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Analysis of an Optically Injected Semiconductor
Laser for Microwave Generation

Sze-Chun Chan, Member, IEEE

Abstract—The nonlinear dynamical period-one oscillation of an
optically injected semiconductor laser is investigated analytically.
The oscillation is commonly observed when the injection is mod-
erately strong and positively detuned from the Hopf bifurcation
boundary. The laser emits continuous-wave optical signal with pe-
riodic intensity oscillation. Since the oscillation frequency is widely
tunable beyond the relaxation oscillation frequency, the system
can be regarded as a high-speed photonic microwave source. In
this paper, analytical solution of the oscillation is presented for the
first time. By applying a two-wavelength approximation to the rate
equations, we obtain mathematical expressions that characterize
the oscillation. The analysis explains the physical origin of the
periodic intensity oscillation as the beating between two wave-
lengths, namely, the injected wavelength and the cavity resonance
wavelength. As the injection strength increases, the optical gain
reduces, the cavity is red-shifted through the antiguidance effect,
and so the beat frequency increases continuously. The theoretical
analysis is useful for designing the system for photonic microwave
applications.

Index Terms—Injection-locked oscillators, microwave genera-
tion, nonlinear dynamics, optical injection, semiconductor lasers.

1. INTRODUCTION

INGLE-MODE semiconductor lasers subject to constant
S optical injection have been of great interest in microwave
photonics [1]-[9]. Under different operating conditions, the
laser exhibits a number of dynamical states such as stable
locking, four-wave mixing, period-one oscillation, period-two
oscillation, quasi-periodic oscillation, and chaotic oscillation.
The simplest state of stable locking has been applied for
modulation bandwidth enhancement, chirp reduction, and
noise suppression; while the most complicated state of chaotic
oscillation has been used in secure communication and chaotic
ranging [10]-[12].

In between the two extremes lies the period-one oscillation
state. The state is typically found in a large region of the param-
eter space, where the injection strength is moderately strong
and the injection frequency is positively detuned from the
so-called Hopf bifurcation boundary. In the period-one state,
the output intensity of the laser exhibits high-speed single-pe-
riod oscillation. The oscillation frequency can be continuously
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tuned far beyond the relaxation resonance frequency of the
laser. The period-one oscillation can be optically controlled,
easily locked, and deeply modulated. As a photonic microwave
source, the laser in period-one oscillation has been applied for
narrow-linewidth microwave signal generation, radio-over-fiber
(RoF) subcarrier transmission, wavelength conversion, signal
AM-to-FM conversion, and remote target detection [13]-[17].

Despite the many potential applications of period-one os-
cillation, most related studies have been conducted through
numerical simulations only. The nonlinear nature of the laser
system prohibits exact analytical investigations. There have
been a few excellent reports that qualitatively explained the
oscillation using perturbation analysis, multi-time scale anal-
ysis, or bifurcation analysis [18]-[23]. However, quantitative
characterization of the period-one oscillation for microwave
generation, to the best of our knowledge, has not been reported.

In this paper, analytical solution of the oscillation based on a
two-wavelength approximation is reported for the first time. The
laser emission is approximated to be comprised of two domi-
nating wavelengths. We obtain theoretical results that relate the
oscillation characteristics to the operating conditions, intrinsic
laser parameters, and injection parameters. In particular, math-
ematical expressions are obtained for the microwave power, op-
tical power, and injection strength, where the injection detuning
frequency and the period-one oscillation frequency are treated
as input variables.

Most importantly, the results explain the physical mechanism
behind the period-one oscillation. The oscillation can be viewed
as the beating of two dominating wavelengths. One is regener-
ated from the optical injection while the other is emitted near
the cavity resonance wavelength. When the injection strength
increases, the optical gain normally decreases due to saturation,
the cavity resonance is then red-shifted through the antiguid-
ance effect. As a result, the beat frequency increases contin-
uously with the injection strength. The role of the cavity res-
onance shifting has been speculated and simulated previously
[14], [24], [25], but it is confirmed and evaluated by our anal-
ysis for the first time. In fact, the mechanism is only approxi-
mately valid when the antiguidance factor is large and the gain
compression factor is small.

The well-established rate-equation model is used throughout
the analysis. The model has been proposed based on funda-
mental laser physics. Thus far, numerical simulations on the rate
equations have consistently yielded excellent quantitative agree-
ment with experiments, which have been conducted extensively
over many years [1], [2], [6], [7], [9]. Building on these findings,
numerical simulations are employed to verify our analytical re-
sults in the present paper. Nevertheless, all of our laser param-
eters were obtained experimentally. They were extracted from
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a 1.3-pum laser using a four-wave mixing parameter extraction
technique [26], [27]. Therefore, we focus on establishing our
theoretical results using the realistic simulation results as our
reference. The results are in good agreement.

Following this introduction, the theoretical model is pre-
sented in Section II. Then, the two-wavelength approximation
is presented in Section III. Analytical results are compared to
numerical results in Section IV, which are then followed by
discussions and conclusion in Sections V and VI, respectively.

II. THEORETICAL MODEL

Semiconductor lasers are dynamically class B lasers which
do not require consideration of the polarization [3], [24]. The
dynamical behavior is fully described by the temporal evolu-
tion of the complex optical field and the charge carrier density.
So a single-mode semiconductor laser under constant, coherent
optical injection is a three-dimensional system, which can be
described by state variables (A(¢), N(t)). Here, A is the com-
plex intracavity field amplitude in reference to the optical fre-
quency of the injection and N is the charge carrier density of
the laser. For simplicity, the state variables are normalized to
become a(t) = A/|Ap| and n(t) = (N — Ny)/No, where Ay
and Ny are the free-running values of A and N, respectively.
Note that a is complex while 7 is real.

The laser is controlled by the optical injection parameters
(&, §2;), which denote the injection strength and the injection
detuning frequency, respectively. The injection strength is de-
fined as the injected field strength normalized to the emitted
field strength of a free-running laser. The injection frequency
detuning is defined as the offset frequency of the injection mea-
sured from the free-running frequency of the laser.

By normalizing the established model [14], [24], [26], the rate
equations that govern (a, 72) under optical injection of (&;, %)
are given by
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In (1)-(3), 7. is the cavity decay rate, -y, is the spontaneous car-
rier relaxation rate, -, is the differential carrier relaxation rate,
7p is the nonlinear carrier relaxation rate, b is the antiguidance
factor, I' is the confinement factor of the optical mode inside
the gain medium, and J is the normalized bias current above
threshold. These dynamical parameters are fixed as long as the
bias and the temperature are kept constant. They are indepen-
dent of the injection parameters and the laser dynamics. The
gain g depends on both carrier and photon densities [14], [28].
The expression in (3) is obtained by noting that the free-running
photon density equals 'y, Ny J /%e. Detailed discussion on the
dynamical parameters can be found in the literatures [26], [29].

The values of the parameters are summarized in Table 1. The
laser is biased at .J = 1.222 and emits about 4.5 mW of optical
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TABLE 1
SUMMARY OF SYMBOLS

Parameter Symbol Remarks/Value
Normalized complex optical field a Equation 1
Normalized carrier density 7 Equation 2
Cavity decay rate Ye 5.36 x 1011 s—1
Spontaneous carrier relaxation rate Ys 5.96 x 109 s~1
Differential carrier relaxation rate Yn 7.53 x 109 s~
Nonlinear carrier relaxation rate Tp 1.91 x 1010 s—1
Antiguidance factor b 3.2
Normalized current above threshold J 1.222
Relaxation resonance frequency Qr 27w X 10.25 GHz
Injection parameters
Injection strength & Equation 1
Injection detuning frequency Q; Equation 1
Period-one oscillation parameters
Period-one oscillation frequency Qo Equation 4
Cavity resonance frequency shift Qs Equation 12
Regenerated optical field aj Equation 4
Generated optical field ap Equation 4
Average output intensity S0 Equation 5
Output intensity oscillation amplitude s3 Equation 5
Average carrier density o Equation 6
Carrier density oscillation amplitude 711 Equation 6
Combined relaxation rate 0% Equation 11

power. The relaxation resonance frequency is €, = (ycvn +
Ys7p) /2, which is equal to 27 x 10.25 GHz. It should be men-
tioned that, without optical injection, the laser cannot be di-
rectly modulated much beyond €2, using conventional methods.
However, with optical injection, the laser can be driven into pe-
riod-one oscillation at frequencies several times higher than €2,.

Throughout this paper, both theoretical analysis and numer-
ical simulation are based on the above rate-equation model in
(1)—(3). All simulation results are obtained from the second-
order Runge-Kutta numerical integration method with time step
and time span of 238 fs and 125 ns, respectively. Besides, ac-
cording to (3), 7, represents the gain compression effect of the
laser. While the complete model with -y, is more consistent with
experiments, it is sometimes ignored in related studies by set-
ting v, = 0 [30], [31]. For completeness, both cases with and
without v;, will be examined in the rest of the paper.

Different laser dynamics are observed over the injection
parameter space (&;, €2;). Through comprehensive simulations,
Figs. 1(a) and (b) show various dynamic regions for v, = 0
and 1.91 x 10'° s~ respectively. The figures are mappings
of the sideband suppression ratio R, which will be discussed
in the next section. At this point, it suffices to observe the
clear boundaries between different dynamic regions. These
boundaries can also be determined by bifurcation analysis and
small-signal analysis [7], [24]. In each map, there are small re-
gions of complicated nonlinear dynamics including period-two
oscillation, high-order periodic, quasi-periodic, chaos, and
unlocked dynamics. There is also a region of stable locking that
is bounded from above by a Hopf bifurcation line. When €2;
is increased above the Hopf bifurcation line, a large region of
period-one oscillation is found. The laser exhibits single-period
oscillation at a tunable frequency 2. The corresponding inten-
sity oscillation can be converted into microwave signal using a
high-speed photodetector. Thus, it is important to analyze the
characteristics of the period-one oscillations.
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Fig. 1. Mappings of dynamic regions of the optically injected semiconductor
laser with (a) 7, = 0 and (b) 7, = 1.91 x 10'° s~1. The sideband suppression
ratio R is presented in color.

As an example of period-one oscillation, a simulated optical
spectrum is shown as the solid curve in Fig. 2. The optical
frequency axis is offset to the free-running frequency of the
laser. The injection parameters are set as (&;, ;) = (0.32, 27 x
30 GHz). The spectrum consists of the regenerative compo-
nent at ); and sidebands equally separated by {2, where 2y =
2w x 38 GHz in this case. Additionally, the dashed curve of
Fig. 2 shows the spectrum when we set y, = 0, while keeping
everything else unchanged. Comparing the two spectra reveals
that y;, does not have significant impact on the oscillation.

III. TWO-WAVELENGTH APPROXIMATION

Under period-one oscillation, the state variables (a,7) can
be expressed in terms of Fourier components at multiples of the
oscillation frequency €2y. Due to the laser nonlinearities, it is
difficult to solve for all the components. We seek an approx-
imate solution to the problem by retaining only the strongest
of these components. According to Fig. 2, the strongest optical
components for a are at offset frequencies €2; and ; — Q. It
is because the former is the direct regeneration of the injec-
tion while the latter is closest to the original cavity resonance

Optical Spectrum (20 dB/div.)

—40 0
Offset Frequency (GHz)

1
@mnylo; 40 80

Fig. 2. Simulated optical spectrum of a period-one oscillation state at {; =
0.32 and €2; = 27 x 30 GHz. The generated period-one oscillation frequency
is €29 = 27w X 38 GHz. Solid and dashed curves are obtained with and without
“p, respectively.

at the zero offset frequency. In fact, these two components con-
sistently dominate the optical spectrum even when the injection
parameters are changed.

In order to quantify such observation, we define the sideband
suppression ratio R by treating the laser as a two-wavelength
light source. The weaker of the two dominating components is
first chosen. It is then compared with the strongest component
among the rest of the sidebands. The power difference in decibel
is defined as R. For instance, in the spectrum shown as the solid
curve in Fig. 2, the component at €; — €2 is slightly weaker
than that at €2;. It is thus compared with the strongest sideband,
which turns out to be located at €2; — 2€2y. The sideband sup-
pression ratio is thus determined as R = 20 dB. Mappings of R
over the injection parameter space are shown in Fig. 1. Abrupt
changes occur at the boundaries between different dynamics be-
cause of sudden changes in the oscillation frequency and the
spectrum. Within the period-one oscillation region, R gradually
increases with both &; and §2;. Comparing the two mappings re-
veals that the gain compression effect of ;, tends to reduce R.
For the cases with and without ~y,,, I? is always greater than 10
dB when (27)~1€); is above 31 and 0 GHz, respectively. There-
fore, it is reasonable to keep only the strongest components €2;
and €2; — €y over a large range of injection conditions. Such
two-wavelength approximation will be used throughout the the-
oretical analysis. It should be pointed out that as R is reduced
by decreasing €2;, the two-wavelength approximation and the
performance of the analysis degrade. For example, the anal-
ysis does not yield good results for our laser when 2; < 0 for
7p = 0. Extension of the analysis beyond the two-wavelength
approximation is beyond the current scope.

Applying the two-wavelength approximation, the field a is
written as

a~ apeigot + a; 4

where a; is regenerated from the injection and a,, is generated
by the laser in period-one oscillation (Fig. 2). It follows that
the output intensity of the laser, after normalizing to the free-
running intensity, is given by

la> = 50 + (s1e7 ! £ c.c.) 5)
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where s = |a,|? + |a;|? is the time-averaged intensity and
81 = aya; is the complex amplitude of the intensity oscillation
at {29. Here, c.c. stands for complex conjugate. Similarly, since
the oscillation frequency 2 is typically much higher than the
spontaneous carrier relaxation rate s

i~ fg + (e % 4 c.c.) (6)

where ny is the time-averaged carrier density and 7n; is the os-
cillation amplitude of the carrier density at the period-one fre-
quency. The harmonics of the oscillation are neglected.

The approximations in (4)—(6) will be adopted throughout the
analysis. The analysis is based on the rate equations (1) and (2).
They are rewritten as

1-—1ib Tn - 282
—ifha; = 5 - (77:} niap + Tai - 7p|ap|2ai)
+ 76 (7N
1—1ib
1<QO - Qi)ap = 9 =
cIn ~x 2Qs
X ('y N nja; + ——ap — 7p|ai|2ap> (8)
¥sJ b
vig = — sd {50 —1- r;—p (s0(so — 1)+ 2|sl|2)}
— Y (R7s1 +c.c.) )
= 202
(iQ — )71 =¥ J51 (1 +— - ks(}) (10)
bye Ve
where
Y =7 + TnS0 (11)
and
r Ve
Qs =b— < > — _> 12
; 5\~ T (12)
b [ vevn -
=5 |:'ysj g — Yp(so — 1)] (13)

Inspecting (12) and (1) reveals that €2 is a very important phys-
ical quantity. It is the shift of the cavity resonance frequency
under the influence of optical injection. Usually, optical injec-
tion reduces the charge carrier density of the cavity. The time-
averaged gain (g) thus reduces from its free-running value 7. /T
The reduction of gain induces, through the antiguidance factor b,
an increase of the refractive index. The corresponding effective
cavity length increases and so the cavity resonance frequency
is shifted by €25. The frequency shift usually becomes more and
more negative as the injection strength increases. The frequency
plays an important role in the tunability of the period-one oscil-
lation frequency, as the next section will show.

IV. RESULTS

In this section, the period-one oscillation characteristics are
derived using the simplified rate equations (7)—(10). For any
given injection detuning frequency €2;, the generated period-one
oscillation frequency {2 can be tuned by varying the injection
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Fig. 3. Regenerative optical component |a;|? as a function of the period-one
oscillation frequency €2,. The solid curves represent analytical results while the
closed symbols represent numerical results, where (27)~1€}; = 20 GHz (cir-
cles), 30 GHz (triangles), 40 GHz (squares), and 50 GHz (diamonds). (a) 7, =
0.() 7y, = 1.91 x 100 s~ 1.

strength &;. Thus, both €2; and €2 are treated as input variables in
the following derivations of the other quantities, which include
the regenerative optical component |a;|?, the cavity resonance
frequency shift (25, the average output intensity s, the generated
period-one optical component |a,|?, the generated microwave
power |s1|?, and the required injection strength &;.

The resultant analytical expressions are verified through
extensive numerical simulations. The results are presented in
Figs. 3-8. The solid curves are from analytical results while
the closed symbols are from numerical results. The analytical
results are obtained from directly evaluating the expressions to
be presented in this section. The numerical results are obtained
from the numerical integration presented in Section II. In each
figure, the results are shown for (27)~1Q; = 20, 30, 40, and
50 GHz, which are marked by circles, triangles, squares, and
diamonds, respectively. For completeness, both cases with
¥, = 0 and 1.91 x 10'° s=! are shown in every part (a) and
part (b), respectively.

A. Cavity Shift

By combining (8) and (10), we can eliminate 721 using s; =
a;ai to yield

. 1—ib (20 ,
—I(QO — Ql) + T ( b - '7p|ai|2>:| (IQO + 7)
1—1b 20
=5 (% - %80) lai|? (14)
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Fig. 4. Cavity resonance frequency shift {2, as a function of the period-one os-
cillation frequency €2o. The solid curves represent analytical results while the
closed symbols represent numerical results, where (27)~1€; = 20 GHz (cir-
cles), 30 GHz (triangles), 40 GHz (squares), and 50 GHz (diamonds). (a) v, =
0.()7, = 1.91 x 10'° s~ 1.

for a, # 0. Solving the real and imaginary parts, we obtain

2 QZ + ,YZ
|ai|* = 295(_0 ) ——(Q - ) (15)
Tn (’Yc + b ’YPSO) (1 +b )QO
and
(02 =) =) | by, 1o
QO =— (LT 529, +7"|ai| : (16)

Both |a;|? and €, depend strongly on (Qg, £2;). Some additional
approximations are helpful in simplifying the results. For most
semiconductor lasers, b ~ 2 — 9, v, ~ 10" s7! and 59 ~ 1
even under injection. Also, 7. ~ 1011 — 1012 s~! is always
the fastest rate among the parameters in the model and is much
higher than the magnitude of the cavity resonance frequency
shift (2. As a result, we assume that (i) v. > |(22s/b) — ypso]
and (ii) v = s + 7n- These are the only extra assumptions
applied in the analysis other than the two-wavelength approx-
imation. They allow evaluation of |a;|? and € as functions of
(0, Q) using (15) and (16), respectively.

Fig. 3 shows the regenerative optical component |a;|? as a
function of {2y under different €2;. The analytical results in solid
curves agree well with the numerical results in closed symbols.
Each curve follows a similar trend. When €2 is equal to €;,
the laser must be under simple four-wave mixing, where the
laser is just slightly perturbed by the injection. This occurs if the
injection strength is infinitesimally small and so |a;|? is zero.
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Fig. 5. Average optical output intensity sy as a function of the period-one
oscillation frequency €2o. The solid curves represent analytical results while
the closed symbols represent numerical results, where (27)~'€}; = 20 GHz
(circles), 30 GHz (triangles), 40 GHz (squares), and 50 GHz (diamonds).
(@ v = 0.(b) 7, = 1.91 x 1010 s—1.
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Fig. 6. Generated optical component |a,,|? as a function of the period-one 0s-
cillation frequency 2. The solid curves represent analytical results while the
closed symbols represent numerical results, where (27)~1€; = 20 GHz (cir-
cles), 30 GHz (triangles), 40 GHz (squares), and 50 GHz (diamonds). (a) v, =
0.(b)7p = 1.91 x 100 s~ 1.
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Fig. 8. Required optical injection strength &; as a function of the period-one
oscillation frequency €2. The solid curves represent analytical results while the
closed symbols represent numerical results, where (27)~€); = 20 GHz (cir-
cles), 30 GHz (triangles), 40 GHz (squares), and 50 GHz (diamonds). (a) v, =
0.(b) 7p = 1.91 x 1010 s~ 1,
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However, as (2 increases, the injection strength has to be in-
creased accordingly. This leads to an increase of |a;|? through
regeneration. As a side note, for the simulation data in Fig. 3(a)
at ; = 27 x 20 GHz, the minimum €)q is 27 x 26 GHz at
& = 0.15. The frequency g cannot be decreased further by
reducing the injection strength ;. According to the mapping in
Fig. 1(a), the laser exhibits period-two and chaotic oscillations
for small & when Q; = 27 X 20 GHz. Our analysis is only ap-
plicable to period-one oscillations.

Fig. 4 shows the cavity resonance frequency shift {25 obtained
as {1 varies. The analytical results are calculated by substituting
(15) into (16). For any given ), increasing 2y requires &; to
increase accordingly. The cavity resonance frequency shift €2
becomes more and more negative because of the physical argu-
ment presented in Section III. Contrasting Figs. 4(a) and (b), the
agreement between analytical and numerical results is better if
vp can be ignored. This is because the two-wavelength approx-
imation is more plausible when there is no gain compression.

In order to obtain some physical insight, the case with y, = 0
is considered here. Typically, b2y > 7 and b~2 < 1 so that
(16) can be simplified to

Qs ~ O — Qo. (17)

This implies that the period-one oscillation is caused by beating
of light from the injection at £2; and the emission at the shifted
cavity resonance frequency (). In other words, the period-one
oscillation is interpreted as a generalized four-wave mixing with
the cavity resonance frequency being shifted by strong injec-
tion. Such mechanism has been proposed by the pioneers of this
subject [32]. The role of €2, has been speculated for the stable
locking state as well [25], [31]. However, it is confirmed analyt-
ically for the first time as a result of the two-wavelength approx-
imation. The situation becomes more complicated if v;, cannot
be neglected.

B. Averaged Intensity
Substituting (16) into (8), the following can be obtained

2(iQ — ) 7sd Qo — Q
14062 YecYn Qo

fitsy = Hap 2. (18)

Putting (18) into (9) yields the normalized average optical
output intensity

_(rys + ’Yn)QS + 27116 (1 - |ai|2)

=142 1
so=1+ b2+ 2700 — dynd (19)
where we define 6 for convenience as
Qo —
b6=Q+ —. 20
T +b2 20)

Fig. 5 shows the results for so. Every curve starts with Qg = €2;
when the injection is infinitesimally small. The emitted intensity
so equals unity, as for a free-running laser. When € increases,
the required &; increases, so sg increases accordingly. Analytical
and numerical results are in excellent agreement when v, = 0
in Fig. 5(a). In Fig. 5(b), the model also predicts the decrease
of slopes at high sg due to the saturation effect of a non-zero
7p- The agreement between analytical and simulation results is
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again better for -y, = 0 because of the two-wavelength approx-
imation.

C. Period-One Components

The optical spectral component generated by the period-one
oscillation can be evaluated as

|ap|? = so — |ai|? 1)

where (15) and (19) are used. The results are plotted in Fig. 6.
When Q¢ = ;, the injection is very weak, a; = 0 and sg =
1, so that |ap|? = 1. When Qg increases, |a;|* grows and €
becomes increasingly negative. Eventually, |a,|* is reduced to
zero as the laser undergoes a reverse Hopf bifurcation into stable
locking.

Furthermore, the optical components a;, and a; can beat at a
photodetector. This yields a continuous-wave microwave signal
at 0y with electrical power proportional to |s1|* = |aya;|*. By
combining (15) and (21), |s1|? is shown as a function of €2
in Fig. 7. There is always a peak for each curve because, from
Figs. 3 and 6, |a;|? and |a,|? have opposite dependencies on
Qo. The agreement between analytical and numerical results im-
proves as €2; increases. In relating to experiments, the photode-
tector is assumed to be 50-(2 terminated and possess 0.5 A/W
responsivity. Since the free-running optical power of our laser is
4.5 mW, we deduce that |s1|?> = 0.1 corresponds to microwave
power of —13 dBm. A transimpedance amplifier can be em-
ployed, as in most microwave photonics systems, if high-power
microwave signal transmission is required.

D. Tuning Characteristics

The analysis finally relates the injection strength &; to 2y by
combining all earlier results. Putting (15) and (18) into (7), we
have

Qs
1—ib [ Q2+ Ery, —iQ0y, o | ai
- lap]® p —. (22)
2 IQO -7 Ye

Since &; is a positive real number, the phase of a; can be de-
duced from (22). However, we only consider the magnitude of
(22) in the following. By using the known results of |a;|, (s,
S0, and |a|, we obtain the required &; as a function of the in-
tended €2y under different 2;. The results are shown in Fig. 8,
where excellent agreement between the analytical and numer-
ical results is again observed. Since (&;, €2;) are controlled by ex-
perimental settings, Fig. 8 can be regarded as the tuning curves
of Qq. The results are practically important in designing some
ROF systems. For instance, they are applicable to understanding
AM-to-FM converters, where the slopes and curvatures of Fig. 8
correspond to the conversion ratio and signal distortion, respec-
tively. Hence, the two-wavelength analysis not only explains the
physical mechanism of period-one oscillation but also provides
guidance for designing microwave photonics systems.

V. DISCUSSION

The analysis on the period-one oscillation bridges the results
previously known for four-wave mixing and stable locking. On

50

Qy/2r (GHz)

30 1 I 1

=50 =25 0 25 50
Parameter Change (%)

Fig. 9. Effects of the parameter changes on the period-one oscillation fre-
quency £2¢. The solid curves represent analytical results while the symbols
represent numerical results, where changes are made on b (open circles), 7.
(open triangles), v, (open squares), v. (closed circles), v, (closed triangles),
and J (closed squares).

one hand, four-wave mixing refers to the asymptotic behavior
under very weak injection at large injection detuning frequency.
Under four-wave mixing, ;—€ ~ Qs ~ 0and |ap| ~ 1. From
the mappings in Fig. 1, as §2; increases along & = 0, the ratio
R increases and so the accuracy of the two-wavelength approx-
imation improves. Considering €; — o0, (22) is simplified to

'70&
95

This is the same asymptotic result previously obtained from the
four-wave mixing perturbation analysis [26], which was applied
in the weak injection limit without requiring the two-wavelength
approximation. For €; < €, the optical spectrum becomes
nearly double sideband [26]. The two-wavelength approxima-
tion is inapplicable so that the perturbation analysis is preferred.
On the other hand, the laser under period-one oscillation
eventually becomes stably locked when the injection strength
increases pass the Hopf bifurcation point. At the bifurcation
point, the oscillation vanishes and a, reduces to zero. If
b2 > 2(9s + 7u)S is assumed based on typical values,
then (19) implies that |a;| ~ 1. Thus, according to (15), the
oscillation frequency right at the bifurcation point is

_ O+ VO 4200+ 5T
o 2

for Q9 > ~. Since the bifurcation point is the boundary be-
tween period-one oscillation and stable locking, our analysis
is compared to the eigenvalue analysis on stable locking [24].
For instance, when §2; = 0 and 7, = 0, our result reduces
to Qp = /(1 + b2)/29,, which is exactly the same result ac-
cording to [24]. Therefore, our analysis agrees with the estab-
lished results of both four-wave mixing and stable locking.
Our analytical results are also verified against numerical re-
sults when the laser dynamical parameters are varied. Fig. 9
shows the analytical and numerical results in solid curves and
data points, respectively. The frequency €2y is varied as dif-
ferent parameters are varied from the original values in Table I.

ai:i

. (23)

Qo (24)
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Only one parameter is varied at a time. The injection is kept at
(&, %) = (0.32,271 x 30 GHz). The change is applied on b,
Yes Tns Vs> Vp» and J for the open circles, open triangles, open
squares, closed circles, closed triangles, and closed squares, re-
spectively. It is observed that €2y is most sensitive to . while
it is nearly insensitive to 7, and 7,. The frequency is also in-
dependent on J in itself. However, in reality, changing the bias
always causes changes in 7y, and thus changes in 2.

VI. CONCLUSION

The nonlinear dynamical high-speed period-one oscillation
of an optically injected semiconductor laser is analyzed the-
oretically. The formalism is based on the approximation that
the laser outputs mainly two wavelengths, which correspond
to the regeneration of the injection and its oscillation sideband
near the shifted cavity resonance wavelength. Analytical results
are expressed in terms of the injection detuning frequency and
the oscillation frequency. Optical spectrum, microwave spec-
trum, and injection requirements of the period-one oscillation
are characterized. Most interestingly, the analysis clarifies the
role of the cavity resonance frequency shift, which has long
been speculated without much analytical explanation. Hence,
the period-one oscillation can be viewed as a generalization of
four-wave mixing with the cavity resonance being shifted by
strong injection. The analysis agrees well with numerical simu-
lation on the period-one oscillation. It also bridges the theories
on stable locking and four-wave mixing. The results pave the
way for using the period-one oscillation as a microwave pho-
tonic source.
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