
1

1ICFPT07 12/11/07

High-Performance 
Reconfigurable Computing

Tarek El-Ghazawi
Director, Institute for Massively Parallel Applications and Computing 

Technology (IMPACT)
Co-Director, NSF Center for High-Performance Reconfigurable 

Computing (CHREC)

The George Washington University

2ICFPT07 12/11/07

Acknowledgements

ARSC, AMI, Cray, DoD, HPTi, NASA, NSF/CHREC, 
SGI, SRC, Star Bridge, Xtreme Data, many others



2

3ICFPT07 12/11/07

Outline

Architectures and Systems

Tools and Programming

Applications

Performance

Wrap-up

4ICFPT07 12/11/07

Reconfigurable Supercomputing (RSC)

Efficient high performance computing using 
parallel and distributed systems of both 
reconfigurable hardware resources and 
conventional microprocessors

This tutorial establishes the current status, the 
direction taken, and the potential for RSC
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Top 500 Supercomputers
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Reconfigurable Computers
The microchip that rewires itself

Scientific American – June 1997
0Computers that modify their 

hardware circuits as they operate
are opening a new era in 
computer design.  

0Reconfigurable computers 
architecture is based on FPGAs
(Field Programmable Gate 
Arrays)

Source: [Sci97]
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Execution Model for HPRCs

Fine grain computations with the RP, others with the MP

Interaction between RP and MP can be blocking or asynhronous

This scenario is replicated across the whole system and standard
HPC parallel programming paradigms used for interactions

PC

μP
RP

Piplines, Systolic Arrays, SIMD, ...

•Transfer of Control
•Input Data

•Output Data
•Transfer of Control
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Synergism between μP and RPs

Harder

Relatively Easy

(S.W./Parallel 
Programming)

Applications 
Partitioning

COTS, multipurposeCOTS, multipurposeCommercial 
Availability

Hardware→Data Flow

Spatial – Unfolding  

parallel operations  with    

changeable hardware

Software→Control Flow

(von Neumann)

Temporal – reuse of       

fixed hardware

Processing Style

Fine-Grain

Relatively Slow

Increasing Speed

Coarse-Grain

Very Fast

Saturating Rate

Parallelism Exploited

Clocking Rate

RP(FPGA-based)µP
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Capacity Trends

Year
1985

X
ili

nx
 D

ev
ic

e 
C

om
pl

ex
ity

XC2000
50 MHz
1K gates

XC4000
100 MHz

250K gates

Virtex
200 MHz
1M gates

Virtex-II 
450 MHz
8M gates

Spartan
80 MHz

40K gates

Spartan-II
200 MHz

200K gates

Spartan-3
326 MHz
5M gates

19911987

XC3000
85 MHz

7.5K gates

Virtex-E
240 MHz
4M gates

XC5200
50 MHz

23K gates

1995 1998 1999 2000 2002 2003

Virtex-II Pro
450 MHz
8M gates*

2004 2006

Virtex-4
500 MHz

16M gates*

Virtex-5
550 MHz

24M gates*

Source: http://class.ece.iastate.edu/cpre583/lectures/Lect-01.ppt

10ICFPT07 12/11/07

WHAT’S NEW IN THE VIRTEX-5 FPGA FAMILY
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The Design Cycle
(That we want you to avoid !)

Design and implement 
a simple encryption 
unit with RC5 cipher 
with fixed key

Library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity RC5_core is
port(

clock, reset, encr_decr: in std_logic;
data_input: in std_logic_vector(31 downto 0);
data_output: out std_logic_vector(31 downto 0);
out_full: in std_logic;
key_input: in std_logic_vector(31 downto 0);
key_read: out std_logic;

);
end RC5_core;

Specification

HDL (Hardware 
Description Language)
model

Post-synthesis simulation
Synthesis

Functional simulation

netlist
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Timing simulation

On board testing

Implementation 
(Mapping, Placing & Routing)

Downloading and Testing

The Design Cycle
(That we want you to avoid !)
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General Architecture of an FPGA-Based Board

B
U

S

Processing
Element
(PE#0)

Processing
Element
(PE#1)

Processing
Element
(PE#N-1)

COMMON MEMORY / INTERCONNECT NETWORK

LOCAL
MEMORY

LOCAL
MEMORY

LOCAL
MEMORY

CLK

BUS INTERFACE 
CONTROLLER

I/O CARD
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Reconfigurable Computing Boards 
(Accelerators)

Boards may have one or several interconnected 
FPGA chips

Support different bus standards, e.g. PCI, PCI-X, 
VME

May have direct real-time data I/O through a 
daughter board

Boards may have local onboard memory (OBM) 
to handle large data while avoiding the system 
bus (e.g. PCI) bottleneck
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Many boards per node can be supported

Host program (e.g. C) to interface user (and μP) 
with board via a board API

Driver API functions may include functionalities 
such as Reset, Open, Close, Set Clocks, DMA, 
Read, Write, Download Configurations, Interrupt, 
Readback

Reconfigurable Computing Boards 
(Accelerators)
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Some Reconfigurable Boards Vendors

ANNAPOLIS MICRO SYSTEMS, INC. (http://www.annapmicro.com)
University of Southern California -USC/ISI (http://www.east.isi.edu)
AMONTEC (http://www.amontec.com/chameleon.shtml)
XESS Corporation (http://www.xess.com)
CELOXICA (http://www.celoxica.com)
CESYS (http://www.cesys.com)
TRAQUAIR (http://www.traquair.com)
SILICON SOFTWARE: (http://www.silicon-software.com)
ALPHA DATA: (http://www.alpha-data.com)
Associated Professional Systems: (http://www.associatedpro.com)
NALLATECH: (http://www.nallatech.com)
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Representative Example 
Boards 

From Annapolis Micro Systems (AMI)
http://www.annapmicro.com

&
Nallatech

http://www.nallatech.com
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Source: [AMS02]

WILDFORCETM

256k x 32 
dual port 

RAM
Xilinx 4062XL’s
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Source: [AMS02]
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WILDSTARTM II for VME

Copyright Annapolis Micro Systems, Inc. 2002

PE 2
VIRTEXTM II

 XC2V 6000, 8000

Backplane I/O
P0

Backplane I/O
P2

DDR2
SRAM

2, 4 MB

36 DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36DDR2

SRAM
2, 4 MB

DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36

36

36

Prog
Osc

3

DDR
SDRAM
64 MB

32

88 88

PE 1
VIRTEXTM II

 XC2V 6000, 8000

I/O #1

DDR2
SRAM

2, 4 MB

36 DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36DDR2

SRAM
2, 4 MB

DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36

36

36

Prog
Osc

3

DDR
SDRAM
64 MB

32

168

PE 0
VIRTEXTM II

 XC2V 6000, 8000

I/O #0

DDR2
SRAM

2, 4 MB

36 DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB
36DDR2

SRAM
2, 4 MB

DDR2
SRAM

2, 4 MB

DDR2
SRAM

2, 4 MB

36

36

Prog
Osc

3

DDR
SDRAM
64 MB

32

168

172 172

36 36 3636

VME BUS

PCI
Controller

32/64 Bits 33/66 MHz

32 32 32

32 32

172

PCI to VME Bridge

Flash

Flash Flash Flash
1616 16

Master
Clock

Generator

PCLK
MCLK
ICLK

16
Differential
Single Ended

Source: [AMS02]
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WILDSTAR™ II Pro 

Reproduced and displayed with permission
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WILDSTAR™ II Pro 

Reproduced and displayed with permission
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Nallatech's BenNUEY-PCI-4E
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Clusters and Networks of 
Reconfigurable Computers 

(NORCs)
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Networks of Reconfigurable 
Computers (NORCs)

Expensive reconfigurable workstations can be at 
times underutilized
Large problems may need to be spread over a 
number of workstations
Many problems may need a high throughput 
environment
So, need S/W system to remotely schedule and 
monitor reconfigurable tasks, send data and bit-
streams, and collect results
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Example : GWU/GMU Extended JMS

http://www.gwu.edu/~hpc/lsf/
http://ece.gmu.edu/lucite/

Team from GWU and GMU with DoD support

Considered extending job management systems 
(JMS’s) to recognize reconfigurable computing 
resources and support the needed functionalities

Evaluated many implementations of JMS’s and 
selected LSF (Load Sharing Facility) for 
implementation
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Networked Reconfigurable Resources
Management System
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Architecture of a typical Job Management 
System

Jobs & 
their requirements

User
Server

Job Scheduler
Resource
Monitor

Available
Resources

Resource 
Requirements

Scheduling 
Policies

Job
DispatcherResource Allocation

and Job Execution

Resource Manager
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LSF

LSF (Load Sharing Facility) is the product of Platform 
Computing
LSF is a layer of software services on top of UNIX 
and Windows NT operating systems
The LSF Suite is a set of software modules that 
manage distributed computing resources and 
workloads
LSF creates a single system view on a network of 
heterogeneous computers so that the whole network 
of computing resources can be utilized effectively 
and managed easily
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General Architecture of  LSF

Subm ission host

B atch A PI

M aster host

M L IM

M B D

Execution host

SB D

C hild  SB D

L IM

R E S

U ser job

LIM  – Load Inform ation  M anager
M LIM  – M aster LIM
M BD  – M aster Batch D aem on
SBD  – Slave Batch D aem on
R E S – R em ote Execution Server

queue

Load
inform ation

other
hosts

other
hosts

bsub app

Subm ission host

B atch A PI

M aster host

M L IM

M B D

Execution host

SB D

C hild  SB D

L IM

R E S

U ser job

LIM  – Load Inform ation  M anager
M LIM  – M aster LIM
M BD  – M aster Batch D aem on
SBD  – Slave Batch D aem on
R E S – R em ote Execution Server

queue

Load
inform ation

other
hosts

other
hosts

bsub app
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Extension of LSF to Reconfigurable Hardware

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RESqueue

Load
information

other
hosts

other
hosts Universal ELIM

FPGA
board

Status
of the
board

Remote
user

bsub

board independent

board
dependent
plug-in

RUser job

Board 2 driver

Local 
user Board 2 API

LUser job

Board 2 API

Board 
API

2
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Linux RH7.0 – PIII  

450 MHz, 512 MB RAM

Execution Host 1

Submission & Master Host

Windows XP – PIV  1.3 GHz, 256 MB RAM

GWU/GMU NORCs Testbed Used in Experiments 

SLAAC-1V

FIREBIRD V1000

WILDFORCE

LINUX 2.2.5 – PII  450 MHz, 256 MB RAM

Windows 2000 – PII   400 MHz, 128 MB RAM

SLAAC-1V

Windows XP – PIV  1.3 GHz, 256 MB RAM

Execution Host 2

Execution Host 3

Execution Host 4

HPCL 2

HPCL 3

HPCL 5

HPCL 6
FIREBIRD V2000

Workloads included crypto 
analysis and image 
processing (edge detection)
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Parallel DES Breaker
Ciphertext=0X 8CA64DE9C1B123A7  Plaintext=0X 0000000000000000 

Search Space from 0X 1010100C5663702  to 10101013C9BCB00 
Key found  = 0X 0101010101010101 

Estimated speed-up 
over Pentium 4 > 500

34ICFPT07 12/11/07

Reconfigurable Computing 
Clusters
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Reconfigurable Beowulf Clusters

“Do-It-Yourself Supercomputers” - Science 1996
Built around:
0Pile of PCs (POP)
0Dedicated Commodity Network

LAN
Myrinet, Infiniband, …..

0Free Unix: Linux
0Free and COTS Parallel Programming and 

performance Tools

COTS Hardware permits rapid development and 
technology tracking
COTS reconfigurable boards as accelerators at each 
node
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Example 1: HPTi Solution 
Delivered and Benchmarked

http://www.hpti.com/

Source: [HPTi, MAPLD04]
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© HPTi, 2004 37

Delivered and Benchmarked

48 nodes
2u, back-to-back (net 
1u/node)
96 FPGA’s
Annapolis Micro
Xilinx Virtex II
34 Tera-Ops
In use today
All Commodity Parts
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Tower of Power

http://ccm.ece.vt.edu/

16-node cluster of PCs 

WILDFORCE board on each PC

Myrinet network connecting all PCs

Runs ACS API (platform independent 
API for the configuration and control 
of multi-board systems)

Source: [ACS01]
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SLAAC RRP (Research Reference Platform)

Source: [ISI 01]

Dell GXI

WILDFORCE

Dell GXI

WILDFORCE

Dell GXI

WILDSTAR

Dell GXI

SLAAC1

Dell GXI

SLAAC1

Ethernet 
Intelligent 

Hub
100 Mbps

Myrinet 
LAN/SAN 

Switch

128 Gbps

128 Gbps

128 Gbps

128 Gbps

128 Gbps
http://www.east.isi.edu/
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Scalable Reconfigurable 
Systems
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Reconfigurable Supercomputers at GWU

SRC- 6

SRC- 6E

XD1

HC-36

Altix-350

Altix-4700
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Scalable Reconfigurable Systems

Large numbers of reconfigurable processors and 
microprocessors
Everything can be configured
0Functional units
0Interconnects
0Interfaces

High-level of scalability
Suitable for a wide range of applications
Everything can be reconfigured over and over at run time 
(Run-Time Reconfiguration) to suite underlying applications
Can be easily programmed by application scientists, at least in 
the same way of programming conventional parallel 
computers
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An Architectural 
Classification for High-

Performance 
Reconfigurable Computers
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A Classification for High-Performance 
Reconfigurable Computers (HPRCs)

HPRCs

Uniform Node
Non-Uniform Systems (UNNS)

Non-Uniform Node
Uniform Systems (NNUS)

Attached Processors
Scalable Systems

SRC 6E and 
SBS HCs

SRC 6, SRC 7 
and  SGI RASC

Cray XD1, Cray XT4, 
Linux Networx SS1200

Tarek El-Ghazawi, Esam El-Araby, Miaoqing Huang, Kris Gaj, Volodymyr Kindratenko, Duncan Buell, 
"The Promise of High-Performance Reconfigurable Computing", IEEE Computer (In Press).
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1. Uniform Node Non-Uniform Systems 
(UNNS)

μP Subsystem RP Subsystem

…μP 1 μP N …RP 1 RP N

a. Non-Scalable (or Attached 
Processor) Architecture

Examples: SRC 6E and SBS HC
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b. Scalable System

μP Node

…μP 1 μP N

RP Node

…RP 1 RP N

RP Node

…RP 1 RP N

μP Node

…μP 1 μP N

IN and/or GSM

Examples: SRC 6, SGI Altix/RASC

1. Uniform Node Non-Uniform Systems 
(UNNS)
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IN and/or GSM

μP RP μP

RP

RP

μP

3 Node Architecture Options

Example: Cray XD1, XT4

μP RPμP RP

2. Non-Uniform Node Uniform Systems 
(NNUS)
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Example1: SRC Systems
http://www.srccomp.com/

Source: [SRC, MAPLD04]
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Example1: SRC 6 SystemExample1: SRC 6 System
http://http://www.srccomp.comwww.srccomp.com//

Source: [SRC, MAPLD04]

Copyright© 2004 SRC Computers, Inc. ALL RIGHTS RESERVED       www.srccomputers.com

50

SRC MAPSRC MAP™™ Reconfigurable ProcessorReconfigurable Processor

Source: [SRC, MAPLD04]
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SNAP

Computer
Memory
(8 GB)

P4
(2.8GHz)

P4
(2.8GHz)

/ /22400
MB/s

MIOC

L2L2

4256 MB/s

// 4256 MB/s1064 MB/s

DDR
Interface

PCI-X

Control
FPGA

XC2V6000

2128  MB/s

On-Board Memory
(24 MB)

/4800 MB/s
(6x64 bits)

FPGA 1
XC2V6000

FPGA 2
XC2V6000

/

4800 MB/s
(6x 64 bits)

/

4800 MB/s
(6x 64 bits)

2400 MB/s
(192 bits)

/

/ /

(108 bits)

Chain
Ports 2400 MB/s

(108 bits)

/

1064 MB/s

½ MAP
Board

uP
Board

22400
MB/s

SRC Hardware ArchitectureSRC Hardware Architecture

Source: [SRC, MAPLD04]
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Wide Area Wide Area 
NetworkNetworkDiskDisk

Storage Area Storage Area 
NetworkNetwork

Local Area Local Area 
NetworkNetwork

PCIPCI--XX

MAPstationMAPstation

MAPMAP®®

μμPP

MemoryMemory

SNAPSNAP™™

GPIOGPIO
PortsPorts

SRC SRC MAPstationMAPstation™™

SRCSRC--6 uses standard external network connections6 uses standard external network connections

MAPstationMAPstation ConfigurationsConfigurations

Tower
2U

Single MAP WorkstationSingle MAP Workstation

Source: [SRC, MAPLD04]
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Storage Area Storage Area 
Network Network 

Local Area Local Area 
Network Network 

Wide Area Wide Area 
Network Network DiskDisk

CustomersCustomers’’ Existing NetworksExisting Networks

HiHi--Bar sustains 1.4 GB/s per portBar sustains 1.4 GB/s per port
Up to 256 input and 256 output portsUp to 256 input and 256 output ports
Common Memory (CM) has controller with DMA capabilityCommon Memory (CM) has controller with DMA capability
Up to 8 GB DDR SDRAM supported per CM nodeUp to 8 GB DDR SDRAM supported per CM node

PCIPCI--XXPCIPCI--XX

SRC HiSRC Hi--BarBarTMTM Based SystemsBased Systems

MAPMAP®®

SRCSRC--66

MAPMAP

μμPP

MemoryMemory

SNAPSNAP™™

μμPP

MemoryMemory

SNAPSNAP

Gig EthernetGig Ethernet
etc.etc.

Common Common 
MemoryMemory

ChainingChaining
GPIOGPIO

Common Common 
MemoryMemory

SRC HiSRC Hi--Bar SwitchBar Switch

Source: [SRC, MAPLD04]
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Wide Area Wide Area 
NetworkNetworkDiskDisk

Storage Area Storage Area 
NetworkNetwork

Local Area Local Area 
NetworkNetwork

SRC SRC MAPstationMAPstation™™ with Hiwith Hi--BarBar™™

MAPstation towers hold up to 3 MAP or memory nodesMAPstation towers hold up to 3 MAP or memory nodes

MAPstationMAPstation TowerTowerMAPstation with 2 MAPs and Common MemoryMAPstation with 2 MAPs and Common Memory

PCIPCI--X/EXPX/EXP

μμPP

MemoryMemory

SNAPSNAP™™

MAPMAP®®

GPIOGPIO
PortsPorts

SRC HiSRC Hi--BarBar™™ SwitchSwitch

MEMORYMEMORY MAPMAP®®

GPIOGPIO
PortsPorts

Source: [SRC, MAPLD04]
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SRC Compilation ProcessSRC Compilation Process

Object
files

Application sources Macro sources 

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f  files .vhd or .v files

Object
files

Application sources Macro sources 

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f  files .vhd or .v files
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Overview
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SRC-7

• Focus on higher bandwidth
– Faster interconnect
– More memory accesses 

• Maintains software compatibility

Copyright© 2005           SRC Computers, Inc.         ALL RIGHTS RESERVED www.srccomputers.com

Sustained Payload Bandwidths

SRC-6

SRC-7

μP to Hi-Bar®

Hi-Bar® Switch
(per Input or Output port)

MAP Main I/O

MAP User Logic OBM

MAP GPIO

3600 MB/s

3600 MB/s

14400 MB/s

10300 MB/s

24000
MB/s

157%

157%

414%

115%

275%
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Series H MAP®

Eight Banks On-Board Memory
(64 MB SRAM)

4.2 
GB/s

GPIO
12 GB/s

Controller
EP2S130

User Logic 1
55 Mgates
EP2S180

User Logic 2
55 Mgates
EP2S180

14.4 GB/s
sustained payload
(7.2 GB/s per pair)

MAP
SDRAM

1 GB
SDRAM

1 GB4.2 
GB/s

19.2 GB/s (2.4 x8)

14.4 GB/s

Series H MAP
5.25” Drive Bay Enclosure

• 1 or 2 LVDS main I/O ports 

• 150 MHz nominal User Logic speed

• 16 simultaneous SRAM OBM references

• 2 dedicated 64 bit Bridge Ports  

• 2 simultaneously accessible DDR2 
SDRAM OBCM banks

– Initial release is 512 MB, 1 GB to follow

• Streaming supported between I/O, 
OBCM, User Logic, OBM and GPIOX

• Simultaneous input and output DMAs

• GPIO eXpansion (GPIOX) cards

4.8 
GB/s

Copyright© 2005           SRC Computers, Inc.         ALL RIGHTS RESERVED www.srccomputers.com

Storage Area Storage Area 
Network Network 

Local Area Local Area 
Network Network 

Wide Area Wide Area 
Network Network DiskDisk

Customers’ Existing Networks

• Hi-Bar sustains 3.6 GB/s payload per path with 180 ns latency per tier
• 2 tiers support 256 nodes
• MAP can use 1 or 2 Hi-Bar ports
• GPIO can be chained or used for direct data input to MAP

PCI ExpressPCI ExpressPCI ExpressPCI Express

SRC-7 Hi-BarTM Based Systems

SRC-7
μμPP

MemoryMemory

SNAPSNAP™™

μμPP

MemoryMemory

SNAPSNAP

Gig EthernetGig Ethernet
etc.etc.

Common Common 
MemoryMemory

SRCSRC--7 Hi7 Hi--Bar SwitchBar Switch

3.63.6
GB/sGB/s

7.27.2
GB/sGB/s

ChainingChaining
GPIOGPIO 5.25.2

GB/sGB/s

GPIOXGPIOX GPIOXGPIOX

MAPMAP

7.27.2
GB/sGB/s

MAPMAP®® HBHB
DiskDisk

3.63.6
GB/sGB/s

7.27.2
GB/sGB/s

7.27.2
GB/sGB/s
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SRC-7 MAP Capability

14.4 GB/s

2048 MB

12
GB/s

35 GF

110 Mgates
(359K LUT/FF)

70 GF

19.2 GB/s

SRC-6
Series C

SRC-6
Series E

SRC-7
Altera Based

Total Local
Memory OBM SRAM Size

User Logic Mgates

User Logic
OBM SRAM BW

Sustained
GPIO Payload BW

DPFP Perf

Sustained
Interface

Payload BW

SPFP Perf

64 MB

62ICFPT07 12/11/07

Example 2: Cray XD1 
(OctigaBay 12K)

http://www.cray.com

Source: [Cray, MAPLD04]
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63

Cray XD1 (Cray XD1 (Cray XD1 (OctigaBayOctigaBayOctigaBay 12K)12K)12K)

Source: [Cray, MAPLD04]

64

Application Acceleration CoApplication Acceleration CoApplication Acceleration Co---ProcessorProcessorProcessor

QDR SRAM

3.2 GB/s

Application Acceleration FPGA
Xilinx Virtex II Pro

AMD Opteron
HyperTransport

Cray RapidArray Interconnect

3.2 GB/s

2 GB/s2 GB/s

3.2 GB/s

RAP

3.2 GB/s

3.2 GB/s

3.2 GB/sRapidArray

Source: [Cray, MAPLD04]
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Cray XD1 SolutionsCray XD1 SolutionsCray XD1 Solutions

Source: [Cray, MAPLD04]
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Cray XD1 SystemCray XD1 SystemCray XD1 System

Multiple Chassis Connected to RapidArray FabricMultiple Chassis Connected to RapidArray Fabric

Fat Tree

Direct Connect

Source: [Cray, MAPLD04]
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Application Acceleration InterfaceApplication Acceleration InterfaceApplication Acceleration Interface
User
Logic

ADDR(20:0)
D(35:0)
Q(35:0)

TX

RX

RapidArray

ADDR(20:0)
D(35:0)
Q(35:0)

ADDR(20:0)
D(35:0)
Q(35:0)

ADDR(20:0)
D(35:0)
Q(35:0)

RapidArray
Transport

Core
QDR RAM 

Interface Core

QDR 
SRAM

RAP

• XC2VP30 running at 200 MHz.
• 4 QDR II RAM with over 400 HSTL-I I/O at 200 MHz DDR (400 MTransfers/s).
• 16 bit RapidArray I/F at 400 MHz DDR (800 MTransfers/s.) 
• QDR and RapidArray I/F take up <20 % of XC2VP30. The rest is available for user applications.

Source: [Cray, MAPLD04]
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FPGA Linux APIFPGA Linux APIFPGA Linux API

Admininstration Commands
fpga_open - allocates and opens fpga
fpga_close - closes allocated fpga
fpga_load - loads binary into fpga
fpga_is_loaded - queries the programming state of the FPGA
fpga_uload - clears the configuration in FPGA (hard-reset)

Operation/Control Commands
fpga_start - start fpga (release from reset)
fpga_reset - soft-resets the FPGA

Mapping Commands
fpga_set_ftrmem - maps application virtual address to allow access by FPGA
fpga_memmap - maps FPGA ram into application virtual space
fpga_mem_sync - forces completion of outstanding transactions to mapped FPGA memory

Data Commands
fpga_wrt_appif_val - writes data into application interface (register space)
fpga_rd_appif_val - reads data from application interface (register space)

Status Commands
fpga_status - gets status of fpga

Source: [Cray, MAPLD04]
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Standard FPGA Development ToolsStandard FPGA Development ToolsStandard FPGA Development Tools

VHDL,
Verilog, 
C

Modelsim

Synplicity,
Leonardo,
Precision,
Xilinx ISE

Xilinx ISE

Simulate

ImplementSynthesizeHDL

Xilinx 
ChipScope

From Command line 
or Application

Cores

Download

Verify

RA I/F,
QDR SRAM I/F 0100010101

1010101011
0100101011
0101011010
1001110101
0110101010

Binary File

Metadata

Source: [Cray, MAPLD04]
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Additional High Level ToolsAdditional High Level ToolsAdditional High Level Tools

Source: [Cray, MAPLD04]
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Software Development Flow

Synthesize

HDL

Implement 0100010101
1010101011
0100101011
0101011010

bit stream

for(i=0;i<n;i++){
s(i)=x*type(i)
}
for(i=0;i<n;i++){
for(k=1;k<m;k++){
if(mat(k)<s(i))
s(i)=s(i)–pv(k);
}
}

C source FPGA Tool

C source

Simulation

DRC RPSysCore

MPI include

MPI Library

0100010101
1010101011
0100101011
0101011010

a.out

Compile
cc
code.c

Link
ld
code.o

Load/Run

Simulation

Source: [Cray, SC07]

XT4 Scalable Interconnect

C

C

C

S

S
A

A

A

A

A

A

C = Compute Nodes
S = Service Nodes
A = Accelerator Nodes

Source: [Cray, SC07]
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Cray XT4 Node

9.6 GB/sec

9.
6 

G
B

/s
ec

9.6 GB/sec

9.6 GB/sec 9.6 GB/sec

9.
6 

G
B

/s
ec

2 – 8 GB

12.8 GB/sec direct 
connect memory
(DDR 800)

6.4 GB/sec direct connect 
HyperTransport

Cray
SeaStar2+

Interconnect

4-way SMP
>35 Gflops per node
Up to 8 GB per 
node
OpenMP Support 
within socket

Source: [Cray, SC07]

9.6 GB/sec

9.
6 

G
B

/s
ec

9.6 GB/sec

9.6 GB/sec 96 GB/sec

9.
6 

G
B

/s
ec

Cray
SeaStar2+

Interconnect

6.4 GB/sec 
HyperTransport 

DRC Reconfigurable 
Processing Unit 

1-4 GB local 
RPU memory 

Cray XR1 Reconfigurable Blade

Source: [Cray, SC07]
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Example 3: SGI Altix
http://www.sgi.com/servers/altix/

Source: [SGI, MAPLD04]
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SGI Systems
http://www.sgi.com

System Architecture

C

C

C

C

C

C

C

C

C

C

C

V
RR

RR

IOIO

IO IORASC RASC

RASCRASC

• NUMAlink system interconnect

• General-purpose compute nodes

• Peer-attached general purpose I/O

• Integrated graphics/visualization

• Reconfigurable Application Specific 
Computing

R

C

IO

RASC

V
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NUMALink Topology

NUMAlink interconnect at 
the lowest hierarchy level 

NUMALink topology of a 512-processor dual “Fat-Tree”

RASC Architecture
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TIO

NUMAlink Connectors

Algorithm
FPGA

Loader
FPGA

SSP

2 – 8 MB 
QDR SRAM

2 –
8 M

B
 

Q
D

R
 SR

A
M

PCI 66MHz 2 – 8 MB 
QDR SRAM

Current Product – SGI® RASC™ Technology (Athena)

2 -8 M
B

 
Q

D
R

 SR
A

M

Algorithm FPGA  Virtex2 6000 -6
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Design Flow 
(HDLs)

IA-32 Linux 

Machine

Design iterations

Design Entry
(Verilog, VHDL)

Design Synthesis
(Synplify Pro, 

Amplify)

Design 
Implementation

(ISE)

Design Verification

Behavioral Simulation
(VCS, Modelsim)

Static Timing Analysis
(ISE Timing Analyzer)

.v, .vhd
.v, .vhd

.edf

.ncd, .pcf

.bin

Metadata
Processing

(Python)

.v, .vhd

.cfg

Altix Device Programming
(RASC Abstraction Layer, 

Device Manager, Device Driver)

Real-time 
Verification

(gdb)

.c

Design Flow 
(HLLs)

IA-32 
Linux 

Machine

RTL Generation and 
Integration with Core Services

Design Synthesis
(Synplify Pro, 

Amplify)

Design Verification

Behavioral Simulation
(VCS, Modelsim)

Static Timing Analysis
(ISE Timing Analyzer)

.v, .vhd
.v, 

.vhd

.edf

.ncd, 
.pcf

.bin

Metadata
Processing

(Python)

.v, 
.vhd

.cfg

Altix Device Programming
(RASC Abstraction Layer, 

Device Manager, Device Driver)

Real-time 
Verification

(gdb)

.c

Design Implementation
(ISE)

HLL Design Entry
(Handel-C, Impulse C, Mitrion C, Viva)
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SGI® RASC™ RC100 Blade
Computation Blade

TIO

TIO

NL4

NL4

Loader
NL4

PCI

SSP

SSP

Selmap

Selmap

V4LX200

V4LX200

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM SRAM

SRAM

SSAM

SRAM

Note: both QDR SRAM 
and DDR2 SDRAM 
supported

Product plans and information are preliminary and subject to change without notice

SGI® RASC™ Specifications

Linux® OS (on host server)Linux® OS (on host server)O/S

Blade Form Factor
10-U Altix® 4000 IRU
Up to 8 RC100 blades per IRU 

Rack-Mountable Form Factor
2 blade slot chassis
3U (5.25" H x 19"W x 26"D)

Rack-Mountable Form Factor
EIA slide-mountable
2U (3.5" H x 19"W x 26"D)

Dimensions

Up to 8 RC100 blades per system
More available with custom configurationUp to 2 units per systemMax Config

Dual NUMAlink™ 4 ports Dual NUMAlink™ 4 portsI/O

80MB QDR SRAM  OR
20GB DDR2 SDRAM 16MB QDR SRAMMemory

SGI® Altix® 4000
SGI® Altix® 3700 Bx2 or 350 *
Silicon Graphics Prism™*+

SGI® Altix® 3700 Bx2 or 350
Silicon Graphics Prism™Host System

Two per bladeOne per brickNo. of FPGAs
Xilinx Virtex-4 LX200Xilinx Virtex II-6000FPGA

SGI® RASC™ RC100 BladeSGI® RASC™ Module (Ver. 1)

* with available 2 blade slot upgrade chassis
+ rack mounted version only

Product plans and information are preliminary and subject to change without notice



44

SGI® Altix™ 4700 Server 
Independent Scaling in Any Direction

RC100I/O

MemoryGraphics      
 

C
o

m
p

u
te

• 12 RC100 
Blades in 
Single 
Rack

• 12  RC100 
Blades/SSI

• 2 Compute 
Blades/RC
100

• 1.8TFLOP/
Rack (4GB 
DIMMs)

• Minimum of 
16 Sockets 
in Any 
System

• 16 I/O 
Blades in a 
Single 
Rack

• 16 I/O 
Blades/SSI

• 16 
Graphics 
Pipes/Rack

• 1 Compute 
Socket Per 
Graphics 
Pipe • 64 Sockets / Rack

• Minimum of 16 Sockets /System

• Scales in 4 Socket Increments

Altix® 4700: 
5D Independent 

Scalability

88ICFPT07 12/11/07

Example 4: The Starbridge Hybrid 
Computer 62m

http://www.starbridgesystems.com/

Source: [SGI, MAPLD04]
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Hypercomputers: 
High-Performance FPGA Accelerators

Source: [SBS, MAPLD04]

90ICFPT07 12/11/07

Structure of an FPGA Processing Element

Source: [SBS, MAPLD04]
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Structure of a Processing Element Quad

Source: [SBS, MAPLD04]

92ICFPT07 12/11/07

Hypercomputer Architecture

Source: [SBS, MAPLD04]
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28

Com puter
M em ory
(4 GB)

Xeon
(1G H z)

X eon
(1G H z)

PC I

μP
B oard

U ser
PE (x1 /x5)
XC 2V6000

FPG A  B oard

Sin gle Q uad

Bus
C ontroler

X C 2V4000
/

/

/64

32

U ser
PE (x2 /x6)
XC 2V6000

/ 64

U ser
PE (x3 /x7)
XC 2V6000

U ser
PE (x4 /x8)
XC 2V6000

94// C lock
Bus

15

Connecto r J1-J10
(560 P IN I/O )

XP O IN T
X C 2V6000

Router
X C 2V4000

/
/

/

/

/
/

/
/

50

50

50

50

50

50

69

69

69

69

/

/
/

/

/

/
/

/

/

/

/

6 4

64

64

32

32

32

94

94

94

/

PCIX Bus

64

M IO C

L2L2

Star Bridge Hardware Architecture

Xeon 
2.2GHz

Xeon 
2.2GHz

HC-36m

Source: [SBS, MAPLD04]
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Library

Object

Sheets
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Place & Route

.bin files

.ngo files

Application
executable

Configuration
bitstreams

Netlists

Star Bridge Software Environment

VIVA

Graphical User 
Interface

User input

Xilinx

96ICFPT07 12/11/07

Emerging Directions
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AMD Torrenza
(http://enterprise.amd.com/us-en/AMD-Business/Technology-Home/Torrenza.aspx)

Fit into existing AMD Opteron
Socket

Leverages HyperTransport Link

Projected Growth of HT and PCIe Coprocessing
in x86-based Servers (Excluding GPUs)

Source: [In Stat, 5/07]

Source: [AMD, 5/07]

Source: [In Stat, 5/07]
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AMD Torrenza
(http://enterprise.amd.com/us-en/AMD-Business/Technology-Home/Torrenza.aspx)

Public Torrenza Participants
Source: [AMD, 5/07]

Source: [In Stat, 5/07]
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Intel® QuickAssist Technology
(http://www.intel.com/technology/platforms/quickassist/index.htm)

A comprehensive initiative
0 A family of interrelated Intel and industry standard technologies

Enables optimized use and deployment of accelerators on Intel® platforms
0 Accelerated performance for demanding applications with Front Side Bus (FSB) 

attached Field Programmable Gate Arrays (FSB-FPGA) hardware modules
0 Fits into existing Xeon Socket
0 Leverages FSB link

FSB ≡ Front Side Bus
TPV ≡ Third-Party Vendor

100ICFPT07 12/11/07

Intel® QuickAssist Technology
(http://www.intel.com/technology/platforms/quickassist/index.htm)

FSB ≡ Front Side Bus
FAP ≡ FSB-FPGA Accelerator Platform
AHM ≡ Accelerator Hardware Module
AFU ≡ Accelerator Function Unit
AAL ≡ Accelerator Abstraction Layer
TPV ≡ Third-Party Vendor

FAP System Architecture
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DRC System
(http://www.drccomputer.com/)

102ICFPT07 12/11/07

PLD

Flash Memory

DRC Module Details

Xilinx Virtex4 LX200

RLDRAM 

DDR2 DRAM
(not present on XT/FPGA) 
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FPGA uses all motherboard resources meant for CPU:
− Intel Processors: Front Side Bus links, memory interface, power supply, heat-sink
− AMD Processors: HyperTransport Links, Memory interface, power supply, heat-sink

Usable with any compatible validated Intel®
Xeon® or AMD Opteron server
Mix and match modules and CPUs on quad-socket systems

XtremeData
(http://www.xtremedatainc.com/)

104ICFPT07 12/11/07

Processor Socket Module Features Availability

AMD

Socket E 2S180 Now

Socket F
2S130 and 2S180

32MB QDRII
20MB/S Mem B/W

Q42007

Intel

Dual Processor
Scalable Footprint

3S80E – 3S340
Any combo of two + 

Bridge
17MB/S Mem B/W

Q42007

Multi-processor
Scalable Footprint

3S80E – 3S340
Any combo of two + 

Bridge
17MB/S Mem B/W

Q12008

Current and Future of XtremeData…. 

Only Company that supports AMD and Intel accelerators 

Chosen by Intel to receive FSB license
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Outline

Architectures and Systems

Tools and Programming

Applications

Performance

Wrap-up

106ICFPT07 12/11/07
106106

HLLs Classification



54

107ICFPT07 12/11/07

Programming Models: Expressing Parallelism 
and Locality in Imperative Languages

Message Passing Shared Memory DSM/PGAS

Process/Thread

Address Space

Introduction to MAP C
• Available only for SRC machines
• MAP FORTRAN also exists
• MAP C differs from ANSI C

– Some ANSI C features are not available
• No global variables
• No external function calls

– Other than user-defined or SRC-defined macros, or inlined
functions

• No structures
• No switch statement, etc.

– Extensive use of concepts and macros not 
present in C
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SRC Compilation Process

Object
files

Application sources Macro sources 

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f  files .vhd or .v files

Object
files

Application sources Macro sources 

MAP CompilerμP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Application
executable

Configuration
bitstreams

HDL
sources

Netlists

.c or .f  files .vhd or .v files

MAP Routines
• Microprocessor side

– .c File
– Function prototype

• void subr(int64_t*, int);

– Allocation of MAP
• int map_allocate(int nm);
• int map_free(int nm);

– Calling MAP function
• subr(array, mapnum);

• MAP side
– .mc File
– Function implementation

void subr(int64_t A[], int mn) 
{

// code goes here

}
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Parallel Sections
• Sequential code

– By default, only one 
code block is active at 
any time

• Parallel code sections
– Multiple code sections 

can be active at the 
same time

block #1

block #2

block #3to
ta

l t
im

e 
to

 e
xe

cu
te

block #1 block #2 block #3

fork

join
to

ta
l t

im
e

to
 e

xe
cu

te

Parallel Sections
#pragma src parallel sections
{

#pragma src section
{

sum1 = a + b;
}

#pragma src section
{

sum2 = a - b;
}

#pragma src section
{

prod1 = a * b;
}

}

res = sum1 + sum2 + prod1;
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Streams
• Streams mechanics • Code example

Stream_64 S0;
#pragma src parallel sections
{

#pragma src section
{

for (i=0;i<10;i++) {
res1 = A[i] << 2;
put_stream(&S0, res1, 1);

}
}

#pragma src section
{

for (j=0;j<10;j++) {
get_stream(&S0, &val);
B[j] = val + 100;

}
}

}

producer loop

put_stream

consumer loop

get_stream

FIFO

data

data

valid

valid

stall

take

loop_driver

loop_driver

Data storage
• Scalar values can be stored in the “registers” –

memory created on-chip from LUTs
– float val1, val2;

• Arrays can be stored in OBM
– OBM_BANK_A (AL, long long, 128)
– OBM_BANK_B_2_arrays (Bi, int64_t, 128, 

double Bd, 2048)
• accessible as AL[i], Bi[j], Bd[k]

• or BRAM
– int Ci[128];
– float Cd[2048];

• accessible as Ci[i], Cd[j]



58

Data movement
• Scalar values via MAP function arguments

– void subr(int64_t A[], int n, int64_t *time, int
mapnum)

• Arrays via DMA transfer to OBM
– DMA_CPU (CM2OBM, AL, 

MAP_OBM_stripe(1,"A"),  A, 1, 
n*sizeof(int64_t), 0);

• Arrays via streams
– stream_dma_cpu(&S0, PORT_TO_STREAM, 

AL, DMA_A, A, 1, n*sizeof(int64_t));
– get_stream(&S0, &val);

Data movement: DMA transfer
void subr(int64_t A[], int64_t C[], int n, int64_t *time, int mapnum) 
{

…
OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE)
OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE)
…
DMA_CPU (CM2OBM, AL, MAP_OBM_stripe(1,"A"),  A, 1, n*sizeof(int64_t), 0);
wait_DMA (0);
…
// do something useful
…
*time = *time + (t1 - t0);
…
DMA_CPU (OBM2CM, CL, MAP_OBM_stripe(1,"C"), C, 1, n*sizeof(int64_t), 0);
wait_DMA (0);
…

}



59

Data movement: streaming
void subr(int64_t A[], int64_t C[], int n, int64_t *time, int mapnum) {

…
OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE)
int64_t a[SIZE];    // SIZE >= n
Stream_64 S0;
…
#pragma src parallel sections
{

#pragma src section
{

stream_dma_cpu(&S0, PORT_TO_STREAM, AL, DMA_A, A, 1, n*sizeof(int64_t));
}

#pragma src section
{

for (i = 0; i < n; i++)
{

get_stream(&S0, &a[i]);
.. Operate on Data ..

}
}

}

Data packing/unpacking
• Data access element size for OBM and streams 

is 64-bit wide
• Various split/combine macros allow splitting 

and combining scalar values, for example:

int64_t v;
int i;
float f;
comb_32to64_int_flt(1234, 0.1234f, &v);
split_64to32_int_flt(v, &i, &f);
result:

i = 1234
f = 0.1234



60

Loops
for (i = 0; i < n; i++) {

A[i] = B[i] * C[i];
}

while (i < n) {
A[i] = B[i] * C[i];
i++; 

}

break
continue

do {
A[i] = B[i] * C[i];
i++;

} while ( i < n );

for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {

A[i] += B[i] * C[j];
}

}

Introduction to Impulse-C
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What is Impulse C?

Not a new language

A Subset of ISO C + a library, just like MPI

A library of functions compatible with standard C
Functions for application partitioning
Functions for creating and configuring the application architecture

Functions for creating  processes and streams
Functions for connecting streams
Functions for mapping into the  vendor platform

Functions for desktop simulation and instrumentation

A software-to-hardware compiler

Impulse-C Programming Model
Communicating Sequential Processes 
(CSP) Programming Model, also like MPI

Supports parallelism at the process level
As much parallelism as possible is exploited 
within the processes via automated 
scheduling/pipelining by the compiler 
Streams for interprocess (inter-functional 
units) communications 

Buffered communication channels (FIFOs)
In a sense similar to MPI messages, but may be 
more like Unix pipes
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Programming Model

S/W process

H/W process

H/W process

H/W process

S/W process

Programming with Impulse C

1. Use Impulse C functions
to partition the application
into hardware and software
processes
• Create the processes
• Create input and output  

Streams
• Connect the streams 

2. Use Impulse C to compile
hardware processes to HDL
and generate hardware stream
and memory interfaces.

Generate
FPGA

hardware

C language
applications

HDL
files

Impulse
Platform
Libraries

Generate
hardware
interfaces

Generate
software

interfaces

Software
libraries

HDL
files
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Elements of an Impulse-C Application
main()

Entry point for the software side of the application
Configuration function

e.g. config()
Defines the parallel Impulse C processes
Creates streams
Connects stream

co_initialize()

Creates the entire application H/W architecture targeting 
a specific platform

co_execute()

Starts the parallel Impulse C processes
One or more Impulse C processes

Define the behavior of the application, including test 
producer and consumer functions as required

Impulse C Process Coding Style

Written as a C function
Accepts pointers to streams, signals, 
memories, etc.
Accepts optional compile-time parameters
No return value

void des_ic(co_stream filter_in, co_stream filter_out) {
int32 data;
co_stream_open(filter_in, O_RDONLY, INT_TYPE(32));
co_stream_open(filter_out, O_WRONLY, INT_TYPE(32));
while (co_stream_read(filter_in, &data, sizeof(int32))) {
. . . // Process the data here

co_stream_write(filter_out, &data, sizeof(int32)); 
}
co_stream_close(filter_in);
co_stream_close(filter_out);

}
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Example: FIR Filter

Data and coefficients passed into filter via data 
stream

Could also use shared memory

Algorithm written using untimed, hardware-
independent C code

Using coding styles familiar to C programmers

Software test bench written in C to test functionality
In software simulation
In actual hardware

FIR Filter Functional Test

Test
producer

FIR
filter

Test
consumer

S/W H/W S/W

Test
coefficients

Test
waveform

Test
waveform

This test can be performed in desktop simulation
(using Visual Studio or some other C environment)
or can be performed using an embedded processor
for the producer/consumer modules.
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void fir(co_stream filter_in, co_stream filter_out) {
int32 coef[TAPS]; int32 firbuffer[TAPS];
int32 nSample, nFiltered, accum, tap;

co_stream_open(filter_in, O_RDONLY, INT_TYPE(32));
co_stream_open(filter_out, O_WRONLY, INT_TYPE(32));
// First fill the coef array with the coefficients...
for (tap = 0; tap < TAPS; tap++) {

co_stream_read(filter_in, &nSample, sizeof(int32));
coef[tap] = nSample;

}
// Now fill the firbuffer array with the first n values...
for (tap = 1; tap < TAPS; tap++) {

co_stream_read(filter_in, &nSample, sizeof(int32));
firbuffer[tap-1] = nSample;

}
// Now we have an almost full buffer and can start processing waveform samples…
while ( co_stream_read(filter_in, &nSample, sizeof(int32)) == co_err_none ) {

firbuffer[TAPS-1] = nSample;
for (accum = 0; tap = 0; tap < TAPS; tap++) {

accum += firbuffer[tap] * coef[tap];
}
nFiltered = accum >> 2;
co_stream_write(filter_out, &nFiltered, sizeof(int32));
for (tap = 1; tap < TAPS; tap++) {

firbuffer[tap-1] = firbuffer[tap];
}

}
co_stream_close(filter_in);
co_stream_close(filter_out);

}

Declare stream interfaces

Open the streams

Read in the coefficients

Read in the first n values

Process the incoming stream
and perform the filter operation
to generate outputs

When done, close the streams

void config_fir(void *arg)
{

co_stream waveform_raw;
co_stream waveform_filtered;

co_process producer_process;
co_process fir_process;
co_process consumer_process;

waveform_raw = co_stream_create("waveform_raw", INT_TYPE(32), BUFSIZE);
waveform_filtered = co_stream_create("waveform_filtered", INT_TYPE(32), BUFSIZE);

producer_process = co_process_create("producer_process", (co_function)test_producer,
1, waveform_raw);

fir_process = co_process_create("filter_process", (co_function)fir,
2, waveform_raw, waveform_filtered);

consumer_process = co_process_create("consumer_process",(co_function)test_consumer,
1, waveform_filtered);

// Assign processes to hardware elements
co_process_config(fir_process, co_loc, "PE0");  

}

Impulse C Configuration Function

stream declarations

process declarations

stream creation

process creation and 
stream connection

process configuration (hardware)
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Desktop Simulation
Impulse C is standard C with the addition of the Impulse C libraries, which 
means that any standard C development environment can be used for 
functional verification and debugging.

Visual Studio
Impulse
Application Monitor

Optimization Exploration
Dataflow graph shows hardware
structures generated from C code

Explorer window shows blocks
and stages of C source code

C code block summary shows
results of optimization

Pipeline effective rate graph helps
analyze performance
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Cycle-Accurate Debugging

Expanded source code
window shows active
pipeline stages for each
cycle (in red)

Stream I/O and pipeline
status window monitors
current status

Variable watch window
allows the observation
of specific data objects
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Introduction to Mitrion-C



68

135ICFPT07 12/11/07

Mitrion-C Overview
Looks like C, very similar syntax

Behaves differently, 
0Mitrion C is a single assignment language, uses 

a functional programming model, it is data 
driven and not program counter driven
0Data driven computations are inherently parallel
0C is an imperative language, algorithm is 

described in terms of sequential statements and 
execution has states
0C is inherently sequential and expressing 

parallelism requires extensions to the language
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Mitrion-C and C Are 
Syntactically Similar

Mitrion-C is a C-family language but not ISO-C

Basic syntax is similar to other C-family 
languages
0Blocks are surrounded by { }
0Assignments are made by  =
0Statements end with ;
0Common Selection and Iteration Statements

are available (if, for, while), but the 
semantics are different
0Common C operators are supported
0C-style comments (but nesting is allowed)
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Differences Between Mitrion-C 
and C

Single assignment for variables
Order is data driven not dependency driven

main() is the only point of input and output to 
the program

No pointers, pointers do not lend themselves to 
FPGAs

No dynamic allocation

Recursion only with statically known depth, need 
to know the resources ahead of time

Flexible bit width supported for scalar types
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Single Assignment

A variable may only be assigned once
0Operations occur concurrently
0Multiple assignments of variables can cause 

inconsistency

x = 125;

a = x*4;

x = b+6; // Error!

// Is x b+6 or 125?
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Data Driven Model

(int:33, int:32) sqradd(int:32 s, int:16 a)
{

sum = s + sqr;
sqr = a*a;

} (sum, sqr);

uint:22<30> main() //returns a list of 30 22-bit items
{

uint:22 prev  = 1;
uint:22 fib   = 1;

uint:22<30> fibonacci = for(i in <1..30>)
{
fib  = fib+prev;
prev = fib;

} ><fib;

} fibonacci;

140ICFPT07 12/11/07

Scoping and Blocks

Blocks are used as body for if, while, for, ...
uint:4 q = 0;

int:16 x = if(i > 5)

{

q = f(a, i); // Shadows parent q

} q               // Return q and place it in x

else { ... };

// q has the value 0 here

Each block defines a scope
Only returned values and nothing else can exit
the block
Reassignments shadow outer variables (create local 
variables of the same name)
0 Can not modify outer variable

Parent Scope

Child Scope
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Loops and Collections

Wide parallelPipelinedforeach

Sequential

List

Unrolledfor

Vector

Introduction to DSPlogic
RC Toolbox
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HLLs Productivity Study
Classic HDLs

VHDL/Verilog

Text-based HLLs
Impulse-C

Handel-C

Carte-C

Mitrion-C

Graphical tools
SysGen

DSPLogic
Dataflow Languages

Functional Languages

Imperative Languages

Evaluation Metrics and Parameters

Ease-of-Use
Acquisition time
Development time

Efficiency (Quality of performance)
Synthesized frequency
Area utilization
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Using the Evaluation Framework
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Outline

Architectures and Systems

Tools and Programming

Applications
0Remote Sensing

Discrete Wavelet Transform (DWT)
Wavelet-Based Hyperspectral Dimension Reduction
Image Registration
Cloud Detection

0Bioinformatics

Performance

Wrap-up
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Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics
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The input image is first convolved along the rows by the two filters L and H and 
decimated along the columns by two resulting in two "column-decimated" images 
L and H

Each of the two images, L and H, is then convolved along the columns by the two 
filters L and H and decimated along the rows by two

This decomposition results into four images, LL, LH, HL and HH

The LL image is taken as the new input to perform the next level of decomposition

Multi-Resolution DWT Decomposition
(Mallat Algorithm)
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DWT Decomposition
(One Engine One FPGA)

Image Size = 512 X 512 pixels

160ICFPT07 12/11/07

DWT Decomposition (cnt’d)
(Cray-XD1)
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Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics
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Multi-Spectral Imagery 10’s 
of bands (MODIS ≡ 36 bands, 
SeaWiFS ≡ 8 bands, IKONOS ≡
5 bands)

Hyperspectral Imagery 100’s-
1000’s of bands (AVIRIS ≡ 224 
bands, AIRS ≡ 2378 bands)
0Challenges (Curse of 

Dimensionality)
0Solution

On-Board Dimension Reduction
0Needs

Higher performance
Lower form / wrap factors
Higher flexibility

Multispectral / Hyperspectral Imagery Comparison

HPRCs

Hyperspectral Dimension Reduction
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Hyperspectral Dimension Reduction
(Techniques)

Principal Component 
Analysis (PCA):
0Most Common Method 

Dimension Reduction
0Complex and Global 

computations: difficult for 
parallel processing and 
hardware implementations

0Does Not Preserve Spectral 
Signatures

Wavelet-Based Dimension 
Reduction*:
0Simple and Local Operations
0High-Performance 

Implementation
0Preserves Spectral 

Signatures

Multi-Resolution Wavelet Decomposition 
of Each Pixel 1-D Spectral Signature 
(Preservation of Spectral Locality)

* S. Kaewpijit, J. Le Moigne, T. El-Ghazawi, “Automatic 
Reduction of Hyperspectral Imagery Using Wavelet 
Spectral Analysis”, IEEE Transactions on Geoscience and 
Remote Sensing, Vol. 41, No. 4, April, 2003, pp. 863-871.
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The Algorithm

Decompose Each Pixel to Level L

Read Data

Read Threshold (Th)

Write Data

Get Lowest Level (L)
from Global Histogram

Remove Outlier Pixels

OVERALL

Compute Level for Each Individual Pixel
(PIXEL LEVEL)

DWT Coefficients 
(the Approximation)

Reconstructed Approximation

No

Yes

Compute Correlation (Corr) 
between Orig and Recon.

Add Contribution of the Pixel to Global 
Histogram

Corr < Th

Decompose Spectral Pixel 

Save Current Level  [a] of 
Wavelet Coefficients 

Reconstruct
Individual Pixel to Original Stage

Get Current Level  [a] of 
Wavelet Coefficients

PIXEL LEVEL
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Top Hierarchy Module

L1:L5

Y1:Y5

TH
GTE_1: GTE_5

Correlator

X

DWT_IDWT

Level

N

Llevel
MUX

Histogram
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Decomposition and Reconstruction Levels of Dimension Reduction 
(DWT_IDWT)

Level_5

L0

L1L 2

L2L 2

L3L 2

L4L 2

L5
L 2

Level_4Level_3Level_2Level_1

X

2

L’

2

L’

2

L’

2

L’

2

L’

2

L’

2

L’

Y2

D

2

L’

2

L’

2

L’

Y4
D

2

L’

2

L’

2

L’

2

L’

2

L’

Y5
D

Y3
D

Y1

D
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Correlator Module

X

Yi

termxx

termyy

termAB

termxy (termxy)2
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Histogram Module

GTE_3

GTE_2

GTE_1

GTE_4

GTE_5

Update 
Histogram 
Counters

Level 
Selector

cnt_3

cnt_2

cnt_1

cnt_4

cnt_5

Level
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Wavelet-Based Dimension Reduction
(Execution Profiles on SRC)

Total Execution Time = 20.21 sec 
(Pentium4, 1.8GHz)

Total Execution Time = 1.67 sec (SRC-6E, P3)

Speedup = 12.08 x (without-streaming)

Speedup = 13.21 x (with-streaming)

Total Execution Time = 0.84 sec (SRC-6)
Speedup = 24.06 x (without-streaming)

Speedup = 32.04 x (with-streaming)
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Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics
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Motivations and Theory of Cloud Detection

Why Cloud Detection?
0Can render data useless in land-use/land 

cover studies
0Critical in weather and climate studies

Theory is based on the observation that 
clouds are:
0 Highly reflective (in the visible, near- and mid- IR 

bands)
Visible Bands (Green, Red bands)

» Vegetation and land surface discrimination 
Near-IR band

» Determines soil moisture level and distinguishes vegetation 
types

Mid-IR band
» Differentiation of snow from clouds

0 Cold
Thermal IR band

» Thermal mapping to Brightness Temperatures

LandsatLandsat 77

ETM+

172ICFPT07 12/11/07

Top Hierarchy Module

band2
band3

band4
band5
band6

Mask2Pass Two

B2
B3

B4
B5
B6

Normalize
Mask1

Pass One

Band 2 (Green Band) Band 3 (Red Band) Band 4 (Near-IR Band) Band 5 (Mid-IR Band) Band 6 (Thermal IR Band)

Mask
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Normalization Module
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Pass-One Module

Classification Rules for Pass One [2]Classification Rules for Pass One [2]
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Classification Rules for Pass One [2]Classification Rules for Pass One [2]

Optimizing Hardware Resources Usage (cnt’d) 
(Algebraic Re-Formulation of Pass-One Filters)
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Detection Accuracy
(Software/Reference Mask, Hardware Masks)

Software/Reference Mask

Band 2 (Green Band) Band 3 (Red Band) Band 4 (Near-IR Band) Band 5 (Mid-IR Band)

Band 6 (Thermal IR Band) Hardware Floating-Point Mask
(Approximate Normalization)

Hardware Fixed-Point Mask
(Approximate Normalization)
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Detection Accuracy (cnt’d)
(Approximate Normalization and Quantization Errors)

Approximation Error
(0.1028 %)

Hardware Fixed-Point (12-bit) 
Error (0.2676 %)

Hardware Fixed-Point (23-bit)
Error (0.1028 %)

Hardware Floating-Point Error
(0.1028 %)

Reported Error (1.02 %)
by Williams et al. [2]
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SRC-6  vs.  Intel Xeon 2.8 GHz
(Hardware-to-Software Performance)

Total Execution Time

43.02

12.07 12.06
6.05 2.46 1.52

0.00
10.00
20.00
30.00
40.00
50.00
60.00

Xeon 2.8GHz Floating Point 1X Fixed Point 1X Floating Point 2X Floating Point 2X
Comp./8X Data

Fixed Point 8X

m
 s

ec
 

Speed Up

1.0 3.6 3.6
7.1

17.5

28.3

0

10

20

30

40

Xeon 2.8GHz Floating Point 1X Fixed Point 1X Floating Point 2X Floating Point 2X
Comp./8X Data

Fixed Point 8X
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Outline

On-Board Processing for Remote Sensing
0Discrete Wavelet Transform (DWT)
0Wavelet-Based Hyperspectral Dimension Reduction
0Cloud Detection
0Image Registration

Bioinformatics
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Introduction and Background
Remote sensed data usually contain two types of 
distortion:
Radiometric distortion

Sources of radiometric distortion are from
» Effects of atmosphere on radiation, 
» Effects of atmosphere on remote sensing imagery, and 

instrumentation errors
These errors can be corrected using the knowledge of the 
sensor model

Geometric distortion
Sources of geometric distortion are 

» Earth rotation, 
» Panoramic effects, 
» Earth curvature, 
» Scan time skew, 
» Variation in platform altitude, velocity, attitude, and 

aspect ratio
To correct the various types of geometric distortion, 
without the knowledge of error sources, an image can be 
registered to a map coordinate system:

» The pixels are addressable in terms of map coordinates 
(latitudes and longitudes or eastings and northings)

» The resulting output of image registration is a set of 
transforms or a mapping function that tells us how the 
input image is different from the reference image

» Using these parameters the input image can be 
transformed to match the reference image
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Implementation Approach and Experimental Results
(SRC-6)

Two Techniques
0 Exhaustive search
0 Iterative refinement

Similarity Measures
0 correlation
0 Normalized cross-correlation

Expensive
One of the best similarity measures

0 Statistical correlation
0 Match filters
0 Phase-correlation
0 Sum of absolute differences
0 Root mean square
0 Masked correlation

Two engines 
0 79% usage of the chip resources (slices)

High Accuracy
0 Floating-point arithmetic (SRC single-

precision FP macros)

Extrapolated Higher Performance
0 Larger data sizes
0 Many optimization techniques such as 

data streaming

4.59                        
(7.48 extrapolated)

2 FPGAs (4 Engines)

3.741 FPGA (2 Engines)

1.871 FPGA (1 Engine)

1μP (2.8 GHz Xeon)

SpeedupPlatform
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DNA Sequencing with 
Smith-Waterman

Amino acids
The building blocks (monomers) of proteins. 20 different 
amino acids are used to synthesize proteins. The shape 
and other properties of each protein is dictated by the 
precise sequence of amino acids in it.

Deoxyribonucleic acid (DNA) is written using a code 
of only 4 letters (bases)  

Two purines, called adenine (A) and guanine (G)
Two pyrimidines, called thymine (T) and cytosine (C) 

DNA sequencing
The determination of the precise sequence of 
nucleotides in a sample of DNA
Why – determine origin, …
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Example:
0Find the best pairwise alignment 

of GAATC and CATAC

DNA Matching Basics

GAATC
CATAC

GAATC-
CA-TAC

GAAT-C
C-ATAC

GAAT-C
CA-TAC

-GAAT-C
C-A-TAC

GA-ATC
CATA-C

We need a way to measure the 
quality of a candidate alignment

Alignment scores are driven from : 
0substitution matrix
0gap penalty

10-50-5T

-510-50G

0-510-5C

-50-510A

TGCA

A hypothetical 
substitution matrix

GAAT-C
CA-TAC

-5 + 10 + ? + 10 + ? + 10 = ?
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Hardware Implementation 
(32x1 Sliding Window)

Q1
QESESABAT AD

32 Residue 
Window 

Size   
(Node 1)

Unlimited Database Size

Qn
QESESABAT AD

32 Residue 
Window 

Size   
(Node n) 

Unlimited Database Size

…
…

…
…

…
…

Multiple Databases and Multiple Queries
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Data Transfer Scenarios

Microprocessor 
Memory

FPGA

QDR 2……

QDR 1……

Sending Data to 
QDR 1

Data Sent From QDR1 
to FPGA for 
Processing

Clock Cycles 0 - 31 32 symbols,1 every clock

Clock Cycles 32 - 63

S-W Scoring on FPGA

Maximum Score sent 
to QDR 2

FPGA Sets Done Flag
Sending Max 
Score From 

QDR 2 to RAM
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Implementation for Hardware (cnt’d) 
(MPI Implementation)

…

…

…

Query 
Sequences

Database 
Sequences

Node 0

Node 1

Node N-1

Score Array

BroadCast
DBs

Scatter 
Queries

Processing

Gather 
Scores

Done
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MPI Utilization on SRC-6

0Network Interface Cards cannot be efficiently shared  
Only two MPI processes were implemented 

Hi-Bar switch

PCI-X

μ
P

μ
P

memory
SNAP

PCI-X

μ
P

μ
P

memory
SNAP

Gig Ethernet

FPG
A

Reconfigurable 
processor

FPG
A

FPG
A

Reconfigurable 
processor

FPG
A

FPG
A

Reconfigurable 
processor

FPG
A

FPG
A

Reconfigurable 
processor

FPG
A

MPI
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MPI Utilization on Cray-XD1

0All Nodes were exploited using MPI
However, only one of the two microprocessors on each node 
sufficed 

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

μ
P

μ
P

FPG
A

IP IP

System network interconnect (SNIC)
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Implementation for Hardware (cnt’d) 
(MPI Implementation)

…

…

…

Query 
Sequences

Database 
Sequences

Node 0

Node 1

Node N-1

Score Array

BroadCast
DBs

Scatter 
Queries

Processing

Gather 
Scores

Done
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Performance Results

91 492        
MPI 1 6  nodes

5.9 32                     
MPI 1 6 nodes986.41  

Engine/Chip

359 1857    
MPI 1 6  nodes

23.3 120.7
MPI 1 6 nodes39425.64 

Engines/Chip

49 188 
1 4 Chips

3.19 12.2 
1 4 Chips49.23.21  

Engine/Chip

191 656  
1 4 Chips

12.4 42.7 
1 4 Chips19712.84 

Engines/Chip

8 
Engines/Chip

8 
Engines/Chip

24 90 
1 4 Chips

3.12 11.7 
1 4 Chips24.63.2Protein

371 1138  
1 4 Chips

24.1 74 
1 4 Chips39425.6

DNASRC

100 MHz  (32x1)

45 262    
MPI 1 6  nodes

5.9 34                     
MPI 1 6 nodes496.4Protein

695 2794    
MPI 1 6  nodes

45.2 181.6
MPI 1 6 nodes78851.2

DNA

10.065NANADNA

Expected

1

Speedup

0.130

Throughput 
(GCUPS)

Measured

NA

SpeedupThroughput 
(GCUPS)

NA

XD1

200 MHz  (32x1)

GWU

Protein
Opteron
2.4GHz

FASTA 

SSEARCH34
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Outline

Architectures and Systems

Tools and Programming
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Potential: Comparison with a cluster of 
microprocessor boards

Assumptions:
• 100% cluster efficiency, i.e., each application

can be perfectly parallelized across N microprocessor boards
• Each reconfigurable processor is used

together with a single dual-μP boards
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System Cost

Cluster of N μPs 
cost = N/2 * cost(dual μP board)

+ cost (switch network)

Reconfigurable computer
cost = cost(dual μP board)

+ cost(reconfigurable processor)
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System Cost Current Cost Ratio

Reconfigurable computer cost
Dual μP board cost

≈ 50-100
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Power Consumption –SRC-6E

Reconfigurable processor:           200 W

μP board (with two μPs):              170 W

Cluster of N single μPs:               N*170/2 W
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Power Consumption Ratio

N - Cluster size (in the number of   microprocessors) 
necessary to obtain  equivalent performance

N

Power consumption advantage
Typical reconfigurable computer vs. 

a cluster of dual μP boards 
containing N μPs 

10
100

1000

4.25
42.50

425.00

I/O intensive 
applications

Computationally
intensive 

applications
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Power Consumption Cost

Assumptions:

Both systems used non-stop over a 5 year
period

Average commercial cost of power 
in LA, NYC, SF, and DC:       $0.12 per kW-hour
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Total cost of power over a five year period 
without cooling

N
Cluster with

N μPs 

Typical
reconfigurable

computer
Savings

10

100

1000

$1,051

$1,051

$1,051

$4,468

$44,680

$446,800

$3,417

$43,629

$445,749
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Total cost of power over a five year period 
including cooling

N Cluster of N μPs 

Typical
reconfigurable

computer
Savings

10

100

1000

$2,628

$2,628

$2,628

$11,170

$111,700

$1,117,000

$8,542

$109,072

$1,114,372
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System Size

Cluster of 100 μPs  = four 19-inch racks

footprint  = 6 square feet

Reconfigurable computer (SRC MAPstationTM)

footprint = 1 square foot 

Space savings 6 times assuming rack-mounted clusters,
and many times more for standard PC-based clusters
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Saving Factor ( µP : RP )

1:400

1:100

1:200

Cost

1:11.2

1:20

1:3.64

Power

1:34.5

1:95.8

1:33.3

Size

200MHz

200MHz

100MHz

Maximum
Frequency

XC4LX200

XC2VP50

XC2V6000

FPGA
Type

6

6

8

Number  
of 

FPGA

SGI RC-100

SRC-6

Cray XD1

Platform

Platform Configuration
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34x313x6x1138Smith-Waterman 
(DNA Sequencing)

203x1856x34x6757DES Breaker

19x176x3x641IDEA Breaker

SAVINGS

6x

Cost Savings

34x313x1140RC5(32/12/16) Breaker

Size ReductionPower Savings
SpeedupApplication

Savings of HPRC 
(Based on SRC-6)

Assumptions
0100% cluster efficiency
0Cost Factor μP : RP 1 : 200
0Power Factor μP : RP 1 : 3.64

Reconfigurable processor (based on SRC-6): 200 W
µP board (with two µPs): 220 W

0Size Factor μP : RP 1 : 33.3
Cluster of 100 µPs = four 19-inch racks

» footprint = 6 square feet
Reconfigurable computer (SRC MAPstationTM)

» footprint = 1 square feet 
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25x120x24x2402IDEA Breaker

29x140x28x2794Smith-Waterman 
(DNA Sequencing)

127x608x122x12162DES Breaker

SAVINGS

23x

Cost Savings

24x116x2321RC5(32/8/8) Breaker

Size ReductionPower Savings
SpeedupApplication

Savings of HPRC 
(Based on one Cray-XD1 chassis)

Assumptions
0100% cluster efficiency
0Cost Factor μP : RP 1 : 100
0Power Factor μP : RP 1 : 20

Reconfigurable processor (based on one XD1 Chassis): 2200 W
µP board (with two µPs): 220 W

0Size Factor μP : RP 1 : 95.8
Cluster of 100 µPs = four 19-inch racks

» footprint = 6 square feet
Reconfigurable computer (one XD1 Chassis)

» footprint = 5.75 square feet 
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28x86x2x961IDEA Breaker

253x779x22x8723Smith-Waterman 
(DNA Sequencing)

1116x3439x96x38514DES Breaker

SAVINGS

17x

Cost Savings

198x610x6838RC5(32/12/16) Breaker

Size ReductionPower Savings
SpeedupApplication

Savings of HPRC 
(Based on one Altix 4700 10U rack)

Assumptions
0100% cluster efficiency
0Cost Factor μP : RP 1 : 400
0Power Factor μP : RP 1 : 11.2

1 10U Rack: 1230 W
µP board (with two µPs): 220 W

0Size Factor μP : RP 1 : 34.5
Cluster of 100 µPs = four 19-inch racks

» footprint = 6 square feet
Reconfigurable computer (10U)

» footprint = 2.07 square feet 
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Lessons Learned
Porting an existing code to an RC platform is difficult
0Requires an in-depth understanding of the code structure and 

data flow
0Code optimization techniques used in the microprocessor-based 

implementation are not applicable for RC implementation
0Data flow schemes used in the microprocessor-based 

implementation in most cases are not suitable for RC 
implementation

Only few scientific codes can be ported to an RC platform with 
relatively minor modifications
090% of time is spent while executing 10% of the code

Vast majority of the codes require significant restructuring in order 
to be ‘portable’, general problems are:
0No well-defined compute kernel
0Compute kernel is too large to fit on an FPGA
0Compute kernel operates on a large dataset or is not called too 

many times
function call overhead becomes an issue
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Lessons Learned

Effective use of high-level programming languages/tools, such as 
MAP C/Carte (SRC-6) and Mitrion-SDK/Mitrion-C (RC100), to develop 
code for RC platform requires some limited hardware knowledge
0Memory organization and limitations

Explicit data transfer and efficient data access
0On-chip resources and limitations
0RC architecture-specific programming techniques

Pipelining, streams, …

Most significant code acceleration can be achieved when 
developing the code from scratch; the code developer then has the 
freedom to
0structure the algorithm to take advantage of the RC platform 

organization and resources,
0select most effective SW/HW code partitioning scheme, and
0setup data formats and data flow graph that maps well into RC 

platform resources
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Conclusions

Making HPRCs relatively easy for scientists is 
challenging
0More work on Programming Models needed
0More work on OS needed
0More work on Tools

The proven (demonstrated) promise (only in some 
cases for now) is too great to give up
0> 38000+ X of speed up
0> 3000+ X  saving in power
0 > 90+ X saving in $$
0> 1000+ X saving in size
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