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Abstract. In this paper, we develop a unified theory in analyzing
optimal switch box design problems, particularly for the unsolved
irregular cases, where different pin counts are allowed on different sides.
The results drawn from our system of linear Diophantine equations
based formulation turn out to be general. We prove that the divide-
and-conquer (reduction) design methodology can also be applied to the
irregular cases. Namely, an optimal arbitrarily large irregular or regular
switch box can be obtained by combining small prime switch boxes,
which largely reduces the design complexity. We revise the known VPR
router for our experiments and show that the design optimality of
switch boxes does pay off.

Keywords. Configurable computing, on-chip network, FPGA, switch
box

1 Introduction

A switch box (SB) consists of terminals (pins) and programmable switches, with
each switch connecting two pins on different sides. A switch box is regular if all
sides have the same number of pins; otherwise it is irregular. As the optimality of
a switch box design imposes a crucial impact on silicon cost and performance of
FPGAs, extensive investigations on this problem have been carried out in recent
years, see [3,4,5,7,12,13] for examples. Chang et al.[5] started the study on the
so-called optimal Universal Switch Block (USB) structure, which is defined as a
switch box being able to accommodate any 2-pin net routing requirement with
the least number of switches. In [9,7,8], the so-called Hyper-Universal Switch
Box (HUSB) was investigated to cover the general cases of multi-pin routings.
Although it has been shown that this optimal switch box design problem can be
solved by divide-and-conquer (reduction) approaches [7,8], only regular switch
box cases were analyzed before.
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Fig. 1. Examples of irregular switch boxes.

Despite the surprising result suggesting that square switch boxes might be the
best in terms of area and delay [10], Fig. 1 gives some scenarios where irregular
switch boxes are efficient and desirable. Besides the classic crossbar structures
with unequal input and output pins [11], some recent technological advances
have somehow stirred the study interest on developing more general irregular
switch boxes, which, for example, can allow more customization flexibility for
embedded FPGA cores of SoC designs. In [1], directional bias and non-uniform
FPGA architectures were experimentally addressed. The directional bias refers
to the different number of tracks between horizontal and vertical channels, while
the non-uniformness refers to channel width variation between different channels
of the same direction. In [10], rectangular switch blocks formed by a union of
several aligned regular switch boxes [14] were studied. Irregular switch boxes
can also be used in hierarchical FPGA architectures and circuit-switching based
reconfigurable on-chip networks with non-uniform I/O port densities of different
sides. In all these examples, irregular switch boxes provide extra flexibility in
designing on-chip networks with non-uniform channel densities.

Similar to the regular switch boxes design problems, the problem is to design
optimal irregular switch boxes satisfying two specifications: 1) shape specifica-
tion, which includes the number of sides (dimension) and the number of ter-
minals on each side (channel density), and 2) routability specification, which is
characterized by the set of routable routing cases.

We use (r1, . . . , rk)-SB to denote a k-sided switch box with channel density ri

on side i for i = 1, . . . , k. We are interested in designing a generic class of switch
boxes determined by a channel density ratio vector d and a residual vector c,
i.e., a group of (wd + c)-SBs with all integer scales w ≥ 1. In particular, when
d = (1, . . . , 1) and c = (0, . . . , 0), a (wd + c)-SB is a regular switch box of k
sides with w terminals on each side. We will show that a solution scheme for
the generic switch box design problem can be used to design a specific irregular
switch box.

In this paper, we first formulate routing requirements as nonnegative integer
solutions of System of Linear Diophantine Equations (SLDEs), then apply the
theory of SLDE to find decompositions of routing requirements. Accordingly a
reduction design scheme for irregular switch box design is obtained, which gener-
alizes the design scheme for regular switch boxes. In other words, an arbitrarily
large irregular switch box can also be obtained by combining some small prime
switch boxes. The VPR [2] router is used to compare the routability of differ-
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ent irregular switch-boxes on a fixed channel density ratio. The large MCNC
benchmark circuits are used in the experimental test.

This paper is organized as follows. Terminology and switch box design prob-
lem are given in Section 2. Section 3 formulates a new modelling of routing
requirements and develops decomposition theory of routing requirements by ap-
plying the theory of system of linear Diophantine equations. In Section 4, the
generalized reduction design scheme for irregular switch boxes of arbitrary shapes
is introduced. Two design examples for illustration and experimental results are
presented in Sections 5 and 6, respectively. Conclusions are drawn in Section 7.

2 The Switch Box Design Problem

We model a switch box as a graph as in [7]. For an (r1, . . . , rk)-SB, we denote
the j-th terminal on side i by vi,j for i = 1, . . . , k, j = 1, ..., ri. If there is a switch
joining terminals vi,j and vi′,j′ , then we denote the switch by an edge vi,jvi′,j′ .
Thus, an (r1, . . . , rk)-SB corresponds to a k-partite simple graph with vertex
partition (V1, . . . , Vk), where Vi = {vi,j |j = 1, . . . , ri}, i = 1, . . . , k.

The disjoint union of two k-sided switch boxes G1 and G2 is a k-sided switch
box with the i-th side being the union of the i-th sides of both G1 and G2
together with all switches of G1 and G2, denoted by G1 +G2. The disjoint union
of h copies of G1 is denoted by hG1. As depicted in Fig.2, the (4, 3, 4, 3)-SB (c)
is a disjoint union of (2, 1, 2, 1)-SB (a) and (2, 2, 2, 2)-SB (b).

Side 4

Side 3

Side 4Side 2

Side 3

Side 1

(c)  (4, 3, 4, 3) - SB

Side 1

(a) (2, 1, 2, 1 ) - SB

Side 4Side 2

Side 3

Side 1

Side 2

(b)  (2, 2, 2, 2) - SB

Fig. 2. An example of the disjoint union of two switch boxes.

A (signal) net for a k-sided switch box is a connection request on some
terminals of the switch box. In our switch box design problems, a net only
specifies the sides where its terminals are located; a router will take care of
exact terminal assignments besides switch connection assignments [5,7,8,13]. A
net is said to be an m-pin net if it specifies m different sides; an m-pin net which
specifies sides i1, . . . , im will be expressed as {i1, . . . , im}, which is a subset of
{1, . . . , k}. For example, a 3-pin net connecting three terminals in sides 1, 2 and
3 is represented by {1, 2, 3}. Sometimes only certain types of nets are considered
in the switch box design; this set of types consists of some subsets of {1, . . . , k},
it is called a net pattern set (over {1, . . . , k}), denoted by P. A net N in P is
referred as a P-net. A net of size 1 (singleton) does not need a switch in routing,
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but it is very convenient when consider its mathematical properties. Therefore,
we always assume that any P-net contains all singletons.

For examples, the net pattern set P = P2 = {N |N ⊂ {1, . . . , k}, |N | ≤ 2}
is used in the study of universal switch boxes[5], while P = Pk = {N |N ⊂
{1, . . . , k}} is used for hyperuniversal switch box designs[7].

A routing requirement (RR) for a switch box is a group of nets need to be
connected simultaneously through the switch box. Formally, a P-net (r1, . . . , rk)-
RR is a collection of P-nets [N1, . . . , Nr] such that Nj ∈ P for j = 1, . . . , r, and
the number of Nj ’s that specify side i is equal to ri, i.e., |{j|i ∈ Nj}| = ri for
i = 1, . . . , k.

A feasible routing of a routing requirement in a switch box is an ON/OFF
assignment of the switches such that all the nets of the routing requirement are
connected (realized) simultaneously. A realization of a net is modelled as a tree
with one vertex in each side specified by the net. Formally, it is defined as follows.
Let G be a (r1, . . . , rk)-SB with sides Vi = {vi,j |j = 1, . . . , ri}, i = 1, . . . , k. An
(r1, . . . , rk)-RR R = [N1, . . . , Nm] is said to be routable in G if G contains
m vertex disjoint subtrees L1, . . . , Lm such that for each i = 1, . . . , m, Li has
exactly one vertex in the sides specified by Ni, i.e., |V (Li) ∩ Vj | = 1 for each
j ∈ Ni. We call {L1, . . . , Lm} a feasible routing of R in G, and Li a feasible
routing of Ni in G. We note that if Ni is a singleton, then its feasible routing
only consists of a terminal with no switch used. Therefore adding (or removing)
singletons to a routing requirement does not change its routability.

Fig.3(a) shows a (4, 4, 4, 4)-SB, where each side has four terminals which
are assigned unique track IDs (1 to 4). Fig.3(b) shows a (4, 4, 4, 4)-RR, which
has seven nets: N1 = {1, 2}, N2 = {1, 2, 4}, N3 = {1, 4}, N4 = {2, 3, 4},
N5 = {1, 3}, N6 = {2, 3}, N7 = {3, 4}. Net N2 is a 3-pin net, which requires
two switches to connect its three terminals in sides 1, 2, and 4. Fig.3(c) shows a
feasible routing for the routing requirement.

(c)  a feasible routing
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Fig. 3. An example of switch box, routing requirement and feasible routing.

An (r1, . . . , rk)-SB G is said to be P-universal if every P-net (r1, . . . , rk)-RR
is routable in G, and an optimal P-universal switch box is one with the least
number of switches. The notion of P-universal unifies both universal and hyper-
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universal discussed in [5,7]. The P2-universal is just the so called universal, while
the Pk-universal is the hyperuniversal.
Generic switch box design problem: Given k-dimensional nonnegative in-
teger vectors d and c and a net pattern set P, design an optimal P-universal
(wd + c)-SB for every w ≥ 1.

Our ultimate goal is to derive a general method to solve the generic switch
box design problem. A solution scheme for a generic switch box design problem
can be used to design a specific (r1, . . . , rk)-SB. For a given vector (r1, . . . , rk),
we can select proper d, c and w0 such that (w0d + c) = (r1, . . . , rk), then a
(w0d + c)-SB is an (r1, . . . , rk)-SB.

3 Decomposition Theorems

Our design technique for generic switch boxes is based on the decomposition
properties of routing requirements. We prove the general decomposition theorems
by employing the routing requirement vectors and the theory of system of linear
Diophantine equations.

The routing requirement vectors were first used to represent (w, w, w, w)-RRs
in [5]. We modify the definition to fit in our routing requirements modelling as
follows. For a 2-pin net (w, w, w, w)-RR R, let ni,j denote the number of net
{i, j} in R, and let ni denote the number of singleton {i} in R, we call vector
(n1, n2, n3, n4, n1,2, n1,3, n1,4, n2,3, n2,4, n3,4) a 2-pin net routing requirement vec-
tor of R. Obviously a nonnegative integer vector is a routing requirement vector
if and only if it satisfies the following equation.






n1,2 + n1,3 + n1,4 + n1 = w
n1,2 + n2,3 + n2,4 + n2 = w
n1,3 + n2,3 + n3,4 + n3 = w
n1,4 + n2,4 + n3,4 + n4 = w

(1)

In general, for a given net pattern set P = {S1, . . . , St}, a P-net (r1, . . . , rk)-RR
R = [N1, . . . , Nm] can be expressed by a vector X = (x1, . . . , xt) where xi is
the number of Nis in R, i.e., xi = |{j|Nj = Si}|, denoted by P-net (r1, . . . , rk)-
RRV. A vector X = (x1, . . . , xt) is a P-net (r1, . . . , rk)-RRV if and only if it is
a nonnegative integer solution of

AXT = (r1, . . . , rk)T , (2)

where A = (ai,j)k×t is the incidence (characterization) matrix of P. I.e., ai,j = 1
if i ∈ Sj ; otherwise ai,j = 0. Therefore, we can compute all routing requirements
by finding all nonnegative integer solutions of equation (2).

In mathematics, a linear system AXT = bT is called a system of linear
Diophantine equations (SLDE) if the entries of A and b are integers, and only
nonnegative integer solutions are considered. If bT = 0, the system is homo-
geneous. The SLDE has been studied extensively. Let X = (x1, . . . , xt) and
X ′ = (x′

1, . . . , x′
t) be two nonnegative integer solutions of an SLDE. Define

X � X ′ if xi ≤ x′
i for all i = 1, . . . , t. A solution of an SLDE X is said to be a
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minimal solution if there is no other solution X ′′ satisfying X ′′ � X. It is known
that the set of all minimal solutions is finite, and that any nonnegative integer
solution of a homogeneous SLDE is a nonnegative integer linear combination
of its minimal solutions (called the Hilbert basis). We use B[S] to denote the
set of all minimal solutions of an SLDE S. There are several known algorithms
for computing the set of minimal solutions of an SLDE. Interested readers can
consult Contejean and Devie [6].

Given nonnegative integer vectors d =(d1, . . . , dk) and c =(c1, . . . , ck), a P-
net (wd+c)-RRV corresponds to a (X, w), which is a nonnegative integer solution
of (A,−dT )(X, w)T = cT . There is a vector (X ′, w′) ∈ B[(A,−dT )(X, w)T = cT ]
such that (X ′, w′) � (X, w). (X, w) − (X ′, w′) is a solution of (A,−dT )(X, w)T

= 0T , thus, (X, w) − (X ′, w′) is a nonnegative-integer linear combination of
minimal solutions of (A,−dT )(X, w)T = 0T . Therefore,(X, w) = (X ′, w′) +∑m

i=1 ai(Xi, wi), where (Xi, wi)s are minimal solutions of (A,−dT )(X, w)T =
0T . In summary, we have the following theorem.

Theorem 3.1 (The first decomposition theorem). Let d and c be two k-
dimensional nonnegative integer vectors and P be a net pattern set. Then any
P-net (w0d + c)-RRV can be expressed as a vector in B[(A,−dT )(X, w)T = cT ]
plus a nonnegative integer linear combination of vectors in B[(A,−dT )(X, w)T

= 0T ], where A is the incidence matrix of P.

Theorem 3.2 (The second decomposition theorem). Let d and c be two
k-dimensional nonnegative integer vectors and P be a net pattern set. Then there
exists an integer p > 0 and a finite set of nonnegative integers D satisfying the
following properties: for any w ≥ 1, there is a qw ∈ D such that every (wd+ c)-
RRV can be represented as a sum of one (qwd + c)-RRV and w−qw

p (pd)-RRVs.
Consequently, if U0 is a P-universal (pd)-SB and Uw is a P-universal (qwd+c)-
SB, then Uw + w−qw

p U0 is a P-universal (wd + c)-SB.

Proof. Due to page limitations, the proof is not included in this paper and is
available upon request. �

4 Generalized Reduction Design Scheme

The decomposition theorems described in the last section establish the follow-
ing reduction design scheme for generic switch boxes with simple structure and
reduced number of switches.

Reduction Design Scheme for Generic Switch Boxes
Given two k-dimensional nonnegative integer vectors d and c and a net pattern
set P with an incidence matrix A:

I. Compute B[(A,−dT )(X, w)T = 0T ] and B[(A,−dT )(X, w)T = cT ] using
Hilbert basis algorithm, where A is the incidence matrix of the net pat-
tern set P. Suppose B[(A,−dT )(X, w)T = 0T ] = {(X1, w1), . . . , (Xm, wm)}
and B[(A,−dT )(X, w)T = cT ]= {(X ′

1, w
′
1), . . . , (X ′

l , w
′
l)}.
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II. Use S = {w1, . . . , wm}, S′ = {w′
1, . . . , w

′
l} to compute an integer p and a set

D satisfying the conditions of Theorem 3.2. We have that p is bounded by
the least common multiple of w1, . . . , wm, but p could be much smaller, and
D ⊂ {0, 1, . . . , mp − m + max{w′

1, . . . , w′
l}}.

III. Design a P-universal (pd)-SB U0 and set up a feasible routing table record-
ing feasible routings for every pd-RRs in U0. For each r ∈ D, design a
P-universal (rd + c)-SB, Ur, and set up the corresponding feasible routing
table. We call U0 and Ur (r ∈ D) prime switch boxes.

IV. For any w ≥ 1, construct a P-universal (wd + c)-SB as follows: if w ∈ D,
then use the prime (wd + c)-SB Uw, otherwise choose the minimum q such
that w − qp ∈ D. The disjoint union of one Uw−qp and q copies of U0, i.e.,
Uw−qp + qU0, is a P-universal (wd + c)-SB. We call it a compound switch
box.

Remark: We note that if we only want to construct a P-universal (wd + c)-
SB for a specific w, we only need to construct a P-universal (pd)-SB U , and a
P-universal (qwd + c)-SB Uw−qp. Then Uw−qp + w−qw

p U0 is a (wd + c)-SB.
The reduction design scheme reduces the generic switch box design problem

to its prime switch box design problems. Although there is still no efficient
known method for designing optimal prime switch boxes, the degree of difficulty
has been largely reduced due to the much smaller sizes of prime switch boxes.
Nonetheless, as a complete switch box has a switch joining every pair of terminals
from different sides, it is P-universal for any P. Therefore, if we simply let U0 be
the complete (pd)-SB Kpd and Ur be the complete (rd + c)-SB K(rd+c), then
K(qwd+c) + w−qw

p Kpd is a P-universal (wd + c)-SB, and it has O(w) number of
switches. We also have that the decomposition of a routing requirement can be
done in a polynomial time, and finding a feasible routing in a prime switch box
can be done in a constant time by looking up a routing table created for the
prime switch box. Therefore, there is a polynomial time algorithm for finding a
feasible routing in the compound switch box.

Theorem 4.1. For any given vectors d, c and net pattern P, there is a P-
universal (wd + c)-SB with O(w) switches for every w ≥ 1, and an algorithm
which finds a feasible routing for any (wd + c)-RR in the switch box in time
polynomial of w.

5 Two Examples of Irregular Switch Box Designs

In this section, we show how to design a specific optimal (4, 5, 6)-HUSB and
a (5, 6, 7)-HUSB using the reduction design scheme. The strategy consists of
choosing d = (1, 1, 1) and c = (0, 1, 2) first, then designing the generic (w, w +
1, w + 2)-HUSBs. The target switch boxes are the cases when w = 4, 5.
I. The net pattern set for 3-sided hyper-universal switch boxes is {{1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The incidence matrix of the net pattern set is
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Fig. 4. Optimal (3, 4, 5)-HUSB and (5, 6, 7)-HUSB.
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A =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1



 .

By computing the set of minimal solutions of (A, −dT )(X, w)T = 0T , we obtain

(1, 1, 1, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 0, 1, 0, 1),
(0, 1, 0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 1, 0, 2), (0, 0, 1, 1, 0, 0, 0, 1)

By computing the set of minimal solutions of (A, −dT )(X, w)T = cT we obtain

(0, 1, 2, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 2, 0, 1).

II. Compute p and D of Theorem 3.2. We have p = 2 and D = {1, 2}. That is, any
solution (X, w) of (A,−dT )(X, w)T = cT can be expressed as (X, w) = (X ′, w′)+
∑(w−w′)/2

i=1 (Xi, 2), where (X ′, w′) is a minimal solution of (A,−dT )(X, w)T = cT

and (Xi, 2)s are solutions of (A, −dT )(X, w)T = 0T , and w′ = 1 or 2 according
to the parity of w.
III. Design an optimal (2d)-HUSB U0, (1d + c)-HUSB U1 and (2d + c)-HUSB
U2, see Fig.4(a),(b),(c).
IV. An optimal (wd+ c)-SB can be obtained by combining (w − w′)/2 copies of
U0 and one U1 or U2 depending on the parity of w. In particular, U2 + U0 is an
optimal (4, 5, 6)-HUSB, and U1 + 2U0 is an optimal (5, 6, 7)-HUSB. See Fig.4(d)
and (e). The second example is the design of generic rectangular universal switch
boxes with channel density ratio vector d = (1, 2, 1, 2) and residual vector c =
(0, 0, 0, 0). Following the design scheme, we obtain p = 2 and D = {1, 2}. Since
c = 0, we only need to design two prime switch boxes (2, 4, 2, 4)-USB U0 and
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(1, 2, 1, 2)-USB U1. Fig. 5(a) and (b) show the optimal design of the prime switch
boxes, which can be used to construct optimal (w, 2w, w, 2w)-USBs for all w ≥ 3.

6 Experimental Results

In the experiment, we focus on the simple issue: what could be the routability
difference on entire-chip routings between FPGAs adopting optimal irregular
switch boxes, or other random but basically reasonable irregular switch boxes?

Table 1. Comparison of VPR experimental results on channel density w between
disjoint like (w, 2w, w, 2w)-SBs and our optimal (w, 2w, w, 2w)-USBs.

Disjoint-like Optimal Design Disjoint-like Optimal Design
alu4 7 7 ex5p 11 10

apex2 8 8 frisc 10 9
apex4 10 9 misex3 9 8
bigkey 5 5 s298 6 6
clma 9 9 s38417 6 5
des 6 5 s38584.1 6 6

diffeq 6 6 seq 9 8
dsip 5 5 spla 10 10

elliptic 10 9 tseng 5 5
ex1010 8 7 e64 6 6
Total 152 143 (-6.3%)

Direct experimental comparisons with other previous works are basically not
available, since the result given in [1] was global routing only, and the switch
density used in [10] is quite different from ours.

Here we give the experimental test for our (w, 2w, w, 2w)-USB designs. We
revise the well considered, effective, and fair FPGA router VPR [2] and run
large MCNC benchmark circuits for our routing experiments. The logic block
structure for our VPR runs is set to consist of one 4-input LUT and one flip-flop.
The input or output pin of the logic block is able to connect to any track in the
adjacent channels, i.e. Fc = w (or 2w for wide sides). A reasonable switch design
with the same switch count, which is an extension of the known disjoint-like
(Fig. 5(c)) switch structure, is adopted for comparison.

Fig. 5(d) illustrates our proposed optimal S-box structure and its correspond-
ing routing result. As shown in Table 1, the switch box design optimality does
matter. FPGAs adopting the optimal switch box design can save 6% switch
resources according to this experiment.

7 Conclusions

We presented a Divide and Conquer method for designing a wide range of irreg-
ular switch boxes. That is, an arbitrarily large optimal irregular switch box can
be constructed by a simple disjoint union of some smaller prime switch boxes. To
achieve this, we expressed a routing requirement as an integer vector satisfying
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Fig. 6. Routing result of e64 by using Optimal S-Box, w=6 on (w, 2w, w, 2w)-USB

a System of Linear Diophantine Equations (SLDE). By applying the theory of
SLDE, we solved the generating problem of routing requirements and proved a
general decomposition theorem, which established our reduction design scheme:
first design a few prime switch boxes, then use them to build others. As a direct
consequence, a switch box designed in this way has a linear number of switches
and a linear time detailed routing algorithm.
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