dimension
Reduction*:
0Simple and Local Operations
0High-Performance

Implementation
0Preserves Spectral

Signatures

Multi-Resolution Wavelet Decomposition
of Each Pixel 1-D Spectral Signature
(Preservation of Spectral Locality)

* S. Kaewpijit, J. Le Moigne, T. El-Ghazawi, “Automatic
Reduction of Hyperspectral Imagery Using Wavelet
Spectral Analysis”, IEEE Transactions on Geoscience and
Remote Sensing, Vol. 41, No. 4, April, 2003, pp. 863-871.

164ICFPT07 12/11/07

The Algorithm

Decompose Each Pixel to Level L

Read Data

Read Threshold (Th)

Write Data

Get Lowest Level (L)
from Global Histogram

Remove Outlier Pixels

OVERALL

Compute Level for Each Individual Pixel
(PIXEL LEVEL)

DWT Coefficients
(the Approximation)

Reconstructed Approximation

No

Yes

Compute Correlation (Corr)
between Orig and Recon.

Add Contribution of the Pixel to Global
Histogram

Corr < Th

Decompose Spectral Pixel

Save Current Level [a] of
Wavelet Coefficients

Reconstruct
Individual Pixel to Original Stage

Get Current Level [a] of
Wavelet Coefficients

PIXEL LEVEL

83

165ICFPT07 12/11/07

Top Hierarchy Module

L1:L5

Y1:Y5

TH
GTE_1: GTE_5

Correlator

X

DWT_IDWT

Level

N

Llevel
MUX

Histogram

166ICFPT07 12/11/07

Decomposition and Reconstruction Levels of Dimension Reduction
(DWT_IDWT)

Level_5

L0

L1L 2

L2L 2

L3L 2

L4L 2

L5
L 2

Level_4Level_3Level_2Level_1

X

2

L’

2

L’

2

L’

2

L’

2

L’

2

L’

2

L’

Y2

D

2

L’

2

L’

2

L’

Y4
D

2

L’

2

L’

2

L’

2

L’

2

L’

Y5
D

Y3
D

Y1

D

84

167ICFPT07 12/11/07

Correlator Module

X

Yi

termxx

termyy

termAB

termxy (termxy)2

TH TH2

MULT termxxtermyy

MULT

MULT

MULT

Shift Left

(32 bits)

Compare GTE_i
(Increment

Histogrami)

termAB

termAB

N

() bitsNBABNAterm
N

i
N

i
N

iiAB 2log216 +≡⎟
⎠

⎞
⎜
⎝

⎛
−= ∑∑∑

2

16

2
2

2
),(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
≥=

TH
termterm

term
yx

yyxx

xyρ

168ICFPT07 12/11/07

Histogram Module

GTE_3

GTE_2

GTE_1

GTE_4

GTE_5

Update
Histogram
Counters

Level
Selector

cnt_3

cnt_2

cnt_1

cnt_4

cnt_5

Level

85

169ICFPT07 12/11/07

Wavelet-Based Dimension Reduction
(Execution Profiles on SRC)

Total Execution Time = 20.21 sec
(Pentium4, 1.8GHz)

Total Execution Time = 1.67 sec (SRC-6E, P3)

Speedup = 12.08 x (without-streaming)

Speedup = 13.21 x (with-streaming)

Total Execution Time = 0.84 sec (SRC-6)
Speedup = 24.06 x (without-streaming)

Speedup = 32.04 x (with-streaming)

170ICFPT07 12/11/07

Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics

86

171ICFPT07 12/11/07

Motivations and Theory of Cloud Detection

Why Cloud Detection?
0Can render data useless in land-use/land

cover studies
0Critical in weather and climate studies

Theory is based on the observation that
clouds are:
0 Highly reflective (in the visible, near- and mid- IR

bands)
Visible Bands (Green, Red bands)

» Vegetation and land surface discrimination
Near-IR band

» Determines soil moisture level and distinguishes vegetation
types

Mid-IR band
» Differentiation of snow from clouds

0 Cold
Thermal IR band

» Thermal mapping to Brightness Temperatures

LandsatLandsat 77

ETM+

172ICFPT07 12/11/07

Top Hierarchy Module

band2
band3

band4
band5
band6

Mask2Pass Two

B2
B3

B4
B5
B6

Normalize
Mask1

Pass One

Band 2 (Green Band) Band 3 (Red Band) Band 4 (Near-IR Band) Band 5 (Mid-IR Band) Band 6 (Thermal IR Band)

Mask

87

173ICFPT07 12/11/07

Normalization Module

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

==

=+×=

1ln

5,4,3,2,

6,5,4,3,2,

6

1

2
6

ρ

ρ

αβρ

K
KB

iB

iband

ii

iiii

C2

DIV

1

ADD
C2/ρ6

band2

β2

MULT

α2

ADD
ρ2

band3

β3

MULT

α3

ADD
ρ3

band4

β4

MULT

α4

ADD
ρ4

band5

β5

MULT

α5

ADD
ρ5

band6

β6

MULT

α6

ADD
ρ6 B6

C2

DIV

1

ADD
C2/ρ6

LOG

C1

DIV

B5

B4

B3

B2

174ICFPT07 12/11/07

Pass-One Module

Classification Rules for Pass One [2]Classification Rules for Pass One [2]

88

175ICFPT07 12/11/07

band2

β2

MULT

α2

ADD

band3

β3

MULT

α3

ADD

band4

β4

MULT

α4

ADD

band5

β5

MULT

α5

ADD

band6

δ

MULT

ζ

B6

B5

B4

B3

B2

ADD

Optimizing Hardware Resources Usage
(Linearization of the Normalization Function)

() ()()

() ()() ()()

66

62
1

6
1

2

2
1

6
1

2

1

2
6

62
1

1
2

1

2

6

1

2
6

ln1

11

ln1

11

ln1

ln1

11

ln1
1ln

5,4,3,2,

6,5,4,3,2,

bandB

band
K

K
K

K
K

K

K
KB

K
K

K

K
K

K
KB

iB

iband

ii

iiii

×+≅

×

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

≅

×
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

≅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

==

=+×=

δζ

βα

ρ

ρ

ρ

αβρ

176ICFPT07 12/11/07

Classification Rules for Pass One [2]Classification Rules for Pass One [2]

Optimizing Hardware Resources Usage (cnt’d)
(Algebraic Re-Formulation of Pass-One Filters)

snow

0.7

MULT

+

B2

B5
-

ADD

+

+

ADD

B4

0.1

GT

GT

AND

Snow-Test Module

()

() ()() (){ }1.07.0

1.07.0

45252

4
52

52

>+×>−

⇔
⎭
⎬
⎫

⎩
⎨
⎧

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>

+
−

=

BANDBBBB

BAND
BB
BBNSDI

Division Eliminated

89

177ICFPT07 12/11/07

Detection Accuracy
(Software/Reference Mask, Hardware Masks)

Software/Reference Mask

Band 2 (Green Band) Band 3 (Red Band) Band 4 (Near-IR Band) Band 5 (Mid-IR Band)

Band 6 (Thermal IR Band) Hardware Floating-Point Mask
(Approximate Normalization)

Hardware Fixed-Point Mask
(Approximate Normalization)

178ICFPT07 12/11/07

Detection Accuracy (cnt’d)
(Approximate Normalization and Quantization Errors)

Approximation Error
(0.1028 %)

Hardware Fixed-Point (12-bit)
Error (0.2676 %)

Hardware Fixed-Point (23-bit)
Error (0.1028 %)

Hardware Floating-Point Error
(0.1028 %)

Reported Error (1.02 %)
by Williams et al. [2]

()

imagereferencey

imageoutputx

where
columnsrows

yx
error

rows

i

columns

j
ijij

≡

≡

×

−
=
∑ ∑

−

=

−

=

,

,

)1(

0

)1(

0

90

179ICFPT07 12/11/07

SRC-6 vs. Intel Xeon 2.8 GHz
(Hardware-to-Software Performance)

Total Execution Time

43.02

12.07 12.06
6.05 2.46 1.52

0.00
10.00
20.00
30.00
40.00
50.00
60.00

Xeon 2.8GHz Floating Point 1X Fixed Point 1X Floating Point 2X Floating Point 2X
Comp./8X Data

Fixed Point 8X

m
 s

ec

Speed Up

1.0 3.6 3.6
7.1

17.5

28.3

0

10

20

30

40

Xeon 2.8GHz Floating Point 1X Fixed Point 1X Floating Point 2X Floating Point 2X
Comp./8X Data

Fixed Point 8X

180ICFPT07 12/11/07

Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics

91

181ICFPT07 12/11/07

Introduction and Background
Remote sensed data usually contain two types of
distortion:
Radiometric distortion

Sources of radiometric distortion are from
» Effects of atmosphere on radiation,
» Effects of atmosphere on remote sensing imagery, and

instrumentation errors
These errors can be corrected using the knowledge of the
sensor model

Geometric distortion
Sources of geometric distortion are

» Earth rotation,
» Panoramic effects,
» Earth curvature,
» Scan time skew,
» Variation in platform altitude, velocity, attitude, and

aspect ratio
To correct the various types of geometric distortion,
without the knowledge of error sources, an image can be
registered to a map coordinate system:

» The pixels are addressable in terms of map coordinates
(latitudes and longitudes or eastings and northings)

» The resulting output of image registration is a set of
transforms or a mapping function that tells us how the
input image is different from the reference image

» Using these parameters the input image can be
transformed to match the reference image

182ICFPT07 12/11/07

Implementation Approach and Experimental Results
(SRC-6)

Two Techniques
0 Exhaustive search
0 Iterative refinement

Similarity Measures
0 correlation
0 Normalized cross-correlation

Expensive
One of the best similarity measures

0 Statistical correlation
0 Match filters
0 Phase-correlation
0 Sum of absolute differences
0 Root mean square
0 Masked correlation

Two engines
0 79% usage of the chip resources (slices)

High Accuracy
0 Floating-point arithmetic (SRC single-

precision FP macros)

Extrapolated Higher Performance
0 Larger data sizes
0 Many optimization techniques such as

data streaming

4.59
(7.48 extrapolated)

2 FPGAs (4 Engines)

3.741 FPGA (2 Engines)

1.871 FPGA (1 Engine)

1μP (2.8 GHz Xeon)

SpeedupPlatform

92

183ICFPT07 12/11/07

DNA Sequencing with
Smith-Waterman

Amino acids
The building blocks (monomers) of proteins. 20 different
amino acids are used to synthesize proteins. The shape
and other properties of each protein is dictated by the
precise sequence of amino acids in it.

Deoxyribonucleic acid (DNA) is written using a code
of only 4 letters (bases)

Two purines, called adenine (A) and guanine (G)
Two pyrimidines, called thymine (T) and cytosine (C)

DNA sequencing
The determination of the precise sequence of
nucleotides in a sample of DNA
Why – determine origin, …

184ICFPT07 12/11/07

Example:
0Find the best pairwise alignment

of GAATC and CATAC

DNA Matching Basics

GAATC
CATAC

GAATC-
CA-TAC

GAAT-C
C-ATAC

GAAT-C
CA-TAC

-GAAT-C
C-A-TAC

GA-ATC
CATA-C

We need a way to measure the
quality of a candidate alignment

Alignment scores are driven from :
0substitution matrix
0gap penalty

10-50-5T

-510-50G

0-510-5C

-50-510A

TGCA

A hypothetical
substitution matrix

GAAT-C
CA-TAC

-5 + 10 + ? + 10 + ? + 10 = ?

93

185ICFPT07 12/11/07

G
C

T
A
T
T
G
G
- 0

GATACTTT-

Computing the Scoring Matrix

-4-4-3-12581114G
C

T
A
T
T
G
G
-

-5-4-2147101316

-2-4-3-2036912
1-1-3-3-114710
420-2-30258
7531-1-2036
1086420-214
131197531-12
1614121086420
GATACTTT-

()
() ()
()
()

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−
+−

+−−
=

0
_1,
_,1

,1,1
max,

penaltygapjiF
penaltygapjiF
yxsjiF

jiF
ji

186ICFPT07 12/11/07

Hardware Implementation
(32x1 Sliding Window)

Q1
QESESABAT AD

32 Residue
Window

Size
(Node 1)

Unlimited Database Size

Qn
QESESABAT AD

32 Residue
Window

Size
(Node n)

Unlimited Database Size

…
…

…
…

…
…

Multiple Databases and Multiple Queries

94

187ICFPT07 12/11/07

Data Transfer Scenarios

Microprocessor
Memory

FPGA

QDR 2……

QDR 1……

Sending Data to
QDR 1

Data Sent From QDR1
to FPGA for
Processing

Clock Cycles 0 - 31 32 symbols,1 every clock

Clock Cycles 32 - 63

S-W Scoring on FPGA

Maximum Score sent
to QDR 2

FPGA Sets Done Flag
Sending Max
Score From

QDR 2 to RAM

188ICFPT07 12/11/07

Implementation for Hardware (cnt’d)
(MPI Implementation)

…

…

…

Query
Sequences

Database
Sequences

Node 0

Node 1

Node N-1

Score Array

BroadCast
DBs

Scatter
Queries

Processing

Gather
Scores

Done

95

189ICFPT07 12/11/07

MPI Utilization on SRC-6

0Network Interface Cards cannot be efficiently shared
Only two MPI processes were implemented

Hi-Bar switch

PCI-X

μ
P

μ
P

memory
SNAP

PCI-X

μ
P

μ
P

memory
SNAP

Gig Ethernet

FPG
A

Reconfigurable
processor

FPG
A

FPG
A

Reconfigurable
processor

FPG
A

FPG
A

Reconfigurable
processor

FPG
A

FPG
A

Reconfigurable
processor

FPG
A

MPI

190ICFPT07 12/11/07

MPI Utilization on Cray-XD1

0All Nodes were exploited using MPI
However, only one of the two microprocessors on each node
sufficed

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

System network interconnect (SNIC)

96

191ICFPT07 12/11/07

Implementation for Hardware (cnt’d)
(MPI Implementation)

…

…

…

Query
Sequences

Database
Sequences

Node 0

Node 1

Node N-1

Score Array

BroadCast
DBs

Scatter
Queries

Processing

Gather
Scores

Done

192ICFPT07 12/11/07

Performance Results

91 492
MPI 1 6 nodes

5.9 32
MPI 1 6 nodes986.41

Engine/Chip

359 1857
MPI 1 6 nodes

23.3 120.7
MPI 1 6 nodes39425.64

Engines/Chip

49 188
1 4 Chips

3.19 12.2
1 4 Chips49.23.21

Engine/Chip

191 656
1 4 Chips

12.4 42.7
1 4 Chips19712.84

Engines/Chip

8
Engines/Chip

8
Engines/Chip

24 90
1 4 Chips

3.12 11.7
1 4 Chips24.63.2Protein

371 1138
1 4 Chips

24.1 74
1 4 Chips39425.6

DNASRC

100 MHz (32x1)

45 262
MPI 1 6 nodes

5.9 34
MPI 1 6 nodes496.4Protein

695 2794
MPI 1 6 nodes

45.2 181.6
MPI 1 6 nodes78851.2

DNA

10.065NANADNA

Expected

1

Speedup

0.130

Throughput
(GCUPS)

Measured

NA

SpeedupThroughput
(GCUPS)

NA

XD1

200 MHz (32x1)

GWU

Protein
Opteron
2.4GHz

FASTA

SSEARCH34

97

193ICFPT07 12/11/07

Outline

Architectures and Systems

Tools and Programming

Applications

Performance

Wrap-up

194ICFPT07 12/11/07

Performance

98

195ICFPT07 12/11/07

Potential: Comparison with a cluster of
microprocessor boards

Assumptions:
• 100% cluster efficiency, i.e., each application

can be perfectly parallelized across N microprocessor boards
• Each reconfigurable processor is used

together with a single dual-μP boards

196ICFPT07 12/11/07

System Cost

Cluster of N μPs
cost = N/2 * cost(dual μP board)

+ cost (switch network)

Reconfigurable computer
cost = cost(dual μP board)

+ cost(reconfigurable processor)

99

197ICFPT07 12/11/07

System Cost Current Cost Ratio

Reconfigurable computer cost
Dual μP board cost

≈ 50-100

198ICFPT07 12/11/07

Power Consumption –SRC-6E

Reconfigurable processor: 200 W

μP board (with two μPs): 170 W

Cluster of N single μPs: N*170/2 W

100

199ICFPT07 12/11/07

Power Consumption Ratio

N - Cluster size (in the number of microprocessors)
necessary to obtain equivalent performance

N

Power consumption advantage
Typical reconfigurable computer vs.

a cluster of dual μP boards
containing N μPs

10
100

1000

4.25
42.50

425.00

I/O intensive
applications

Computationally
intensive

applications

200ICFPT07 12/11/07

Power Consumption Cost

Assumptions:

Both systems used non-stop over a 5 year
period

Average commercial cost of power
in LA, NYC, SF, and DC: $0.12 per kW-hour

101

201ICFPT07 12/11/07

Total cost of power over a five year period
without cooling

N
Cluster with

N μPs

Typical
reconfigurable

computer
Savings

10

100

1000

$1,051

$1,051

$1,051

$4,468

$44,680

$446,800

$3,417

$43,629

$445,749

202ICFPT07 12/11/07

Total cost of power over a five year period
including cooling

N Cluster of N μPs

Typical
reconfigurable

computer
Savings

10

100

1000

$2,628

$2,628

$2,628

$11,170

$111,700

$1,117,000

$8,542

$109,072

$1,114,372

102

203ICFPT07 12/11/07

System Size

Cluster of 100 μPs = four 19-inch racks

footprint = 6 square feet

Reconfigurable computer (SRC MAPstationTM)

footprint = 1 square foot

Space savings 6 times assuming rack-mounted clusters,
and many times more for standard PC-based clusters

204ICFPT07 12/11/07

Saving Factor (µP : RP)

1:400

1:100

1:200

Cost

1:11.2

1:20

1:3.64

Power

1:34.5

1:95.8

1:33.3

Size

200MHz

200MHz

100MHz

Maximum
Frequency

XC4LX200

XC2VP50

XC2V6000

FPGA
Type

6

6

8

Number
of

FPGA

SGI RC-100

SRC-6

Cray XD1

Platform

Platform Configuration

103

205ICFPT07 12/11/07

34x313x6x1138Smith-Waterman
(DNA Sequencing)

203x1856x34x6757DES Breaker

19x176x3x641IDEA Breaker

SAVINGS

6x

Cost Savings

34x313x1140RC5(32/12/16) Breaker

Size ReductionPower Savings
SpeedupApplication

Savings of HPRC
(Based on SRC-6)

Assumptions
0100% cluster efficiency
0Cost Factor μP : RP 1 : 200
0Power Factor μP : RP 1 : 3.64

Reconfigurable processor (based on SRC-6): 200 W
µP board (with two µPs): 220 W

0Size Factor μP : RP 1 : 33.3
Cluster of 100 µPs = four 19-inch racks

» footprint = 6 square feet
Reconfigurable computer (SRC MAPstationTM)

» footprint = 1 square feet

206ICFPT07 12/11/07

25x120x24x2402IDEA Breaker

29x140x28x2794Smith-Waterman
(DNA Sequencing)

127x608x122x12162DES Breaker

SAVINGS

23x

Cost Savings

24x116x2321RC5(32/8/8) Breaker

Size ReductionPower Savings
SpeedupApplication

Savings of HPRC
(Based on one Cray-XD1 chassis)

Assumptions
0100% cluster efficiency
0Cost Factor μP : RP 1 : 100
0Power Factor μP : RP 1 : 20

Reconfigurable processor (based on one XD1 Chassis): 2200 W
µP board (with two µPs): 220 W

0Size Factor μP : RP 1 : 95.8
Cluster of 100 µPs = four 19-inch racks

» footprint = 6 square feet
Reconfigurable computer (one XD1 Chassis)

» footprint = 5.75 square feet

104

207ICFPT07 12/11/07

28x86x2x961IDEA Breaker

253x779x22x8723Smith-Waterman
(DNA Sequencing)

1116x3439x96x38514DES Breaker

SAVINGS

17x

Cost Savings

198x610x6838RC5(32/12/16) Breaker

Size ReductionPower Savings
SpeedupApplication

Savings of HPRC
(Based on one Altix 4700 10U rack)

Assumptions
0100% cluster efficiency
0Cost Factor μP : RP 1 : 400
0Power Factor μP : RP 1 : 11.2

1 10U Rack: 1230 W
µP board (with two µPs): 220 W

0Size Factor μP : RP 1 : 34.5
Cluster of 100 µPs = four 19-inch racks

» footprint = 6 square feet
Reconfigurable computer (10U)

» footprint = 2.07 square feet

208ICFPT07 12/11/07

Outline

Architectures and Systems

Tools and Programming

Applications

Performance

Wrap-up

105

209ICFPT07 12/11/07

Lessons Learned
Porting an existing code to an RC platform is difficult
0Requires an in-depth understanding of the code structure and

data flow
0Code optimization techniques used in the microprocessor-based

implementation are not applicable for RC implementation
0Data flow schemes used in the microprocessor-based

implementation in most cases are not suitable for RC
implementation

Only few scientific codes can be ported to an RC platform with
relatively minor modifications
090% of time is spent while executing 10% of the code

Vast majority of the codes require significant restructuring in order
to be ‘portable’, general problems are:
0No well-defined compute kernel
0Compute kernel is too large to fit on an FPGA
0Compute kernel operates on a large dataset or is not called too

many times
function call overhead becomes an issue

210ICFPT07 12/11/07

Lessons Learned

Effective use of high-level programming languages/tools, such as
MAP C/Carte (SRC-6) and Mitrion-SDK/Mitrion-C (RC100), to develop
code for RC platform requires some limited hardware knowledge
0Memory organization and limitations

Explicit data transfer and efficient data access
0On-chip resources and limitations
0RC architecture-specific programming techniques

Pipelining, streams, …

Most significant code acceleration can be achieved when
developing the code from scratch; the code developer then has the
freedom to
0structure the algorithm to take advantage of the RC platform

organization and resources,
0select most effective SW/HW code partitioning scheme, and
0setup data formats and data flow graph that maps well into RC

platform resources

106

211ICFPT07 12/11/07

Conclusions

Making HPRCs relatively easy for scientists is
challenging
0More work on Programming Models needed
0More work on OS needed
0More work on Tools

The proven (demonstrated) promise (only in some
cases for now) is too great to give up
0> 38000+ X of speed up
0> 3000+ X saving in power
0 > 90+ X saving in $$
0> 1000+ X saving in size

212ICFPT07 12/11/07

Publications
El-Araby, Taher, El-Ghazawi, and LeMoigne. Remote Sensing and High-Performance Reconfigurable Computing
(HPRC) Systems, Chapter 18 in High Performance Computing in Remote Sensing, CRC
El-Ghazawi, El-Araby, Huang, Gaj, Kindratenko and Buell, “The Performance Promise of High-Performance
Reconfigurable Computing”, IEEE Computer (in press)
Mohamed Abouellail, Esam El-Araby, Mohamed Taher, Tarek El-Ghazawi and Gregory B. Newby, “DNA and Protein
Sequence Alignment with High Performance Recofigurable Systems”, NASA/ESA Conference on Adaptive Hardware
and Systems 2007(AHS2007), August 5-8, 2007, Scotland, UK
Proshanta Saha, Tarek El-Ghazawi, “Automatic Software Hardware Co-Design for Reconfigurable Computing
Systems”, 17th International Conference on Field Programmable Logic and Applications (FPL 2007), 27-29 August
2007, Amsterdam, Netherlands
E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Bringing High-Performance Reconfigurable Computing to Exact
Computations”, to appear in the proceedings of the 17th International Conference on Field Programmable Logic and
Applications (FPL 2007), Amsterdam, Netherlands, 27-29 August 2007.
Proshanta Saha and Tarek El-Ghazawi, A Methodology for Automating Co-Scheduling for Reconfigurable Computing
Systems. Fifth ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE'2007),
Nice, May 2007.
Proshanta Saha, Tarek El-Ghazawi, “Software/Hardware Co-Scheduling for Reconfigurable Computing Systems”;
International Symposium on Field-Programmable Custom Computing Machines 2007 (FCCM 2007); 23-25 April 2007,
Napa, CA
Proshanta Saha, Tarek El-Ghazawi, “Applications of Heterogeneous Computing in Hardware/Software Co-scheduling
”, International Conference on Computer Systems and Applications (AICCSA 2007), Amman, May 2007.
Proshanta Saha, Tarek El-Ghazawi, “Software/Hardware Co-Scheduling for Reconfigurable Computing Systems”,
Proceeding of III Southern Conference on Programmable Logic (SPL 2007), February 26-28, 2007 - Mar del Plata,
Argentina
Miaoqing Huang, Tarek El-Ghazawi, Brian Larson, Kris Gaj : “Development of Block-cipher Library for Reconfigurable
Computers”, Proceeding of III Southern Conference on Programmable Logic (SPL 2007), February 26-28, 2007 - Mar del
Plata, Argentina
Esam El-Araby, Mohamed Taher, Mohamed Abouellail, Tarek El-Ghazawi, and Gregory B. Newby, “Comparative
Analysis of High Level Programming for Reconfigurable Computers: Methodology and Empirical Study”, Proceeding
of III Southern Conference on Programmable Logic (SPL 2007), February 26-28, 2007 - Mar del Plata, Argentina

107

213ICFPT07 12/11/07

Publications
M. Taher and T. El-Ghazawi, “ A Segmentation Model for Partial Run-Time Reconfiguration”, IEEE International
Conference on Field Programmable Logic and Applications (FPL06), Madrid, Spain, August 2006.
M. Taher and T. El-Ghazawi, “Exploiting Processing Locality Through Paging Configurations in Multitasked
Reconfigurable Systems”, IEEE Reconfigurable Workshop (RAW2006), Proceedings of International Parallel and
Distributed Processing Symposium, Rhodes Island, Greece, April 2006.
E. El-Araby, M. Taher, T. El-Ghazawi, and J. Le Moigne, “Automatic Image Registration for Remote Sensing on
Reconfigurable Computers”, 2006 MAPLD International Conference, Washington, DC, September, 2006
Tarek El-Ghazawi, Kris Gaj, Duncan Buell, Proshanta Saha, Esam El-Araby, Chang Shu, Miaoqing Huang, Mohamed
Taher, and Alan Michalski, "Libraries of Hardware Macros for Reconfigurable Computers”, 2006 MAPLD International
Conference, Washington, DC, September, 2006
Kris Gaj, Tarek El-Ghazawi, Dan Poznanovic, Hoang Le, Proshanta Saha, Steve Heistand, Chang Shu, Esam El-Araby,
Miaoqing Huang, Deapesh Misra, and Paul Gage,"Design of parameterizable hardware macros for reconfigurable
computers”, 2006 MAPLD International Conference, Washington, DC, September, 2006
E. El-Araby, M. Taher, T. El-Ghazawi, A. Youssif, R. Irish, and J. Le Moigne, “Performance Scalability of a Remote
Sensing Application on High Performance Reconfigurable Platforms”, NASA Earth-Sun System Technology
Conference (ESTC 2006), Maryland, USA, June, 2006.
E. El-Araby, T. El-Ghazawi and K. Gaj , A System-Level Design Methodology for Reconfigurable Computing
Applications, IEEE Conference on Field Programmable Computing Technology (FPT 2005), Singapore, Dec 2005.
E. El-Araby, M. Taher, T. El-Ghazawi and J. Le Moigne Prototyping Automatic Cloud Cover Assessment (ACCA)
Algorithm for Remote Sensing On-Board Processing on a Reconfigurable Computer, IEEE Conference on Field
Programmable Computing Technology (FPT 2005), Singapore, Dec 2005.
J. Harkins, T. El-Ghazawi, E. El-Araby and M. Huang, Performance of Sorting Algorithms on a Reconfigurable
Computer, IEEE Conference on Field Programmable Computing Technology (FPT 2005), Singapore, Dec 2005.
E. El-Araby, M. Taher, K. Gaj, T. El-Ghazawi, D. Caliga, N. Alexandridis, “System-Level Parallelism and Concurrency
Maximization in Reconfigurable Computing Applications”, International Journal for Embedded Systems (IJES), vol. 2,
no. 1/2, 2006, pp. 62-72.
S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic Reduction of Hyperspectral Imagery Using Wavelet Spectral
Analysis,” IEEE Transactions on Geosciences and Remote Sensing (TGARS), Vol. 41 No. 4, April 2003, pp 863-871.
T. El-Ghazawi, K. Gaj, N. Alexandridis, F. Vroman, N. Nguyen, J. Radzikowski, P. Samipagdi, and S. Suboh, “A
Performance Study of Job Management Systems,” Concurrency and Computation: Practice and Experience, John
Wiley & Sons, Ltd.

214ICFPT07 12/11/07

Publications

E. El-Araby, M. Taher, K. Gaj, T. El-Ghazawi, D. Caliga, N. Alexandridis, “System-Level Parallelism and Concurrency
Maximization in Reconfigurable Computing Applications”, International Journal for Embedded Systems (IJES), vol. 2, no. 1/2,
2006, pp. 62-72.
S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic Reduction of Hyperspectral Imagery Using Wavelet Spectral
Analysis,” IEEE Transactions on Geosciences and Remote Sensing (TGARS), Vol. 41 No. 4, April 2003, pp 863-871.
T. El-Ghazawi, K. Gaj, N. Alexandridis, F. Vroman, N. Nguyen, J. Radzikowski, P. Samipagdi, and S. Suboh, “A Performance
Study of Job Management Systems,” Concurrency and Computation: Practice and Experience, John Wiley & Sons, Ltd.
E. El-Araby, M. Taher, T. El-Ghazawi, A. Youssif, R. Irish, and J. Le Moigne, “Performance Scalability of a Remote Sensing
Application on High Performance Reconfigurable Platforms”, NASA Earth-Sun System Technology Conference (ESTC 2006),
Maryland, USA, June, 2006.
E. El-Araby, M. Taher, T. El-Ghazawi, J.Le Moigne, "Prototyping Automatic Cloud Cover Assessment (ACCA) Algorithm for
Remote Sensing On-Board Processing on a Reconfigurable Computer,"Proc. IEEE 2005 Conference on Field Programmable
Technology, FPT'05, Singapore, Dec. 11-14, 2005.
J. Harkins, E. El-Araby, M. Huang, T. El-Ghazawi, "Performance of Sorting Algorithms on a Reconfigurable Computer," Proc.
IEEE 2005 Conference on Field Programmable Technology, FPT'05, Singapore, Dec. 11-14, 2005.
E. El-Araby, K. Gaj, T. El-Ghazawi, "A System Level Design Methodology for Reconfigurable Computing Applications," Proc.
IEEE 2005 Conference on Field Programmable Technology, FPT'05, Singapore, Dec. 11-14, 2005.
C. Shu, K. Gaj, T. El-Ghazawi , "Low Latency Elliptic Curve Cryptography Accelerators for NIST Curves on Binary Fields," Proc.
IEEE 2005 Conference on Field Programmable Technology, FPT'05, Singapore, Dec. 11-14, 2005.
S. Bajracharya, D. Misra, K. Gaj, T. El-Ghazawi , "Reconfigurable Hardware Implementation of Mesh Routing in Number
Field Sieve Factorization," Extended Abstract, Talk Special Purpose Hardware for Attacking Cryptographic Systems,
SHARCS 2005, Paris, France, Feb. 24-25, 2005, pp. 71-81.
E. El-Araby, T. El-Ghazawi, J.Le Moigne, and K. Gaj, "Wavelet Spectral Dimension Reduction of Hyperspectral Imagery
on a Reconfigurable Computer," Proc. IEEE 2004 Conference on Field Programmable Technology, FPT 2004, Brisbane,
Australia, Dec. 6-8, 2004, pp. 399-402.

108

215ICFPT07 12/11/07

Publications
E. Chitalwala, T. El-Ghazawi, K. Gaj, N. Alexandridis, D. Poznanovic, "Effective System and
Performance Benchmarking for Reconfigurable Computers," Proc. IEEE 2004 Conference on Field
Programmable Technology, FPT 2004, Brisbane, Australia, Dec. 6-8, 2004, pp. 453-456.
S. Bajracharya, C. Shu, K. Gaj, T. El-Ghazawi, "Implementation of Elliptic Curve Cryptosystems over
GF(2^n) in Optimal Normal Basis on a Reconfigurable Computer," 14th International Conference on
Field Programmable Logic and Applications, FPL 2004, Antwerp, Belgium, Aug 30 - Sept 1, 2004, pp.
1001-1005..
E. El-Araby, M. Taher, K. Gaj, T. El-Ghazawi, D. Caliga, N. Alexandridis "System-Level Parallelism and
Throughput Optimizations in Designing Reconfigurable Computing Applications," Reconfigurable
Architecture Workshop, RAW 2004, Santa Fe, USA, Apr 26-27, 2004.
N. Nguyen, K. Gaj, D. Caliga, T. El-Ghazawi, "Implementation of Elliptic Curve Cryptosystems on a
Reconfigurable Computer," Proc. IEEE International Conference on Field-Programmable Technology,
FPT 2003, Tokyo, Japan, Dec. 2003, pp. 60-67.
E. El-Araby, M. Taher, K. Gaj, D. Caliga, T. El-Ghazawi, N. Alexandridis, "Exploiting System-level
Parallelism in the Application Development on a Reconfigurable Computer," Proc. IEEE International
Conference on Field-Programmable Technology, FPT 2003, Tokyo, Japan, Dec. 2003, pp. 443-446.
A. Michalski, K. Gaj, T. El-Ghazawi, "An Implementation Comparison of an IDEA Encryption
Cryptosystem on Two General-Purpose Reconfigurable Computers," LNCS 2778, 13th International
Conference on Field Programmable Logic and Applications, FPL 2003, Lisbon, Portugal, Sep. 2003,
pp. 204-219.
O. D. Fidanci, D. Poznanovic, K. Gaj, T. El-Ghazawi, and N. Alexandridis, "Performance and Overhead
in a Hybrid Reconfigurable Computer," Reconfigurable Architecture Workshop, RAW 2003, Nice,
France, Apr. 2003.
T. El-Ghazawi and F. Cantonnet, "UPC Performance and Potential: A NPB Experimental Study,"
Supercomputing’02, IEEE CS, Baltimore, Nov. 16-22, 2002.
K. Gaj, T. El-Ghazawi, F. Vroman, N. Nguyen, J. R. Radzikowski, P. Samipagdi, and S. A. Suboh,
"Performance Evaluation of Selected Job Management Systems," Proceedings of IEEE International
Parallel and Distributed Processing Symposium (PMEO-PDS'02), Fort Lauderdale, Florida, Apr. 15-19,
2002.

