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Abstract
With the advent of new therapies and management strategies for carotid
atherosclerosis, there is a parallel need for measurement tools or biomarkers
to evaluate the efficacy of these new strategies. 3D ultrasound has been shown
to provide reproducible measurements of plaque area/volume and vessel
wall volume. However, since carotid atherosclerosis is a focal disease that
predominantly occurs at bifurcations, biomarkers based on local plaque change
may be more sensitive than global volumetric measurements in demonstrating
efficacy of new therapies. The ultimate goal of this paper is to develop a
biomarker that is based on the local distribution of vessel-wall-plus-plaque
thickness change (VWT-Change) that has occurred during the course of a
clinical study. To allow comparison between different treatment groups, the
VWT-Change distribution of each subject must first be mapped to a standardized
domain. In this study, we developed a technique to map the 3D VWT-Change
distribution to a 2D standardized template. We then applied a feature selection
technique to identify regions on the 2D standardized map on which subjects
in different treatment groups exhibit greater difference in VWT-Change. The
proposed algorithm was applied to analyse the VWT-Change of 20 subjects in
a placebo-controlled study of the effect of atorvastatin (Lipitor). The average
VWT-Change for each subject was computed (i) over all points in the 2D
map and (ii) over feature points only. For the average computed over all
points, 97 subjects per group would be required to detect an effect size of
25% that of atorvastatin in a six-month study. The sample size is reduced
to 25 subjects if the average were computed over feature points only. The
introduction of this sensitive quantification technique for carotid atherosclerosis
progression/regression would allow many proof-of-principle studies to be
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performed before a more costly and longer study involving a larger population
is held to confirm the treatment efficacy.

(Some figures may appear in colour only in the online journal)

1. Introduction

Stroke is among the leading causes of death and disability worldwide, with estimated direct
and indirect costs in 2010 of $73.7 billion in the United States alone (Lloyd-Jones et al 2010).
However, stroke has a larger impact in developing countries such as China, which has a
morality rate of stroke that is more than seven times higher than that in the United States in the
population group aged 40–64 (He et al 2005). A major portion of strokes is ischemic, mostly
caused by the blockage of a cerebral artery by a thrombotic embolus. Carotid atherosclerosis
is a major cause of thrombosis and subsequent cerebral emboli (Eicke et al 1995, Golledge
et al 2000). Nonetheless, most strokes associated with carotid atherosclerosis can be prevented
by lifesytle/dietary changes, medical and surgical treatments (Gorelick 1994, Spence 2007).
These treatment strategies are required to be validated in clinical trials. Traditional clinical
trials use incidence of vascular events, stenosis (NASCET Steering Committee 1991, ECST
Collaborative Group 1995) and intima-media thickness (IMT) (O’Leary and Polak 2002) to
evaluate the severity of carotid disease. These trials must be very large in order to demonstrate
the effects of different treatments in a statistically significant way. Therefore, parallel to
the development of new therapies, an equally important requirement is the development of
treatment-specific measurement tools or biomarkers for evaluation of carotid atherosclerosis
and serial monitoring of disease progression or regression. Sensitive, non-invasive 3D imaging
technique allowing plaque visualization and quantification will play a vital role in the
development of such biomarker.

The ability of 3D ultrasound for direct quantification of carotid plaque, such as total
plaque area/volume (Spence et al 2002, Landry et al 2004, Ainsworth et al 2005) and vessel
wall volume (VWV) (Egger et al 2007), has been established. By virtue of the additional
dimensions, these measures are more sensitive to disease progression/regression than IMT
(Ainsworth et al 2005, Pollex et al 2005). However, plaque dimension alone, although serving
as direct measurements on plaque change, could not identify local change of plaque. The
knowledge of local plaque change will allow for more sensitive tests to be performed, making
the size of a clinical trial smaller and the duration shorter. In addition, carotid atherosclerosis
is a focal disease, predominantly occurs at the bifurcations. Sudden focal progression is
associated with an elevated risk of vascular events (Spence et al 2002, Hirano et al 2011).
Therefore, if the regional distribution of plaque change could be visualized and quantified, the
risk of vascular events can be monitored more effectively. To quantify the 3D distribution of
plaque change, we have developed a metric to quantify the vessel-wall-plus-plaque-thickness
change (VWT-Change) on a point-by-point basis, resulting in a 3D map showing distribution
of VWT-Change (Chiu et al 2008b).

Although the 3D VWT-Change maps provide rich information regarding the 3D
distribution of vessel wall and plaque progression and regression, there are hundreds if not
thousands points on each 3D VWT-Change map and it is very difficult to interpret these
overwhelming data and make clinical conclusions. Thus, the ultimate goal of this paper
is to develop a sensitive biomarker that can summarize the information provided in the
3D VWT-Change maps. The major application of this biomarker will be on evaluating the
effects of different types of plaque stabilization strategies. This biomarker will be validated by
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determining the sample sizes needed to detect statistically significant effects of an intensive
atorvastatin therapy. Since the arterial geometry is highly variable between subjects, there is a
need to map 3D VWT-Change maps to a standardized template so that correspondence points
in different carotid arteries are mapped to the same position in the standardized template to
facilitate localized comparison. Considering the fact that visualization and interpretation of
the 3D map is unnecessarily difficult due to the complex topology of the carotid artery at the
bifurcation, a 2D standardized map is preferred. We have previously developed a mapping
technique to cut and unfold a 3D carotid surface so that the 3D VWT-Change distribution can
be visualized in a 2D view (Chiu et al 2008a). This algorithm has been used in clinical studies
investigating the temporal and spatial changes of VWT when subjects were treated using
different strategies (Egger et al 2008, Krasinski et al 2009), in an interscan reproducibility
evaluation (Egger et al 2008) and in an experimental study involving luminal ulceration
and fissure detection (Chiu et al 2009). However, our 2D mapping approach has a major
disadvantage. The 2D maps produced for different subjects have different shapes (e.g., see
figure 4 in Egger et al (2008)). Many other conformal (angle-preserving) or area-preserving
techniques developed to flatten tubular surfaces also suffer from the same problem (Bartroli
et al 2001, Haker et al 2000, Zhu et al 2005). Thus, 2D VWT maps generated for the same
subject at different time points or VWT-Change maps generated for different subjects must be
matched visually before regional comparisons of the maps can be performed. However, visual
matching of 2D maps is subjective and prone to operator variability.

Thus, there are two major goals in this paper. The first goal is to develop a novel technique
that transforms the 3D VWT-Change maps into a 2D standardized map to allow for quantitative
and localized assessment of vessel wall and plaque progression and regression. The second
goal is to develop sensitive biomarkers based on the VWT-Change distribution on the 2D VWT-
Change maps. To design sensitive biomarkers that can detect the effect of plaque stabilization
strategies, we first applied a feature selection technique to identify regions on the standardized
2D map on which subjects in different treatment groups demonstrate greater difference in
VWT-Change. A mutual-information-based feature selection technique was applied for this
purpose (Chow and Huang 2005). Mutual information was chosen as the criteria to evaluate the
discriminating ability of a subset of features because it is less affected by noise (Battiti 1994).
Since the selected regions exhibit greater plaque response difference between treatment groups,
we hypothesize that it would require fewer subjects to show statistical significant difference
in a biomarker that only accounts for the VWT-Change values on these regions. In this paper,
we will compare average VWT-Change for each subject in two settings, in which averages are
computed (i) over all points and (ii) selected points in the 2D VWT-Change maps. Statistical
tests are then used to evaluate whether the average computed in setting (ii) is more sensitive
to the treatment effect than that computed in setting (i).

2. Methods

2.1. Subjects

We demonstrate the application of the proposed algorithm using 3D ultrasound carotid images
of two groups of subjects with ten in each group. These subjects participated in a clinical
study focusing on evaluating the effect of atorvastatin (Ainsworth et al 2005). They were
asymptomatic with carotid stenosis >60% (according to carotid Doppler flow velocities).
3D ultrasound images of these subjects were acquired at baseline and three months later.
Subjects were allocated in a double-blind fashion to identical placebo or 80 mg atorvastatin
tablets (Lipitor). All subjects were recruited from The Premature Atherosclerosis Clinic
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and The Stroke Prevention Clinic at University Hospital (London Health Sciences Centre,
London, Canada) and the Stroke Prevention and Atherosclerosis Research Centre (Robarts
Research Institute, London, Canada). All subjects provided written informed consent to the
study protocol, which was approved by The University of Western Ontario Standing Board of
Human Research Ethics.

2.2. Acquisition of 3D ultrasound carotid images

The 3D carotid ultrasound system has been described in detail elsewhere (Fenster et al 2001)
and is summarized here. Briefly, the 3D ultrasound images were acquired by translating an
ultrasound transducer (L12-5, Philips, Bothel, WA) with a custom-made mechanical assembly
along the neck of the subject for approximately 4.0 cm at a uniform speed of 3 mm s−1. The
2D ultrasound frames acquired using the ultrasound machine (ATL HDI 5000, Philips, Bothel,
WA) were digitized at 30 Hz and reconstructed into a 3D image. A sonographer would then
examine the acquired 3D image to ensure that the bifurcation was located at the approximate
centre of the image volume. The voxel size of the 3D ultrasound images were approximately
0.1 × 0.1 × 0.15 mm3.

2.3. Construction of 3D vessel-wall-plus-plaque thickness change map

The algorithm for constructing the 3D VWT-Change map has been described elsewhere (Chiu
et al 2008b). In the following subsections, we will briefly summarize the algorithm.

2.3.1. Arterial wall/lumen segmentation and surface reconstruction. First, the outer wall and
the lumen boundary of the carotid artery were required to be segmented. Because the images
involved in this study have been segmented in a previous study for VWV quantification
(Krasinski et al 2009) and because of the fact that manual segmentation has been considered
most reliable and used as ground truth to evaluate semiautomatic contours (Ukwatta et al 2011),
the manually segmented contours were used in this study. These contours were segmented by a
single observer blinded to subject identity, treatment and time point. The carotid bifurcation was
first located from the 3D ultrasound image. An axis was placed parallel with the longitudinal
axis of the common carotid artery (CCA) and centred at the bifurcation. The 3D image was
then resliced perpendicular with the longitudinal axis at an interslice distance of 1 mm. The
outer wall and the lumen boundaries of the common, internal and external carotid arteries
(CCA, ICA and ECA respectively) were segmented on each resliced 2D transverse plane,
resulting in a stack of 2D contours. Adjacent 2D contours are then matched using the modified
symmetric correspondence algorithm (Chiu et al 2008b) to construct the outer wall surface
and lumen surface for each subject.

2.3.2. Computation of the VWT and VWT-Change map. The point-by-point VWT of the
carotid artery acquired at baseline was obtained on a slice-by-slice basis by using the modified
symmetric correspondence algorithm and superimposed on the outer wall contour (Chiu et al
2008b). To allow direct comparison, the outer wall surface obtained at the follow-up scanning
session was registered with that obtained for the first time point using the modified iterative
closest point algorithm we developed (Chiu et al 2012). The transformation thus obtained was
also applied on the lumen surface acquired at follow-up in order to align with the registered
wall surface. Point-by-point VWT at follow-up was computed on the same transverse slice as
was computed at baseline and superimposed on the outer wall surface. The outer wall surfaces
obtained at baseline and follow-up were matched according to the angular positions. For each
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(a)
(b)

(d) (c)

Figure 1. Schematic diagram of the 2D standardized map construction algorithm.

pair of corresponding points, the VWT-Change was computed, colour-coded and superimposed
on the arterial wall surface (e.g., figures 5(g) and (h)), which we refer to as VWT-Change map
hereafter.

2.4. Construction of the 2D standardized map

A simplified version of this 2D standardized mapping technique has been introduced in Chiu
et al (2013), in which 2D maps were generated for CCA only. The technique described in
this paper was designed to generate 2D standardized maps for ICA and ECA in addition to
CCA. The flowchart of the algorithm used to construct the 2D standardized map is shown in
figure 1. The algorithm consists of three steps: (1) the 3D VWT-Change map was aligned with
the standard local coordinate frame; (2) the aligned 3D map was mapped to a 2D rectangular
domain; (3) the 2D rectangular map was resampled to obtain the 2D standardized map. Each
step is individually described in the following sections.

2.4.1. Alignment of 3D VWT-Change map. A longitudinal axis was defined before
segmenting each artery. Before constructing a 2D standardized map, the longitudinal axis
of each artery was aligned with the z-axis of a local coordinate frame with the positive z-axis
pointing to the downstream direction. The bifurcation of each wall surface, as defined using
our technique described in Chiu et al (2008b), was moved to the origin of the local coordinate
frame. The centroids of the ECA and ICA contours immediately distal to the bifurcation were
computed and denoted as CECA and CICA. The vector pointing from CECA to CICA was aligned
with the x-axis (figure 2(b)). x̂, ŷ and ẑ are used to denote the unit vectors of x-, y- and z-axis
respectively hereafter.
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(a) (b)

(c)

Figure 2. (a) Schematic diagram of the carotid arteries with the three planes, PICA, PECA and PCCA,
cutting the internal, external and common carotid arteries (ICA, ECA and CCA), respectively. The
labels on the diagram were all defined in section 2.4. (b) The cross-section of the carotid arteries
showing the contours at ICA, ECA and CCA that are closest to the bifurcation (BF) (c) The 2D
standardized map.

2.4.2. 2D flattened map generation. The aligned 3D map of each artery was then cut,
unfolded and mapped to a rectangular domain with the bifurcation at the origin (figures 1(b)
and 2(c)). The orientation of the planes cutting CCA, ICA and ECA were defined by a line
and a vector lying on it as follows (figure 2(a)).

• The plane cutting the CCA is labelled as PCCA in figure 2(a), which was defined by (i) the
line connecting the centroid of the CCA contour most distal to the bifurcation, CCCAUp,
and the bifurcation apex, BF and (ii) the ŷ vector.

• The planes cutting the ICA and ECA are labelled as PICA and PECA in figure 2(a)
respectively, which were defined by (i) the line connecting the centroid of the contour
immediately distal to the bifurcation, CICAUp (or CECAUp), and the centroid of the contour
farthest away from the bifurcation, CICADown (or CECADown) and (ii) the x̂ vector.

The intersecting lines between the cutting planes and the CCA, ECA and ICA are shown
as red dotted lines and labelled C0, C1 and C2 respectively. The arterial surface was unfolded
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to a rectangular domain shown in figure 2(c). The 3D carotid surface has three boundary
components, which are labelled as σ0, σ1 and σ2. The intersecting lines between the planes
PCCA, PECA and PICA and the carotid surface were denoted by C0, C1 and C2 respectively. C0,
C1 and C2 run from σ0, σ1 and σ2 respectively and meets at the bifurcation apex. The boundary
of the 3D carotid surface after being cut was defined by the original boundaries σ0, σ1 and
σ2 and the intersecting lines C0, C1 and C2. These boundaries were mapped to seven straight
edges in the rectangular domain. The corresponding 3D locations of edges 1–7 labelled in
figure 2(c) are listed below.

Edge 1 y0
σ0→ y0

Edge 2 y0
C0→ BF

C2→ y2

Edge 3 y2
σ2→ y2

Edge 4 y2
C2→ BF

Edge 5 BF
C1→ y1

Edge 6 y1
σ1→ y1

Edge 7 y1
C1→ BF

C0→ y0

The CCA, ICA and ECA transverse contours were mapped to the standardized rectangular
domain in the following way. The plane PCCA cuts the CCA along C0 on the negative y side
of the 3D coordinate frame and C′

0 on the positive y side (figure 2(a)). Figure 2(b) shows a
transverse CCA contour in the cross-sectional view. The CCA contour intersects with C0 at IC2

and C′
0 at IC1. The arc-length of the contour segment from IC2 to IC1 was scaled and mapped

in the clockwise direction to a straight line from x = −LECA to 0 in the 2D standardized map
as shown in figure 2(c). The segment from IC1 to IC2 was mapped to a straight line from x = 0
to x = LICA in the same way. The ECA and ICA contours intersects C1 and C2 at IV 1 and IV 2

respectively. The ECA contour starting and ending at IV 1 was mapped in a clockwise direction
to a straight line starting at x = −LECA and ending at x = 0. Similarly, the ICA contour starting
and ending at IV 2 was mapped to a straight line starting at x = 0 and ending at x = LICA. The
last thing remains to be considered is the dimension of the standardized map. Each 3D map
was cut by PCCA, dividing the 3D surface into the ECA and ICA sides (figure 3). By dividing
the ECA surface area by the height of the 3D surface, we obtained the horizontal length of
ECA on the 2D map, which we denote as LECA,i for the ith artery. LECA was computed by
taking the average of LECA,i for all arteries. LICA was computed in the same way.

2.4.3. Resampling. The 2D flattened map of each artery was then sampled in a 0.3 mm
interval on both the horizontal and vertical directions (figure 1(c)). The axial, lateral and
elevational resolutions of the L12-5 transducer are approximately 0.6, 0.6 and 2 mm at 4 cm
penetration depth (Browne et al 2004). We made a conservative choice of 0.3 mm sampling
interval to make sure that plaques would not be missed. Resampling was performed to construct
a 2D standardized map so that quantitative comparisons of VWT-Change distribution of all
arteries can be performed on a point-by-point basis. Furthermore, the resampled VWT-Change
distribution can be interpreted as a set of features in a feature selection analysis, which is the
focus of the following section. In our study, because the longitudinal coverage of different 3D
carotid ultrasound images may be different, the length of the artery on which segmentation
can be performed may be different. Since the 2D standardized maps of all arteries must be
the same, resampling was only performed in the region where all 2D flattened maps overlap,
which may be significantly smaller than the 2D flattened map for some arteries, such as the
artery shown in figure 1(c). The resampled 2D map in figure 1(d) is referred to as the 2D
standardized map hereafter and used in the following feature selection analysis.
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(a) (b) (c)

Figure 3. For calculation of the two parameters, LECA and LICA, required in the 2D standardized
map construction (section 2.4), each carotid surface was cut into the ECA (red) and ICA (blue)
sides by PCCA as shown in (a). (b) and (c) Show the ECA and ICA sides respectively with C0 and
C′

0 labelled, which are the intersection lines between the carotid surface and PCCA. BF denotes the
bifurcation.

2.5. Feature selection

Given a number of subjects belonging to different treatment groups, feature selection analysis
identifies a subset of VWT-Change values on the standardized map that are most correlated with
which treatment group an artery belongs to. This technique helps us to locate the regions where
there are significant differences between the atorvastatin and the placebo group. The feature
selection algorithm applied in this paper was based on mutual information and was described
in Chow and Huang (2005). The algorithm is supervised, meaning that the information on
whether a subject belongs to the placebo or the atorvastatin group was provided as an input
to the algorithm. Briefly, mutual information is a quantity that quantifies the correlation
between random variables. Suppose knowing the VWT-Change value at position xm of the
standardized map, denoted as fm, reduces much uncertainty regarding which treatment group,
C, an artery belongs to (which is either the atorvastatin or placebo group in our study), the
mutual information I( fm;C) is high.

The flow chart of the algorithm is shown in figure 4. Briefly, F represents the candidate
feature set and S represents the selected feature set. F was initialized to contain all the features
(i.e., VWT-Change values at all points in a standardized map) and S was initialized to be an
empty set. The feature selection algorithm selects a feature, fm, at each iteration that maximizes
I(S+ fm;C), which is the mutual information between the feature set S+ fm and the treatment
group C· S + fm was formed by adding fm ∈ F to the existing feature set S, which contains
all features selected in previous iterations. The termination criterion was defined based on
the P-value of the t-test performed for a metric denoted as �VWT S between the placebo and
atorvastatin group. This metric will be defined in equation (5b) and described in section 2.6.2.

In the original algorithm, if fm represents redundant information that is similar to a feature
in S, fm was not included in S even though adding this feature would maximize I(S + fm;C).
The purpose of excluding points that represent redundant information was to reduce the
computation complexity of classification processes. However, VWT-Change measurements
in a neighbourhood are usually continuous and therefore the VWT-Change measurements
associated with neighbouring points may carry similar information in the classification
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Initialization: The candidate feature set, F,
filled with all feature points. The selected
feature set, S, is empty.

Select the most salient feature f
such that I(S+f ; C) is maximized
among all

m

m

Sfm

Delete f from Fm

mfFSC

Add f to Sm

Output S

No

Yes

Yes

No
?

Need to check P-Value?

P-value higher than
or equal to the last
P-value obtained?

No

Yes

Figure 4. Flow chart of the mutual-information-based feature selection algorithm. P-value shown
in the flow chart denotes the P-value resulting from a t-test between the placebo and atorvastatin
group based on �VWTS. This P-value was checked starting at the time when 10% of the total
number of feature points have been selected, and was checked at a 1% increment thereafter. Also
note that in this application the redundancy check step (i.e., FSC( fm) � θ?) was bypassed by
setting θ = 1.

point-of-view. Yet, for our purposes, the whole region on which different treatment groups
exhibit different VWT-Change distribution should be included. The similarity between fm and
the features already included in S is quantified by a feature similarity coefficient (FSC), which
was defined by:

FSC( fm) = arg max
fi∈S

(
I( fm; fi)

H( fi)

)
(1)

where H(·) is the entropy.
The original algorithm adds the feature fm only if FSC( fm) � θ . As H( fi) =

H( fi| fm) + I( fi; fm) � I( fi; fm), FSC( fm) � 1. To bypass the redundancy check, θ was
set to be 1 in our application. This ensured that features were selected only based on how it
correlates with the identity of the treatment group.

2.6. Statistical tests

2.6.1. Point-by-point group analysis of VWT-Change. Since the 3D VWT and VWT-Change
maps were all mapped to the 2D standardized map, point-by-point group averages of VWT
and VWT-Change can be computed and displayed. The 2D standardized map with the average
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VWT and VWT-Change computed for the placebo and atorvastatin groups will be shown in
section 3.2.

Another application of the 2D standardized map is to identify subjects that are associated
with rapid focal progression and regression of VWT. Krasinski et al (2009) identified that
the placebo group was associated with VWV progression, whereas the atorvastatin group was
associated with VWV regression. In this part, we identify, at each point, the subject with the
maximum VWT progression among the ten placebo subjects, and the subject with maximum
VWT regression among the ten subjects treated by atorvastatin. This information was plotted on
the 2D standardized map, which shows the distribution regarding which subject was associated
with the maximum progression/regression at each point. The procedure is summarized below.

(i) Each point at the 2D map (denoted as pi) of each subject is associated with a VWT-
Change value. For the placebo group, at each pi, the maximum VWT-Change among the
ten subjects, Max�VWT (pi), were obtained (equation (2a)). For the group treated by
atorvastatin, the minimum VWT-Change (i.e., maximum regression of VWT) among the
ten subjects, Min�VWT (pi), were obtained:

Max�VWT (pi) = max {�VWTj(pi)}10
j=1 (2a)

Min�VWT (pi) = min {�VWTj(pi)}10
j=1 (2b)

where �VWTj(pi) is VWT-Change of Subject j at pi.
(ii) In order to display the subject with the greatest increase and greatest decrease of VWT

on a point-by-point basis on the 2D standardized map for the placebo and the atorvastatin
groups respectively, two quantities were defined as follows:

SubjectIndexP(pi) =
{

arg
j

max {�VWT j(pi)}10
j=1, Max�VWT (pi) > 1mm

−3, otherwise
(3a)

SubjectIndexA(pi) =
{

arg
j

min {�VWTj(pi)}10
j=1, Min�VWT (pi) < −1mm

−3, otherwise.
(3b)

Equation (3a) sets SubjectIndexP(pi) to be the identification number (from 1 to 10) of
the placebo subject with the maximum �VWT at point pi, if Max�VWT (pi) > 1 mm.
Equation (3b) sets SubjectIndexA(pi) to be the identification number (from 1 to 10) of
the atorvastatin subject with the minimum �VWT (i.e., maximum VWT regression) at
point pi, if Min�VWT (pi) < −1 mm. Since the purpose was to find out subjects with
rapid focal progression or regression, identification numbers of subjects were only plotted
when the maximum VWT progression or regression is greater than 1 mm. (Figures 8(a)
and (e)). −3 was chosen to represent regions with progression and regression smaller than
1 mm as it is well separated and easily distinguished from valid subject identification
numbers (1 to 10) when SubjectIndexP or SubjectIndexA is colour-coded and displayed as
2D maps.

If a placebo subject j has a large area where its �VWT is maximum among the ten
subjects (i.e., there is a large area with SubjectIndexP(pi) = j), this subject would be flagged
and their VWT and VWT-Change maps studied by physicians, who would then determine
whether intervention is necessary to mitigate the elevated risk of vascular events. Similarly, an
atorvastatin subject j with large area on the 2D standardized map where SubjectIndexA(pi) = j
can also be identified. Physicians can study the medical profiles of this subject and investigate
which factors contribute to the larger VWT regression compared to other subjects in the group.
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2.6.2. T-tests on average VWT-Change computed over different regions. We hypothesized
that a biomarker computed over the region selected by the feature selection technique is more
sensitive than its correspondence computed over the entire VWT-Change map. In this section,
we compare the average VWT-Change for each artery computed over three different regions:
(a) all points in the 2D VWT-Change map, (b) S, the set containing all points selected by the
feature selection technique and (c) FGD>0, which is defined in the following two paragraphs.
T-tests were performed for these averages. Each t-test is associated with a P-value, which
reflects the sensitivity of these averages in evaluating the statistical difference between the
atorvastatin and placebo groups. As described in section 2.5 and shown in figure 4, the
termination criterion of the feature selection algorithm is based on the P-value of one of
the t-tests described here. The detail regarding the stopping criterion will be described after
defining how the three averages were obtained.

For each point pi on the standardized map, a metric denoted as GD�VWT(pi), was defined
to describe the difference between average VWT-Change of the placebo group, �VWTP(pi),
and the atorvastatin group, �VWTS(pi):

GD�VWT(pi) = �VWTP(pi) − �VWTS(pi) (4)

where �VWTP(pi) = 1
10

∑10
j=1 �VWT j(pi) and �VWTS(pi) = 1

10

∑20
j=11 �VWT j(pi), in

which subjects on placebo were indexed from 1 to 10 and those on atorvastatin were indexed
from 11 to 20.

Since it is expected that VWT for the atorvastatin group would decrease more than
for the placebo group, GD�VWT(pi) is expected to be positive. We classified the points
identified by the feature selection algorithm into two groups. The subset of feature points with
GD�VWT(pi) > 0 and GD�VWT(pi) � 0 are respectively denoted by FGD>0 and FGD�0.

For each artery, we defined the following three averages, which are the average VWT-
Change computed over (a) A, the set containing all points in the 2D VWT-Change map, (b) S
and (c) FGD>0:

�VWT j = 1

#A

∑
pi∈A

�VWT j(pi) (5a)

�VWTS, j = 1

#S

∑
pi∈S

�VWT j(pi) (5b)

�VWTFGD>0, j = 1

#FGD>0

∑
pi∈FGD>0

�VWT j(pi) (5c)

where the subscript j indicates the metrics are computed for subject j. When statistical tests
were performed for these three metrics, averages of equations (5a)–(5c) were computed for
the whole placebo or atorvastatin group. These averages are denoted as in equations (5a)–(5c)
but with the subscript j dropped.

T-tests were performed for the three metrics above and the associated P-values were
obtained. We hypothesize that the metrics that account for the �VWT values at selected
feature points are more sensitive in detecting the statistical difference between the atorvastatin
and placebo groups than �VWT , which is a scaled version of VWV. Sample size estimates for
the three metrics were also computed by using the following equation:

n = (zα/2 + zβ )2
(
σ 2

P + σ 2
S

)
δ2

(6)
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where P(Z > zβ ) = β with Z ∼ N(0, 1). σP and σS are the standard deviations of a metric
associated with the placebo and the atorvastatin groups and δ is the minimum detectable
difference. In this paper, the sample sizes were computed that give 90% statistical power (i.e.,
β = 0.1) at a significant level of α = 0.05.

The stopping criterion of the feature selection algorithm was based on P-value obtained
for the t-test performed based on �VWTS. If the selected region is too small, an observer may
not have enough information to detect patterns of VWT-Change for different treatment groups.
Thus, at least 10% of total feature points were selected for this application, and the first check
on the P-value occurred when 10% of the total feature points had been selected. P-values were
then obtained at a 1% increment. If P-value obtained for i% of the total points was higher than
the last P-value calculated (i.e., for i−1% of total points), i−1% of total feature points would
be selected and the algorithm stops. Too many feature points may prevent an observer from
focusing on localized patterns of VWT-Change associated with each treatment group. Thus,
we limited the number of selected feature points to 50%.

3. Results

3.1. 2D standardized map for example subjects

Figure 5 shows the 3D VWT maps at baseline and follow-up and the 3D VWT-Change map and
their corresponding 2D standardized maps of an artery in the placebo group. The black-body
radiation colour map was used to display VWT and VWT-Change maps in this paper as it
exhibits perceptual ordering. As a luminance-varying colour map, the black-body radiation
colour map facilitates the visualization of small detail and sharp features in a data set (Borland
and Taylor 2007). An advantage of this colour map specific to our application is that when
VWT-Change is displayed, regression, no change and progression are easy to identify as they
are respectively represented by dark grey, red and yellow (or white hot at the top of the scale).

Figures 5(a) and (b) show two different views of the 3D VWT maps at baseline.
Figures 5(d) and (e) show the views for the 3D VWT maps at three months, and figures 5(g)
and (h) show the views for the 3D VWT-Change map. The ECA and ICA are respectively on
the left and right sides of figures 5(a), (d) and (g), whereas for figures 5(b), (e) and (h), the
ECA and ICA are on the right and left sides of the figures respectively. Figures 5(c), (f) and
(i) show the 2D standardized map generated for the 3D VWT maps obtained at baseline and
follow-up, and the 3D VWT-Change map. For this study involving a total of 20 subjects, LICA

and LECA, as defined in section 2.4.2, were computed to be 21 and 17 mm respectively. The 2D
standardized map covers a longitudinal length of 8 mm proximal to the bifurcation and 6 mm
distal to the bifurcation. All 2D maps shown in this paper have exactly the same dimensions.

3.2. Average map for each group

Figures 6(a) and (b) show the standardized maps with the average VWT at baseline and
follow-up. The average VWT was obtained by taking the mean of the VWT at each point for
the ten subjects in the placebo group. Figure 6(a) shows that there were four distinct locations
at the CCA and ICA pointed to by the arrows where VWT is higher. These four spots spread
out and were associated with higher VWT after three months as appeared in figure 6(b). The
VWT-Change as shown in figure 6(c) was therefore positive in several large regions in the
CCA and ICA, which indicates that VWT of subjects tended to increase if treatment was
not provided. Note that this group analysis is only possible with the 2D standardized map
developed.
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(a) (b) (c)

(d) (e)

(g) (h)

(i)

(f)

Figure 5. 3D and 2D VWT and VWT-Change maps for an example subject. (a) and (b) are two
different views of the 3D VWT map at baseline. (c) shows the corresponding 2D VWT map. (d) and
(e) are two different views of the 3D VWT map at follow-up, where (f) shows the corresponding
2D VWT map. (g) and (h) show two different views of the 3D VWT-Change map with (i) showing
the corresponding 2D VWT-Change map.

Figures 7(a) and (b) show the standardized maps with the average VWT at baseline and
three months later. The average VWT was obtained by taking the mean of the VWT at each
point for the ten subjects in the atorvastatin group. Figures 7(a) and (b) both show that there is a
continuous region at CCA where the vessel wall thickens. This continuous region was cut into
two pieces at the right and left end when constructing the 2D standardized map (see arrows).
The region shrank during the three months when the subjects were treated by atorvastatin.
Figure 7(c) shows the VWT-Change map where there is a large region at CCA where regression
occurred. There was also an increase of thickness on the left side of figure 7(c). This may due
to plaque or vessel wall remodelling in the neighbourhood of large regression.

3.3. Identification of subjects with rapid VWT progression and regression

Figure 8(a) shows the 2D standardized map with SubjectIndexP (equation (3a)) superimposed
and regions with SubjectIndexP = 5 shaded in grey. Half the area in the map shown in
figure 8(a) was associated with a maximum VWT-Change less than or equal to 1 mm and was
coloured blue, whereas the rest of the map was associated with a maximum VWT-Change
greater than 1 mm and superimposed by SubjectIndexP according to the colour map. 1 mm
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(a)

(b)

(c)

Figure 6. The average 2D VWT and VWT-Change maps for the placebo group. (a) The average
VWT map at baseline. (b) The average VWT map at follow-up. (c) The average VWT-Change map.
The four arrows in (a) points to four distinct locations at the CCA and ICA where VWT is higher.
The two spots in the CCA and the right spot in ICA spread out after three months as observed in
(b), resulting in positive VWT-Change in several large regions in CCA and ICA as shown in (c).
For the remaining spot in ICA, VWT regressed as pointed to by the arrow in (c).

was chosen to be the threshold to let an observer of figure 8(a) to focus on the progression in
the upper 50th percentile. Figure 8(b) shows the 2D �VWT map of subject 5 in the placebo
group, which had the largest area on the 2D map where the point-by-point VWT progression
was maximum among ten subjects in the placebo group. This area was located mainly at the
CCA on the left side of the 2D map. Figures 8(c) and (d) show the VWT maps obtained at
baseline and follow-up respectively for this subject.

Figure 8(e) shows the 2D map with SubjectIndexA (equation (3b)) superimposed and
regions with SubjectIndexA = 3 shaded in grey. The threshold of figure 8(e) was set to 1 mm
regression as in equation (3b) to facilitate the comparison between the magnitudes of maximum
progression and regression shown in figures 8(a) and (e) respectively. Figure 8(e) shows that
more than half of the area in the 2D standardized map was coloured blue, indicating less than
half of the area in the map was associated with a maximum regression greater than 1 mm in
the atorvastatin group. Figure 8(f) shows the VWT map of subject 3 in the atorvastatin group,
which had the largest area where the point-by-point VWT regression was maximum among
ten atorvastatin subjects. Figures 8(g) and (h) show the VWT maps for this subject obtained
at baseline and follow-up respectively. It can be observed that the VWT distribution pattern in
figure 8(g) was similar to that in figure 8(h) except that VWT is greatly reduced in regions of
CCA displayed in blue colour in the �VWT map (figure 8(h)).
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(a)

(b)

(c)

Figure 7. The average 2D VWT and VWT-Change maps for the atorvastatin group. (a) The average
VWT map at baseline. (b) The average VWT map at follow-up. (c) The average VWT-Change map.

3.4. Feature selection results

3.4.1. Relationship between P-value and the number of feature points used. Figure 9 shows
the P-values associated with the t-tests on �VWT S and �VWT FGD>0 of the placebo and
atorvastatin groups against the number of feature points used. It is important to note that the
x-axis in this graph here represents the number of points (as % of total number of points)
selected to put in S, the set of all feature points. The set FGD>0 has a smaller number of points
because only regions where GD(�VWT )(pi) > 0 were included in this set. Figure 9 shows
that both P-values achieved local minimum when 25% of total points were used as feature
points in the calculation of �VWT S and �VWT FGD>0 .

Table 1 shows the means and standard deviations of �VWTS and �VWTFGD>0 computed
for the placebo and atorvastatin groups using different number of feature points. For both
metrics, the difference between the means associated with the placebo and atorvastatin groups
was larger when a smaller number of feature points were used, while the standard deviations
of the means for both groups decreased with the increase of the number of feature points used.
As different arteries in a treatment group progress or regress at similar but different locations,
a small selected area may not cover the progression/regression locations of all arteries in
the same group. VWT-Change for some arteries would not be reflected in the mean �VWTS

and �VWTFGD>0 metrics even if changes occurred in the neighbourhood of the selected area.
As the selected area becomes larger, it would cover the progression/regression regions of
more arteries in a treatment group, reducing the standard deviations of the mean �VWTS

and �VWTFGD>0 metrics. The t-test struck a balance between the difference of means and the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. (a) shows the 2D standardized map with SubjectIndexP (equation (3a)) colour-coded
and superimposed. This map shows the identification number of the subject with maximum VWT
progression among the ten placebo subjects involved in this study if the maximum VWT progression
is greater than 1 mm. If the VWT progression is smaller than or equal to 1 mm, −3 is displayed
according to equation (3a). (b) shows the �VWT map of subject 5 in the placebo group, who
has the largest area in the 2D map where its point-by-point VWT progression is maximum among
ten subjects receiving placebo. (c) and (d) are the VWT maps obtained at baseline and follow-up
respectively for subject 5. (e) shows the 2D map with SubjectIndexA (equation (3b)) superimposed.
This map shows the identification number of the subject with maximum VWT regression among the
ten atorvastatin subjects involved in this study if the maximum VWT regression is greater than
1 mm. If the VWT regression is smaller than or equal to 1 mm, −3 is displayed according to
equation (3b). (f) shows the �VWT map of subject 3 in the atorvastatin group, who has the
largest area where its point-by-point VWT regression is maximum among ten subjects receiving
atorvastatin. (g) and (h) show the VWT maps obtained at baseline and follow-up respectively for
subject 3.

standard deviations of the means, and it is most sensitive for both the �VWTS and �VWTFGD>0

metrics when the number of feature points selected is 25% of the total number of points in the
2D standardized map. In the rest of the paper, we will present results for the case when the
feature selection algorithm selects 25% of the total number of points.

3.4.2. Visualization of feature points on the 2D standardized map. As observed in section 3.2,
there are large regions in the average VWT-Change map for the placebo group where VWT
progressed, which we denote as region I. On the other hand, there are regions in the average
VWT-Change map for the atorvastatin group where VWT regression occurred, which we
denote as region II. Since the aim of the feature selection algorithm is to identify points
where the differences between the VWT-Change between the placebo and the atorvastatin
groups are the most significant, the identified features are expected to include mostly the
intersections between region I and region II. In these intersections, the average VWT-Change
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Figure 9. P-values associated with the t-tests on �VWT S and �VWT FGD>0 of the placebo and
atorvastatin groups against the number of feature points used. The P-values of the two metrics
attain their minima when 25% of total points were used as feature points. The minima points are
labelled by crosses (×).

Table 1. The mean and standard deviation (in parentheses) of two metrics introduced in section 2.6:
�VWTS and �VWTFGD>0 computed for the placebo and atorvastatin groups using different number
of feature points. N denotes the number of feature points used in calculating the two metrics as
a percentage of the total number of points in the 2D standardized map. P-values associated with
t-tests based on the two metrics are also tabulated.

�VWTS �VWTFGD>0

N = 10%

Placebo group 0.13 (0.34) 0.20 (0.37)
Atorvastatin group −0.26 (0.27) −0.34 (0.35)
P 0.012 0.0038

N = 20%

Placebo group 0.14 (0.25) 0.20 (0.27)
Atorvastatin group −0.20 (0.20) −0.26 (0.25)
P 0.0039 0.0010

N = 25%

Placebo group 0.14 (0.24) 0.20 (0.26)
Atorvastatin group −0.18 (0.17) −0.24 (0.22)
P 0.0031 7.47 × 10−4

N = 30%

Placebo group 0.15 (0.23) 0.20 (0.25)
Atorvastatin group −0.15 (0.14) −0.21 (0.18)
P 0.0034 7.58 × 10−4

is positive for the placebo group and that for the atorvastatin group is negative, and the
difference between these two averages, GD(�VWT ), is positive (i.e., FGD>0 as defined in
section 2.6.1). In presenting the feature selection results, it is important to classify feature
points into FGD>0 and FGD�0.

Figure 10 shows the results of the feature selection algorithm in which the white and grey
regions represent selected feature points. The grey region represents the region FGD>0, and the
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Figure 10. Feature selection result superimposed on the 2D standardized map. Points that were not
selected by the feature selection algorithm are coloured in black, whereas white and grey regions
represent selected feature points. The grey region represents the region with GD(�VWT ) (defined
in equation (4)) positive, whereas the white region represents the region with GD(�VWT ) negative.

Table 2. The mean and standard deviation (in parentheses) of three metrics introduced in section 2.6:
�VWT , �VWTS and �VWTFGD>0 computed for the placebo and atorvastatin groups. For the
computation of �VWTS and �VWTFGD>0 , 25% of total points were selected as feature points.

�VWT �VWTS �VWTFGD>0

Placebo group 0.11 (0.19) 0.14 (0.24) 0.20 (0.26)
Atorvastatin group −0.03 (0.11) −0.18 (0.17) −0.24 (0.22)
P 0.056 0.0031 7.47 × 10−4

white region represents the region FGD�0. Feature points are predominantly grey points, which
agrees with our expectation. There is also a region on the ICA where the VWT had regressed
more in the placebo group than the atorvastatin group, which is mainly due to the regression
for the placebo group at that region pointed to by a black arrow in figure 6(c).

3.5. Results of T-tests and sample size estimates

Table 2 shows the means and standard deviations of three metrics described in section 2.6.1.
The means of the three metrics computed for the placebo group are all positive, whereas those
for the atorvastatin group are all negative. �VWT was only slightly negative (−0.03 mm)
because the upper right corner region of the CCA (region ↑ in figure 7(c)) is associated with
an increase of VWT, possibly due to plaque remodelling in the neighbourhood of large VWT
decrease. �VWT associated with the placebo and the atorvastatin groups were very close to,
but not significantly different in the α = 0.05 level (P = 0.056).

However, most of the points of region ↑ mentioned above were not selected as feature
points since the average VWT-Change values computed for the placebo and the atorvastatin
groups (figures 6(c) and 7(c)) in this region were not as different as those in other regions
of the 2D standardized map (figure 10). As a result, �VWTS is much more negative than
�VWT for the atorvastatin group (−0.18 mm versus −0.03 mm). The difference between the
�VWTS associated with the placebo and the atorvastatin groups were statistically significant
(P = 0.0031).

Of the 1504 points selected as feature points (25% of total number of points), 1290 points
were associated with GD(�VWT ) > 0. Since only feature points with GD(�VWT ) > 0 were
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Table 3. Sample sizes per group required to show effects of therapy for various effect sizes in a
three-month study using the three metrics described in section 2.6. The sample sizes listed below
give 90% statistical power at a significance level of 0.05 (two-tailed). The effect sizes are expressed
in terms of the percentage of that obtained in the current placebo-controlled clinical study.

Effect size �VWT �VWTS �VWTFGD>0

100% 24 9 6
75% 43 16 11
50% 97 35 25
25% 390 140 100

involved in the calculation of �VWTFGD>0 , the difference between the �VWTFGD>0 associated
with the placebo and the atorvastatin groups were greater than the difference computed based
on the previous two metrics and associated with a smaller P-value (P = 7.47 × 10−4).

Table 3 lists the sample size estimates with effect sizes compared to the current placebo-
controlled study. The effect sizes of each metric are expressed in terms of the percentage of
that obtained in this study. For the effect size as large as that demonstrated in this study, 24,
9 and 6 subjects per group are required to show a two-tailed difference of �VWT , �VWTS

and �VWTFGD>0 respectively with a power of 90% and a significant level of 0.05. The required
sample size would be a much more important issue if the effect size was smaller. For example,
if the effect size for a trial was 25% of the current trial, it would require 390 subjects to
demonstrate a difference of �VWT at the selected power and level of significance. The number
of subjects required would be reduced by at least a half if the feature selection algorithm was
applied (n = 140 for �VWTS and n = 100 for �VWTFGD>0 ).

4. Discussion and conclusion

Management of carotid atherosclerosis through lifestyle changes and medical therapy has the
potential to reduce the risk of vascular events by 75% to 80% (Spence 2007). In addition
to these conventional treatments, many new molecular therapies and phenotypic therapeutic
targets have been identified and developed (Nabel 1995, Rissanen and Ylä-Herttuala 2007,
Flynn et al 2011). As new therapies are continually being developed, an equally important
requirement is the development of sensitive, cost-effective and non-invasive measurement
tools and biomarkers that can be used to assess the efficacy of various treatment strategies.
The ultimate goal of this paper is to develop such a biomarker.

The biomarker we proposed in this paper is based on the local distribution of VWT-
Change associated with different treatment groups. In order to make VWT-Change distribution
of different subjects comparable, the first step was to develop a 2D standardized template
onto which all carotid arteries involved in the study are mapped. Since the point-by-point
VWT-Change values of all arteries were mapped to the standardized 2D map, an average map
of VWT-Change for each treatment group can be generated. The average VWT-Change map
for the placebo group (figure 6(c)) and the atorvastatin group (figure 7(c)) can be displayed
and compared. This groupwise comparison was only possible with the development of the 2D
standardized map.

The 2D standardized map has also allowed for the identification of subjects with rapid
plaque progression, which is a factor for elevated stroke risk (Spence et al 2002, Hirano et al
2011). We demonstrated the use of the 2D standardized map to identify regions in which
an artery exhibited maximum point-by-point VWT progression among the ten arteries in the
placebo group. Although only the subjects with maximum progression and regression were
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shown in figure 8, each subject j in the placebo group is associated with an area where its
point-by-point VWT progression is maximum on the 2D standardized map (i.e., the area
with the subject number, j, superimposed in figure 8(a)). Subjects can be ranked according
to this area and this ranking can be taken into consideration when assessing relative risk of
vascular events. Similarly, each subject in the atorvastatin group can be ranked according to
its associated area in figure 8(e).

One limit of this pilot study is that it only involved a small number of subjects. Larger
clinical trials should be designed and carried out in the future to address two important issues:
(a) Does subject j’s relative risk of vascular events depend on the area on the 2D map where
this subject has the maximum point-by-point VWT progression? (b) Does the risk of vascular
outcomes depend on where the VWT progression is located? For example, according to
figure 8(a), subject 5 had maximum VWT progression mainly at the CCA, whereas subject 9
had maximum VWT progression mainly at the ICA. Who would be more prone to have
vascular events? The relative risks associated with the two arteries should be normalized by
the area discussed in (a) in order to make a fair comparison between them. In a similar way,
subjects with rapid response to therapies can be identified as displayed in figure 8(e). Similar
to the case for rapid VWT progression, a larger trial would be required to establish whether
the relative risk of vascular events is significantly lower for a subject with large area on the
2D map where its point-by-point VWT regression is maximum.

Another goal of this paper is to develop a more sensitive test to quantify the effects of
various treatment strategies based on the spatio-temporal information of VWT provided by the
2D standardized map. Our approach is to apply a feature selection algorithm as a quantitative
and objective method to identify regions on the 2D map where subjects in the placebo group
and the atorvastatin group exhibit greater difference in VWT-Change. A mutual-information-
based feature selection technique using sequential forward searching strategy was employed.
This method is classified as one of the filter methods in feature selection literature (Liu and Yu
2005), in which the feature selection criterion (e.g., mutual information) is independent of any
classification model. A filter method, instead of a wrapper method, in which the evaluation
criterion depends on the classification model, is suitable for this study because our goal was
not on classifying the carotid artery to the atorvastatin or placebo groups based on the VWT-
Change distribution. We already knew which treatment group each artery belongs to (i.e., the
classification label in machine learning language), and with this information, we attempted to
find a subset of points that correlate to the greatest extent with the classification label. Having
selected that we would use a filter method, the next step was to decide which feature selection
criterion should be used. Mutual information was chosen as it is less sensitive to noise than
other statistics (Narendra and Fukunaga 1977, Liu et al 1998). The most apparent characteristic
of the carotid data set in this study is that the ratio between the number of features (6016 points)
and the number of subjects (20 in total) was very large. The mutual-information estimation
algorithm proposed in Chow and Huang (2005) using Parzen window was tailored for this high-
dimensional small data point problem. The algorithm we employed adopted the sequential
forward searching strategy, which is computationally very efficient (Liu and Yu 2005). Since
there were so many feature points in the standardized carotid map, computational efficiency
was a very important consideration. Other searching technique such as genetic algorithm (GA)
(Yang and Honavar 1998), while more probable to achieve optimality, would definitely be less
computationally efficient. While our technique is more computationally efficient, the feature
subset obtained may not maximize mutual information in the optimal sense. Thus, the feature
selection results generated must be carefully evaluated (which is the focus of the discussion
in the next paragraph). Another reason that we decided against using GA was that it is not
suitable for a study with a relatively small sample size. One of the problems is that it is not
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Table 4. Sample sizes per group required to detect a 25% effect size in a six-month study with
90% power at a significance level of 0.05 (two-tailed). The progression on placebo and regression
on active treatment are assumed to be linear. Sources of the data used in the calculation: Bots et al
(2003) for IMT, Hackam et al (2000) for plaque area and Krasinski et al (2009) for VWV.

Biomarkers N per group

IMT 17465
Plaque area 2260
VWV 133
�VWT 97
�VWTS 35
�VWTFGD>0 25

apparent as to how GA should be initialized in order for it to converge to a reasonable solution
given the small sample size.

A performance metric is required for feature selection evaluation. Classification error
rate is a commonly used evaluation metric, which is typically obtained for the full feature set
and the selected subset and then compared (Liu and Yu 2005). For our study, we applied a
more biologically relevant metric to evaluate the quality of feature selected: for each artery,
we first calculated �VWT (equation (5a)), which is the average VWT-Change computed over
the whole artery, and �VWTS and �VWTFGD>0 (equations (5b) and (5c)), which are averages
of VWT-Change computed over selected regions on the artery. T-tests were performed to
test the statistical significance between the placebo and atorvastatin groups on three averages
of VWT-Change (i.e., equations (5a)–(5c)). Each t-test is associated with a P-value, which
reflects the sensitivity of the three averages of VWT-Change. We demonstrated that �VWTS

and �VWTFGD>0 were more sensitive than �VWT (table 2), and therefore showed that the
feature selection results we obtained were sufficiently accurate for our application.

We computed the sample sizes required to show statistical significance between the
atorvastatin and the placebo group using the three averages of VWT-Change . For an effect size
of 25% of the current trial, the sample size required to show statistical significance between the
placebo and atorvastatin groups based on �VWT with a power of 90% and a significance level
of 0.05 in a six-month study is 97 per group. For the same effect size, power and significance
level, the sample size required for the VWV study (Krasinski et al 2009) to show a statistically
significant difference between the placebo and atorvastatin groups was 133 per group, which
is comparable to the sample size obtained for �VWT . This is not unexpected because �VWT
is approximately equal to the VWV scaled by 3D surface area. The sample sizes required for
�VWTS and �VWTFGD>0 to detect the same effect size at the same power and significance
level were reduced to 35 and 25 respectively, showing evidences to support our hypothesis that
statistical tests performed on regions chosen by the feature selection algorithm require fewer
subjects per group to achieve statistical significance. The subjects involved in this study had
a large plaque burden and the dosage of atorvastatin administered to subjects assigned to the
atorvastatin group is high. The effect size of most clinical trials would likely to be smaller than
this trial. In this situation, the sample size reduction by using �VWTS and �VWTFGD>0 instead
of �VWT would be more significant. Table 3 shows that if the effect size for a trial was 25%
of the current trial, the sample size required to achieve statistically significant difference in a
three-month study would be reduced from 390/group if �VWT was used to 140 and 100/group
if �VWTS and �VWTFGD>0 were used, respectively.

To put the sample sizes required in the metrics introduced in this paper in context, the
sample sizes required to show effects of therapy using different ultrasound phenotypes were
calculated and shown in table 4. In the calculation, the duration of the studies was all set
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to be six months. The progression and regression of the placebo and the group receiving
treatments respectively are assumed to be linear. Thus, linear interpolation/extrapolation was
used to estimate the progression on placebo and the regression on active treatment. Sources
of the data used in the calculations are from Bots et al (2003) for IMT, Hackam et al (2000)
for plaque area and Krasinski et al (2009) for VWV. Since plaque area increases 2.4 times
faster than plaque thickness (Barnett et al 1997), it is not surprising that sample sizes required
to show effects of therapy for plaque area are much smaller than IMT. In addition, plaque
does not only grow along the artery, but also progresses circumferentially. Thus, vessel wall
volume (VWV) measured from 3D ultrasound is much more sensitive than IMT and plaque
area measurements, requiring a much smaller sample size to detect effects of treatments. In
this paper, we combined the use of the standardized 2D VWT-Change map and a mutual-
information-based feature selection technique in quantifying the difference between VWT
progression of subjects on placebo and on atorvastatin. Table 4 provided evidences to support
our hypothesis that metrics accounting for VWT-Change only in regions where the VWT-
Change distribution patterns exhibited by the placebo and atorvastatin groups are significantly
different (as determined by the feature selection algorithm) are much more sensitive and leads to
a further reduction of the sample size requirement comparing to global 1D (IMT), 2D (plaque
area) and 3D (VWV) measurements. It is important to note that feature selection analysis
was possible only because corresponding regions of carotid arteries in different treatment
groups were able to be mapped to a standardized map using the proposed 2D mapping
technique. The increase of cost-effectiveness introduced by the proposed technique would
allow many more smaller trials to be performed by investigators developing new treatment
options.
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