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Abstract Inspired by the biological evolution, local

cooperation behaviors have been modeled in function

optimizations for providing effective search methods. This

paper proposes a new meta-heuristic algorithm named

Neighborhood Field Optimization algorithm (NFO), which

totally utilizes the local cooperation of individuals. This

paper also analyzes how the local cooperation helps opti-

mization, which is modeled as the neighborhood field. The

proposed NFO is compared with other widely used evo-

lutionary algorithms in intensive simulation under different

benchmark functions. The presented results show that NFO

is able to solve multimodal problems globally, and thus the

cooperation behavior is proven its significance to model a

search method.

Keywords Local search � Neighborhood field � Contour

gradient optimization � Evolutionary algorithm

1 Introduction

Optimization is the process of finding the most promising

solution for a given problem. It requires maximizing or

minimizing an objective function efficiently and globally in

multi-dimensional search space. Optimization has always

been one of the most important topics in science and

engineering. In research areas, such as machine learning,

artificial intelligence and complex systems, many problems

can be regarded as optimization problems. Certain local

search techniques, such as gradient-based search (Greiner

1996; Kirkpatrick et al. 1983) and tabu search algorithms

(Glover 1990), are successfully applied in conventional

applications. But these local algorithms are easily getting

trapped in local optima when dealing with much compli-

cated problems.

Some global search algorithms have been proposed to

explore the search space stochastically. They usually have

random choices of direction to approach good solutions,

such as particle swarm optimization (PSO) (Eberhart and

Kennedy 1995; Kennedy and Eberhart 1942), genetic

algorithm (GA) (Goldberg 1989; Vose 1999), differential

evolution (DE) (Storn and Price 1997; Lampinen and Storn

2004) and self-organizing migrating algorithm (SOMA)

(Zelinka 2004). Based on the population evolvement, these

algorithms are able to escape from local optima till finding

the global optimum. They have become increasingly pop-

ular when people need to solve highly complicated

problems.

The original PSO algorithm emulates the forging

behavior in flocks of birds and schools of fish. In the ori-

ginal PSO, each member, called a particle, learns from the

best positions found so far. Each particle adapts itself

towards the best positions found by the population and by

itself. Because of attraction forces of the two poles, each

particle can escape out of its surrounding region and

explore the whole search space. It is worth noting that PSO

has a similar structure with a fully connected network, in

which each particle is connected with others for sharing the

fitness information (Kennedy and Mendes 2002). In other

words, each particle is required to acquire the knowledge

of the population with full connections.
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The mechanism of GA is inspired by basic principles of

natural evolution. In GA, the offspring population is gen-

erated from the parent population with three operators, i.e.,

selection, crossover and mutation. Each individual has the

chance of falling into the breeding pool according to its

fitness value. Then the crossover and mutation operations

are used to reproduce the offspring. For the crossover,

individuals in the breeding pool are recombined to explore

the search space. For the mutation, the individual randomly

exploits its surrounding region to generate new individuals.

As GA has combined the global exploration and local

exploitation, it has the ability of escaping from local

optima. It can be noticed that in selection operation each

individual is also required to know the population’s fitness,

which is equivalent to a fully connected structure.

Differential evolution (DE) is another global search

algorithm proposed by Storn and Price. DE generates

offspring population by perturbing parents using differ-

ential vectors of two random individuals. In DE, the

search step is self-adapted along the evolving process

because of the balance between the exploitation and the

exploration. In respect of the population structure, DE can

be seen with a random connected structure. In (Vester-

strom and Thomsen 2004), DE is compared with PSO and

some EAs on a large suite of benchmark functions and

the results show that DE would outperform PSO and EAs

in their test suite.

In all, these global search algorithms are less easily

getting trapped in local optima than local search algo-

rithms. But the global search algorithms need much more

computation time to find the global optimum than the local

search algorithms. It is still necessary that researchers make

their efforts in the local search heuristics. First, the local

search methods can find the global optimum efficiently

when starting from a promising solution with fast conver-

gence speed. But the global search algorithms need more

computation time to converge from the same starting point.

Second, the local search has emulated the local phenome-

non in the nature. In biological communities, individual

often communicates with its neighbors within limited

ranges of seeing and hearing. These individuals are apt to

collect the information in their surrounding regions and to

exchange the information with their neighbors. Indeed

individuals in real world are mostly affected by the local

environment rather than the global environment. The local

search methods, which search offspring in the neighbor-

hood region, can emulate this local phenomenon. In con-

trast, the PSO and GA do not accord with the local

phenomenon, because they pre-require the global knowl-

edge of the population.

Some researchers have tried to incorporate the neigh-

borhood exploitation into the global search for acceleration

the process of convergence. A local version of PSO has

been proposed in (Shi and Eberhart 1998; Eberhart et al.

2001), in which particles only share the information with

their neighbors. Each particle moves toward their neigh-

bors’ best solutions. A multi-agent GA (MAGA) combined

the multi-agent system and GA together to solve the

numerical optimization problems (Zhong et al. 2004). In

MAGA, each agent lives in a lattice-shape environment

and interacts with its neighbors competitively and coop-

eratively. The local PSO and MAGA have compensated the

inadequacy of local heuristic in original PSO and GA. But

their local search in their models cannot work separately to

deliver promising results. Generally, the local search

strategies to date may not have achieved comparable

results with the global algorithms like GA, PSO and DE. In

our recent work (Wu and Chow 2012), a local algorithm

called contour gradient optimization (CGO), was proposed

using concepts of contour and gradient in the local region.

In (Wu and Chow 2012), the local information is modeled

for numerical optimization as neighborhood field model

(NFM). The results demonstrated that CGO could outper-

form several recent PSO versions when solving widely

used benchmark functions.

CGO emulated to contour the search space using a

sorting approach, in which approximate gradients can

provide effective directions of search. But it is problem-

dependent to determine the number of contour levels in the

sorting. In this paper we propose a new algorithm directly

using the cooperation of neighbors, called neighborhood

field optimization algorithm (NFO). NFO utilizes exact

neighbors to generate directions of search without the need

of sorting the population. In NFO, each individual is only

sharing information with its neighbors in the search space,

and it will be attracted by its superior neighbor and

repulsed by its inferior neighbor towards fitter regions. The

resultant directions can approximate descending directions

of the objective function; NFO can maintain the population

with a heterogeneous structure. The comprehensive

experimental studies show that NFO has excellent ability to

optimize multimodal problems.

The rest of the paper is organized as follows: Section 2

describes the related work about optimization algorithms

based on vector field. Section 3 gives the procedure of

NFO and analyzes its characteristics. Section 4 reports

the simulation results of the proposed algorithm. Finally,

Sect. 5 summarizes this paper.

2 Related work

In this section, some related work on modeling the vector

field for optimization is introduced. NFM models the local

cooperation as field. Based on NFM, CGO algorithm has

been proposed for numerical optimization. PSO and DE are
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also introduced, which have been used as benchmarks in

the experimental studies.

2.1 Neighborhood field model

Neighborhood field model (Wu and Chow 2012) was

proposed to emulate the cooperation behavior in a local

environment. It is worth noting that agents in real-world

networks are likely to cooperate with their neighbors in the

local environment rather than with all individuals in the

global environment. So NFM states that an agent is influ-

enced by its superior neighbors positively and by its infe-

rior neighbors negatively, which is similar with the

potential field model (PFM) (Khatib 1986; Barraquand

et al. 1992). The PFM was often used in robotic appli-

cations, such as the robots’ navigation and obstacle

avoidance. In PFM, a robot moves in a field to approach

the target without collision. The target position is an

attractive pole of the robot, and the obstacles are the

repulsive surfaces shown in Fig. 1. The overall force

acting upon a robot is composed of the target’s attraction

force and the obstacle’s repulsion force. NFM models

that each individual xi behaves like a robot regarding

superior neighbors as targets to follow and inferior

neighbors as obstacles to evade. The neighbor field of

the individual xi is driven by a single target and a single

obstacle as

NFi ¼ U xci � xið Þ � U xwi � xið Þ; ð1Þ

where NFi is the overall force driving on the xi, xci is the

superior neighbor, xwi is the inferior neighbor and U �ð Þ is

the dynamical force function related with the position

difference. In the right-hand side of Eq. 1, the first com-

ponent represents the attractive force of the superior

neighbor and the second component represents the repul-

sive force of the inferior neighbor.

2.2 Contour gradient optimization algorithm

Based on the NFM, CGO algorithm was proposed for

numerical optimization in Wu and Chow (2012). To min-

imize a single objective minimization problem y ¼ f xð Þ, a

population of N individuals cooperates to search the global

optimum. At each generation, these individuals are ranked

by their fitness values from the best to the worst. Then they

are sorted into m level sets evenly with N=m individuals in

each level. The individuals in the same level are regarded

to have around the same scale of fitness values.

In CGO, each individual evolves according to the local

information of nearest individuals in the neighboring

levels. They are called contour neighbors, which are

calculated as Eq. 2. Base on NFM, CGO proceeds as

follows:

1. Initialization: randomize the initial N individuals in the

search space.

2. Contouring: at the generation G, rank all individuals

by their function value in ascendant order and sort

them into m levels. We denote the ith individual xi;G’s

level number as L xi;G

� �
. For each individualxi;G,

recognize the superior contour neighbor xci;G in the

level L xi;G

� �
� 1 and the inferior contour neighbor

xwi;G in the level L xi;G

� �
þ 1 as Eq. 2. If xi;G is in the

first level, xci;G is defined as xi;G. If xi;G is in the last

level, xwi;G is defined as xi;G

xci;G ¼ arg min
L xk;Gð Þ¼L xi;Gð Þ�1

xk;G � xi;G

�� ��

xwi;G ¼ arg min
L xk;Gð Þ¼L xi;Gð Þþ1

xk;G � xi;G

�� ��

8
>><

>>:
: ð2Þ

3. Crossover: xi;G as follows:

ui;G ¼ xi;G þ a � sc � rand � xci;G � xi;G

� �
� a � sw

� rand � xwi;G � xi;G

� �
ð3Þ

where rand is a random vector uniformly distributed in

0; 1½ � and a is the learning rate. sc and sw are two

D-dimensional random binary vectors generated at

each generation as

Target

Obstacle

Fatt

F

Frep

Robot

Fig. 1 The potential field model: a robot is driven by the attractive

force of target and the repulsive force of the obstacle
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sc ¼ rand�Cr; sdc;c ¼ 1

sw ¼ rand�Cr; sdw;w ¼ 1

(

; ð4Þ

where rand is a random vector uniformly distributed in

0; 1½ �, Cr is a constant at the interval 0; 1½ � called the

crossover probability. dc and dw are two random inte-

gers in 1;D½ �. The dcthcomponent of scand the dwth

component of sw are specified as one so that sc and sw

are nonzero vectors.

4. Selection: in the next generation, the ith individual will

be updated as the better one between xi;G and ui;G as

xi;Gþ1 ¼
ui;G; if f ui;G

� �
� f xi;G

� �

xi;G; otherwise

(

ð5Þ

5. If the stopping criteria are not satisfied, go to step 2.

2.3 Particle swarm optimization

Particle swarm optimization (Eberhart and Kennedy 1995;

Kennedy and Eberhart 1942) is a population-based algorithm

inspired by the foraging behavior of swarms of animals. In

PSO, the population is called a swarm and an individual is

called a particle. PSO consists of a swarm of particles

searching a D-dimensional real-valued search space. Every

particle has a position vector xi ¼ x1;i; x2;i; . . .;
�

xD;i�T and a

velocity vector vi ¼ v1;i; v2;i; . . .; vD;i

� �T
. Each particle has

intelligent memory of its own best position xp and the global

best position xg. After sharing memory with each other, the

information about good areas in the search space can spread

through the swarm. When a certain particle finds the best

solution, other particles are informed and move toward the

best solution with an adaptive velocity. The new position and

velocity of the ith particle are updated by

vi ¼ x � vi þ c1 � rand � xp � xi

� �

þ c2 � rand � xg � xi

� �
;

ð6Þ

xi ¼ xi þ vi; ð7Þ

where x is called the inertia weight, c1, c2 are positive

learning rates that determine the significance of xp and xg

and rand is a random vector uniformly distributed in the

interval of [0, 1]. The particle is driven from the previous

position to the new position with the updated velocity.

There is another local PSO version different from the

original PSO in the mutation step (Kennedy and Mendes

2002; Vesterstrom and Thomsen 2004). In the local PSO,

each particle does not learn from the best position in the

population, but learns from its neighbors as,

vi ¼ x � vi þ c1 � rand � xp � xi

� �

þ c2 � rand � xlbest � xið Þ;
ð8Þ

where xlbest is the best position found by its neighbors. The

other parameters in Eq. 8 are the same with the original

PSO.

2.4 Differential evolution

Differential evolution algorithm was introduced in (Storn

and Price 1997; Lampinen and Storn 2004). It resembles

the structure of the traditional EAs, but differs from them

in generating new candidate solutions and selecting the

offspring. DE is a population-based stochastic optimization

algorithm, which takes the difference of two randomly

chosen parameter vectors to perturb an existing vector. DE

mutates and recombines the population to produce a pop-

ulation of trial vectors. At the generation G, each individual

is encoded as xi;G ¼ x1;i;G; x2;i;G; . . .; xD;i;G

� �T
(called target

vectors), and its corresponding trial vector after perturba-

tion is denoted as ui;G ¼ u1;i;G; u2;i;G; . . .; uD;i;G

� �T
. The

mutation and crossover operations are shown as the

following:

vi;G ¼ xr0;G þ F � xr1;G � xr2;G

� �
; ð9Þ

uj;i;G ¼
vj;i;G; if randð0; 1Þ�Cr or j ¼ jrand

xj;i;G; otherwise

(

; ð10Þ

where r0, r1 and r2 are three distinct random indices; xr0,

xr1, xr2 are three random individuals in the population. The

mutant vector vi is generated in the mutation, F 2 0; 1½ � is

the mutation rate. The trail vector ui is obtained by

recombining xi and vi with a crossover probability Cr as

Eq. 10. randð0; 1Þ is a uniformly distributed random

number in the scale of [0, 1] which is independently

generated for each j at each generation. jrand is a randomly

chosen integer in [1, D] to accept the new mutant vector so

that the trial vector is different from the target vector. After

the mutation and crossover, the fitter solution between xi

and ui will be selected into the next generation as

xi;Gþ1 ¼
ui;G; if f ui;G

� �
� f xi;G

� �

xi;G; otherwise

�
; ð11Þ

where f ð�Þ is the object function to be minimized.

3 Neighborhood field optimization

Many single objective optimization algorithms aim to find

the global optimum efficiently in a given period. This

challenge requires that optimization algorithms are able to

escape local optima. Some global search algorithms, such

as GA and PSO, are not easily getting trapped by the local

optima, but fail to solve some difficult problems efficiently.
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One main reason is their lack of local search, which may

help to accelerate the search process. CGO has been pro-

posed to utilize the local search in the optimization and has

delivered promising results. CGO needs to divide the

population in m levels, but the value of m should be fine-

tuned for different problems. This paper newly proposes

NFO algorithm without any additional parameter by uti-

lizing the cooperation of nearest neighbors directly.

3.1 Neighborhood field optimization algorithm

Neighborhood field optimization algorithm is a population-

based algorithm, in which each individual is updated under

the concept of ‘‘learning from the neighbors’’ mentioned in

NFM. The detailed procedure of NFO algorithm for min-

imization problems is illustrated as follows:

1. Initialization: randomize the initial N individuals,

which are sampled uniformly in the search space.

2. Localization: for each individual xi;G at the generation

G, find the superior neighbor xci;G and the inferior

neighbor xwi;G (in the search space) as

xci;G ¼ arg min
f xk;Gð Þ\f xi;Gð Þ

xk;G � xi;G

�� ��

xwi;G ¼ arg min
f xk;Gð Þ[ f xi;Gð Þ

xk;G � xi;G

�� ��

8
>><

>>:
; ð12Þ

where xci;G is the superior neighbor with the function

value smaller than f xi;G

� �
and xwi;G is the inferior

neighbor with a larger function value (for minimization

problems). �k k is the distance evaluation (Euclidean

distance is used). If xi;G is in the best individual in the

population, xci;G is defined as xi;G. If xi;G is in the worst

individual in the population, xwi;G is defined as xi;G

3. Mutation: perturb each individual as

vi;G ¼ xi;G þ a � rand � xci;G � xi;G

� �
þ a � rand

� xci;G � xwi;G

� �
; ð13Þ

where xci;G is the superior neighbor, xwi;G is the

inferior neighbor, rand is a random vector in [0, 1], a is

the learning rate. and vi;G is the obtained mutant vector.

4. Crossover: recombine the mutation vector with the

target vector xi:

uj;i;G ¼
vj;i;G; if randð0; 1Þ�Cr or j ¼ jrand

xj;i;G; otherwise

(

;

ð14Þ

where j ¼ 1; 2; . . .;D is the dimension index, Cr is the

crossover probability, randð0; 1Þ is a uniformly dis-

tributed random number in the scale of [0, 1] and jrand

is a random component to accept the new mutant

vector so that the trial vector is different from the

target vector.

5. Selection: in the next generation the ith individual will

select the better solution between xi;G and ui;G as

Eq. 5.

6. If the stopping criteria are not satisfied, go to step 2.

NFO has two control parameters a and Crthat need to be

tuned by users. We have evaluated the effects of the

parameters in the experimental studies. The optimal set-

tings of the two parameters lie in a 2 ½0:7; 1:7� and

Cr 2 ½0:1; 0:7�. It can also be noticed that the two param-

eters are robust for the evaluated problems. As the neigh-

bors considered in NFO are close with the updated

individual with an adjusting distance, NFO exhibits its

ability to adapt the search behavior between the local

exploitation and the global exploration.

3.2 Analysis of neighborhood field

Neighborhood Field Optimization has emulated the local

phenomenon in the real world that each individual is

mainly affected by its neighbors. In Fig. 2, the superior

neighbor in the search space has the attractive field, and the

inferior neighbor has the repulsive field. The philosophy of

NFO is learning from neighbors, which can be reflected in

some real-world examples. One typical example is the

internet network. Via the internet, people can easily con-

nect with emails or web sites. Although it is not feasible

that a university student can directly connect with certain

national celebrities, he may in fact connect with these

celebrities indirectly via local cooperation. He can first

connect to the nearby persons, such as the university

president or a city major, who may know more celebrities.

In this way, after several local connections, he may connect

to the target person, as described in the small world model

(Watts and Strogatz 1998). Similarly NFO shows some

local characteristics of population structures as follows:

First, the direction of neighborhood field can approxi-

mate a descending direction of the objective function.

Lemma 1 Assume that xi is not a local optimum, xwi

and xci are two neighbors of xi in a given local region. xci

is the superior neighbor, and xwi is the inferior neighbor.

The neighborhood field in NFO can approximate the

inverse direction of the gradient rf xið Þ as

�rf xið ÞT xci � xið Þ� 0

�rf xið ÞT xwi � xið Þ� 0

(

; ð15Þ

Proof Since xci is the neighbor close to xi, using the

linear approximation we can obtain

f xcið Þ � f xið Þ þ rf xið ÞT xci � xið Þ
Then

�rf xið ÞT xci � xið Þ � f xið Þ � f xcið Þ.
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Since f xcið Þ� f xið Þ, then �rf xið ÞT xci � xið Þ� 0.

Therefore, the first component can be obtained. The second

component can be proven in the same way. So the neigh-

borhood field NFi satisfies �rf xið ÞT �NFi� 0.

According to Lemma 1, the differential vectors xci � xi,

xi � xwi are similar to the inverse gradient at xi based on

the cosine similarity. It is reasonable that we can expect

these vectors as a tool of approximating the gradient,

especially for some engineering applications with compli-

cated format of gradient functions. Especially when the two

neighbors are the best and worst individuals in the neigh-

borhood region, the two differential directions are precise

on the gradient. Therefore, in NFO the neighborhood field

can approximate a descending direction of the objective

functions shown in Fig. 3. The neighborhood field is close

to the inverse gradient direction.

Second, NFO can generate a particular population

structure with heterogeneous property. The heterogeneous

structure means that most individuals have effects in small

search regions and only a few individuals have effects in

large search regions. In (Kennedy et al. 2002), it is stated

that the heterogeneous structure can balance the local

exploitation and the global exploration with better per-

formance than some regular structures. To visualize the

structure in NFO, we can regard the population as a graph

GðV ;EÞ, in which nodes V represent the individuals and

edges E represent the neighborhood of two individuals,

i.e. xi and xci, xi and xwi, shown in Figs. 4, 5. We

graphically analyze the population structures of NFO

when solving Sphere function (Fig. 4) and Ackley’s

function (Fig. 5). For each function, the degree distribu-

tion of the population graph is plotted in the 100th

iteration and the 500th iteration, respectively. Most indi-

viduals equally have two connections and a few individ-

uals have larger connections in a heterogeneous structure.

In other words, NFO can equally consider each individual

in the population when learning from the neighbors. It is

clear that the heterogeneity property can be maintained

during the optimization process. Note that NFO can

inherently generate a heterogeneous population structure,

which is not deliberately generated using the complex

network models in complex neighborhood-based PSO

(CNPSO) (Godoy et al. 2009). It can be concluded that

the population structure of NFO is not as regular as the

fully connected PSO and the ring-shaped PSO. The

structure of NFO is also more complex than that of CGO,

which has a multi-layer tree structure (according to con-

tour levels).

Due to the above two properties, NFO can effectively

enhance the diversity of population when searching the

global optimum. We will compare the diversity during the

search process between NFO and PSO. The super-fit metric

(SF) defined in (Caponio et al. 2009) is used to evaluate the

diversity as

vk ¼
fk;best � fk;avg

�� ��

maxk
G¼1 fG;best � fG;avg

�� �� ; ð16Þ

where fG;best and fG;avg are the best and average fitness

values in the Gth generation, respectively. In the kth gen-

eration, the super-fit metric vk is defined as the ratio of the

current difference of fk;best and fk;avg to the maximum dif-

ference found so far. It is clear that vk varies between 0 and

1, where vk ¼ 1 means a high diversity and vk ¼ 0 means a

low diversity.

By evaluating the value of SF, we test the population

diversity of NFO and PSO on the Sphere function (10-D)

and Ackley’s function (10-D) in Fig. 6. The figure shows

the mean value of SF metric after 25 independent runs. The

results illustrate that the NFO can obtain a larger SF metric

FattFrep

xiInferior xwi Superior xci

Fig. 2 In NFO, the individual is attracted by its superior neighbor

and is repulsed by its inferior neighbor. The blank node means the

superior individual, and the striped nodes mean those inferior

individuals. The shaded node xi is influenced by its neighbors

xi

xci

xwi

v1

v2

f∇−

Fig. 3 The direction of neighborhood field in NFO in a 2-D example.

xci and xwi are the superior and inferior neighbors in a small circle
region. The differential vectors of xci - xi and xi - xwi are denoted

as v1 and v2. The shaded area between v1 and v2 is likely to include

the inverse direction of the gradient at xi, which is denoted as the

dashed arrow
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than PSO in the search process. Clearly NFO can maintain

better population diversity than PSO.

4 Simulation results

In this section, we compare the performance of NFO with

other population-based algorithms PSO, SOMA, DE and

CGO through minimizing several benchmarks functions.

Table 1 lists the parameter settings of each algorithm in our

simulations, which are the same as recommended in liter-

atures (Storn and Price 1997; Eberhart and Shi 2000; Xu

and Chow 2010). In PSO, the inertia weight x is set to

0.72, and c1, c2 are set to 1.49. In SOMA, the number of

migration k is set to 13, step size D is set to 0.11, and the

mutation rate PRT is set to 0.1. In DE, the scaling factor F

is set to 0.5, and the crossover rate is 0.9. In CGO, the

number of individuals in each level N=m is set to 3, the

learning rate is set to 1.3, and crossover probability is 0.1.

In NFO, the crossover probability is set to 0.1, and the

learning rate is set to 1.3. For each algorithm, the popu-

lation size is set to 30 when solving the 10-dimensional

(10-D) functions. The population size is set to 100 when

solving the 50-dimensional (50-D) functions.

For the benchmark functions, a set of generalized

functions commonly found in literatures (Brest et al. 2006;

Xu and Chow 2010) is used to test our algorithms. Among

these functions, f1; f2 are unimodal functions and f3; . . .; f7
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Fig. 4 The population structures of NFO when solving Sphere

function (10-D) with 50 individuals. a and b are population structure

and degree distribution in the 100th iteration for Sphere function.

c and d are population structure and degree distribution in the 500th

iteration for sphere function
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are un-rotated multimodal functions as Table 2. Table 2

has listed the formula, the optima and the initialization

spaces of the seven functions. In addition, another set of

functions chosen from CEC 2005 (Suganthan et al. 2005) is

also included. The used CEC2005 functions can be divided

into three classes: shifted and rotated unimodal functions

F1–F5; shifted and rotated multimodal functions F6–F12

and expanded multimodal functions F13–F14. CEC2005

functions are shifted by random vectors to make them

asymmetric in the search space. For the rotated functions,

the original variable x is multiplied with an orthogonal

matrix M to obtain the new variable as z ¼ x �M (Salo-

mon 1996; Liang et al. 2006). Note that this paper evalu-

ates each algorithm on 10- and 50-dimensional test

functions. For each algorithm and each function, 25 inde-

pendent runs were conducted for calculating the mean

values and the standard derivations. All runs are terminated

when they meet the maximum number of fitness evalua-

tions (FEs). The maximum number of FEs is set to be

100,000 for 10-D functions and 500,000 for 50-D func-

tions. For clarity, the results of the best and second best

algorithms are marked in boldface and italic; if not all or

most algorithms produce identical results.

4.1 Parameter evaluations of NFO

There are two parameters in NFO, the learning rate a and

the crossover probability Cr. The effect of a is to control
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Fig. 5 The population structures of NFO when solving Ackley’s

function (10-D) with 50 individuals. a and b are population structure

and degree distribution in the 100th iteration for Ackley’s function.

c and d are population structure and degree distribution in the 500th

iteration for Ackley’s function
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the step length of moving, and Cr is used to control the

convergence speed. For users, the two parameters are

expected to be insensitive and problem independent. In this

experiment, we have evaluated how a and Cr affect the

performance of NFO. Different settings of a and Cr are

tested on the 10-D functions f1; f3; f4; f5; f6; f7. In this

section a is set to 0.3, 0.5, .0.7, 0.9, 1.1, 1.3, 1.5 and 1.7.

For each learning rate, Cr is set to 0.1, 0.3, 0.5, 0.7 and 0.9

for comparisons. With each pair of parameters, the mean

values of final results are listed in Table 3. In this table, it

can be noticed that appropriate a lies in the scale from 0.7

to 1.7. If a is smaller than 0.7, NFO is easily getting

trapped in the local minimum due to the insufficient search.

Furthermore, it is obvious that Cr should be set in the scale

[0.1, 0.7]. If Cr is large than 0.7, NFO cannot converge to

the global optimum regardless of the learning rate. The

optimal settings of the two parameters are a ¼ 1:3 and

Cr ¼ 0:1. In the following studies, a and Cr are set to 1.3

and 0.1.

4.2 Comparisons with PSO, SOMA, DE and CGO

The means and standard derivations of results obtained by

each algorithm are listed in Tables 4 and 5. Tables 4 and 5

report the means and standard derivation for the 10-D and
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Fig. 6 Comparison of population diversity between NFO and PSO, in which a large SF mean a high diversity. a Mean value of SF when solving

Sphere function (10-D). b Mean value of SF metric when solving Ackley’s function (10-D)

Table 1 Parameter Setting Of algorithms

Algorithms Parameters

PSO x = 0.72, c1 = 1.49, c2 = 1.49

SOMA k = 13, D = 0.11, PRT = 0.1

DE F = 0.5, Cr = 0.9

CGO N=m = 2, a = 1.3, Cr = 0.1

NFO a = 1.3, Cr = 0.1

Table 2 Benchmark functions

Function name fi xð Þ Search space Minimum

Sphere function f1 xð Þ ¼
PD

i¼1 x2
i

[-5.12, 5.11]D 0

Rosenbrock’s function f2 xð Þ ¼
PD�1

i¼1 100 x2
i � xiþ1

� �2� xi � 1ð Þ2
	 


[-2.048, 2.047]D 0

Rastrigin’s function f3 xð Þ ¼
PD

i¼1 x2
i � 10 cos 2pxi þ 10

� �
[-5.12, 5.11]D 0

Schaffer’s function
f4 xð Þ ¼

PD�1
i¼1 0:5þ sin2

ffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þx2
iþ1

p
�0:5

1þ0:001 x2
i þx2

iþ1ð Þ2
� �2

 !
[-2.048, 2.047]D 0

Ackley’s function
f5 xð Þ ¼ 20þ e� 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D

PD
i¼1 x2

i

q� 

� exp 1=D

PD
i¼1 cos 2pxi

� � [-30, 30]D 0

Griewank’s function f6 xð Þ ¼
PD

i¼1

x2
i

4000
�
QD

i¼1 cos xiffi
i
p
	 


þ 1 [-600, 600]D 0

Stretched V sine wave function f7 xð Þ ¼
PD�1

i¼1 x2
i þ x2

iþ1

� �0:25
1þ sin2 50 x2

i þ x2
iþ1

� �0:1
	 
	 


[-10, 10]D 0
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50-D functions, respectively. These statistics are calculated

at the end of the optimization. For certain functions, middle

results are also reported because the final results obtained

by certain algorithms are identical to zeros or a small error,

caused by the precision threshold according to IEEE

Standard 754 (such as the results of f3 and f5). In these

cases, some results at middle generations are compared.

The last three rows in the tables summarize the results of

Wilcoxon rank-sum tests with significance level 0.05

(Derrac et al. 2011). The statistical tests have been con-

ducted to compare the proposed NFO with PSO, SOMA,

DE and CGO. ‘‘-’’ denote that each compared algorithm is

worse than NFO; ‘‘?’’ denotes that each compared algo-

rithm is better than NFO‘‘&’’ denotes that each compared

algorithm is similar with NFO.

In Tables 6 and 7, we summarize the success rate (SR)

and the average number of fitness evaluations over suc-

cessful runs (FEs) for each algorithm. In this experiment,

the success of an algorithm means that the best result is no

worse than the specified optimal threshold, i.e., f x�ð Þ þ

1e�6 for all functions. FEs and SR are useful to illustrate

the performance in terms of the convergence rate (in suc-

cessful runs) and the reliability.

Figure 7 demonstrates the convergence graphs for 50-D

problems. Because the convergence graphs of 10-D prob-

lems are similar with their 50-D cases, they are omitted

here. Note that the convergence graphs are the median run

instead of the mean values reported in the tables. The

median value can provide additional information when

certain algorithms may fail to converge occasionally.

For 10-D functions, statistics in Table 4 indicate that

NFO is able to deliver the best performance in terms of

accuracy and reliability on most un-rotated functions

except f2 and f3. In Table 4, we also summarize the number

of functions, on which the compared algorithms are worse

than, better than and similar with NFO in the Wilcoxon

tests. It can be noticed in Table 4 that NFO is significantly

better than PSO, SOMA, DE and CGO on 5, 7, 5 and 5

functions, respectively. Table 6 shows that NFO need less

FEs when solving f1; f4; f5; f7; than other algorithms.

Table 3 Mean results with different parameters of NFO (25 runs)

a Cr = 0.1 Cr = 0.3 Cr = 0.5 Cr = 0.7 Cr = 0.9 a Cr = 0.1 Cr = 0.3 Cr = 0.5 Cr = 0.7 Cr = 0.9

f1 f3

0.3 1.90e-07 2.45e-01 1.48e?00 3.88e?00 6.25e?00 0.3 2.07e?00 1.65e?00 2.24e?00 2.79e?00 4.03e?00

0.5 0 9.90e-06 2.24e-02 4.20e-01 1.46e?00 0.5 2.49e-14 1.04e-12 1.16e?00 2.58e?00 3.89e?00

0.7 0 0 0 0 7.89e-31 0.7 0 0 0 3.03e-02 1.71e-01

0.9 0 0 0 0 0 0.9 3.55e-15 3.55e-15 3.55e-15 7.11e-15 1.65e?00

1.1 0 0 0 0 0 1.1 0 0 0 2.15e-02 5.18e-02

1.3 0 0 0 0 0 1.3 3.55e-15 0 0 3.55e-15 3.55e-15

1.5 0 0 0 0 0 1.5 3.55e-15 3.55e-15 3.55e-15 3.55e-15 3.55e-15

1.7 0 0 0 0 0 1.7 0 0 0 0 4.57e-02

f4 f5

0.3 1.08e-01 5.05e-01 1.07e?00 5.74e?00 1.77e?01 0.3 1.90e?00 1.78e?00 2.48e?00 6.39e?00 1.34e?01

0.5 3.69e-02 9.50e-02 2.20e-01 4.48e-01 2.49e-14 0.5 3.47e-02 1.08e-02 1.08e-02 3.03e-02 5.09e-01

0.7 0 0 9.95e-01 2.98e?00 9.95e?00 0.7 0 0 0 3.68e-10 1.65e-01

0.9 4.06e-08 1.51e-11 9.86e-03 1.23e-02 3.20e-02 0.9 0 0 0 3.03e-02 2.35e-01

1.1 0 0 0 0 2.98e?00 1.1 0 0 0 6.46e-13 1.65e-01

1.3 2.11e-15 2.22e-16 9.64e-13 7.50e-03 4.18e-02 1.3 0 0 0 0 1.07e-02

1.5 4.18e-15 1.31e-13 1.06e-06 1.35e-02 3.94e-02 1.5 0 0 0 0 0

1.7 0 0 0 2.04e?00 1.11e?01 1.7 0 0 0 2.22e-15 2.09-04

f6 f7

0.3 1.32e?01 1.92e?01 2.41e?01 3.27e?01 4.06e?01 0.3 1.65e-01 1.65e-01 1.98e-01 1.91e-01 2.18e-01

0.5 9.97e-01 1.99e?00 6.99e?00 1.29e?01 2.13e?01 0.5 1.74e-02 8.15e-02 3.67e-01 4.13e-01 7.07e-01

0.7 3.55e-15 3.55e-15 1.49e-13 1.65e?00 2.58e?00 0.7 8.67e-03 9.86e-03 2.22e-02 4.67e-02 1.62e-01

0.9 0 0 9.95e-01 1.99e?00 8.96e?00 0.9 0 0 0 0 2.22e-16

1.1 3.55e-15 3.55e-15 0 3.55e-15 3.55e-15 1.1 1.11e-16 1.99e-13 8.11e-11 9.86e-03 2.71e-02

1.3 0 0 0 2.84e-14 7.83e?00 1.3 0 0 0 0 1.22e-15

1.5 3.55e-15 0 0 1.31e?00 1.15e?01 1.5 1.22e-15 0 0 0 2.22e-16

1.7 3.55e-15 3.55e-15 3.55e-15 0 3.55e-15 1.7 4.43e-09 7.40e-03 7.40e-03 3.45e-02 5.95e-02
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Generally, NFO can obtain more accurate results with

faster convergence rate for these 10-D functions.

For more complicated 50-D functions, NFO obviously

delivers excellent performance compared with other algo-

rithms. Details can be referred from Table 5. NFO can find

the most accurate solutions on functions f1; f2; f4; f5; f6

and f7. In Table 5, results of Wilcoxon tests show that NFO

is significantly better than PSO, SOMA, DE and CGO on 7,

7, 6 and 7 functions, respectively, while it is significantly

worse than the compared algorithms on 0, 0, 1 and 0

functions. In Table 7, it is clear that NFO is more reliable

than the studied algorithms, because NFO has the smallest

FEs and has 100 % SR for all the solvable functions. The

convergence graphs (on 50-D functions) of PSO, SOMA,

DE, CGO and NFO are plotted in Fig. 7. The observation is

the same with the numerical analysis. It is clear that NFO

Table 4 Means and standard derivations of experimental results in 10-D case (25 runs)

FEs PSO mean ± Std. dev. SOMA mean ± std. dev. DE mean ± std. dev. CGO mean ± std. dev. NFO mean ± std. dev.

f1 10000 2.61e-12 ± 2.85e-12- 1.22e-11 ± 1.76e-11- 2.58e-12 ± 1.96e-12- 8.35e-10 ± 5.93e-10- 2.75e217 – 4.07e217

100000 0±0 0±0 0±0 0±0 0±0

f2 100000 1.13e209 – 2.41e209? 5.84e-01 ± 1.37e?00- 3.18e-09 ± 2.41e-09? 5.02e-04 ± 8.98e-

04&
2.58e-03 ± 4.30e-03

f3 10000 0–0? 2.19e?00 ± 2.11e?00- 6.63e-02 ± 2.52e-01- 5.16e-06 ± 1.71e-05- 6.73e-14 ± 3.38e-13

100000 0±0 2.19e?00 ± 2.11e?00 6.63e-02 ± 2.52e-01 0±0 0±0

f4 10000 1.33e-02 ± 5.58e-02- 6.06e-02 ± 1.11e-01- 6.82e-03 ± 3.14e-02- 6.78e-06 ± 2.85e-05- 6.54e209 – 3.58e208

100000 5.51e-03 ± 3.02e-02 5.51e-02 ± 1.09e-01 2.41e-16 ± 1.32e-15 9.90e-14 ± 5.37e-13 0±0

f5 10000 4.55e-12 ± 2.57e-12- 2.10e-05 ± 1.06e-05- 4.05e-12 ± 2.18e-12- 4.52e-09 ± 2.13e-09- 4.97e215 – 2.00e215

100000 0 ± 0 3.67e-15 ± 1.98e-15 0 ± 0 3.20e-15 ± 1.71e-15 2.25e-15 ± 1.98e-15

f6 100000 8.22e-03 ± 2.53e-03- 2.45e-02 ± 2.40e-02- 2.47e204 – 1.35e203? 1.46e-03 ± 2.25e-

03&
1.48e-03 ± 3.94e-03

f7 10000 6.89e-05 ± 4.31e-05- 2.52e-02 ± 9.13e-03- 5.19e-05 ± 2.65e-05- 5.63e-02 ± 1.80e-02- 2.08e206 – 2.29e206

100000 0±0 1.37e-03 ± 5.80e-03 0 ± 0 0 ± 0 0 ± 0

- 5 7 5 5

? 2 0 2 0

& 0 0 0 2

Note: ‘‘-’’, ‘‘?’’ and ‘‘&’’ denote that the performance of each compared algorithm is worse than, better than, and similar with that of NFO, respectively

‘‘FEs’’ means the number of fitness evaluations

Table 5 Means and standard derivations of experimental results in 50-D case (25 runs)

FEs PSO mean ± std. dev. SOMA mean ± std. dev. DE mean ± std. dev. CGO mean ± std. dev. NFO mean ± std. dev.

f1 60000 3.63e-04 ± 9.31e–04- 1.78e-11 ± 9.76e-12- 2.04e-10 ± 3.29e-11- 1.69e-06 ± 2.04e-07- 1.95e216 – 9.40e217

500000 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

f2 500000 2.28e?02 ± 6.39e?01- 2.33e?01 ± 3.05e?01- 6.11e?01 ± 1.54e?01- 1.76e?00 ± 1.50e?00- 5.93e202 – 6.39e202

f3 60000 1.21e?02 ± 2.76e?01- 5.81e?00 ± 2.41e?00- 2.27e214 – 2.84e214? 7.23e?01 ± 2.99e?00- 5.60e?00 ± 4.86e?00

500000 1.21e?02 ± 2.75e?01 5.81e?00 ± 2.41e?00 0 ± 0 2.84e-05 ± 6.93e-05 0 ± 0

f4 500000 2.20e?00 ± 8.34e-01- 6.27e-01 ± 3.79e-01- 2.31e?00 ± 2.69e-01- 1.70e?00 ± 3.08e-01- 1.10e210 – 4.94e210

f5 60000 3.70e?00 ± 7.86e-01- 9.17e-06 ± 2.46e-06- 5.04e-05 ± 3.38e-06- 6.66e-03 ± 5.40e-04- 3.62e208 – 9.33e209

500000 3.40e?00 ± 6.88e-01 1.61e-14 ± 2.92e-15 1.69e-14 ± 2.77e-15 4.31e-14 ± 2.37e-15 2.46e-14 ± 2.50e-15

f6 60000 2.82e-01 ± 3.11e-01- 1.61e-08 ± 2.50e-08- 2.54e-07 ± 8.39e-08- 2.33e-03 ± 2.63e-04- 5.86e213 – 2.63e213

500000 1.15e-01 ± 9.02e-00 8.88e-18 ± 3.07e-17 0 ± 0 0 ± 0 0 ± 0

f7 60000 5.15e?01 ± 9.51e?00- 4.10e-03 ± 7.18e-03- 6.21e-05 ± 7.70e-06- 3.48e-01 ± 2.53e-02- 0 – 0

500000 5.10e?01 ± 9.66e?00 4.10e-03 ± 7.18e-03 0 ± 0 0 ± 0 0 ± 0

- 7 7 6 7

? 0 0 1 0

& 0 0 0 0

Note: ‘‘-’’, ‘‘?’’ and ‘‘&’’ denote that the performance of each compared algorithm is worse than, better than, and similar with that of NFO, respectively

‘‘FEs’’ means the number of fitness evaluations
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can solve most functions with the fastest convergence rate.

In the subfigures (a), (b), (d), (e), (f) and (g) NFO delivers

the fastest convergence rate on most un-rotated functions

(except f3).

In terms of accuracy, convergence rate and robustness,

we can conclude that NFO can deliver excellent perfor-

mance on finding the global minimum. As stated in

(Wolpert and Macready 1997), we all realize that there is

no single algorithm that can solve all different classes of

problems with high performance. In this study, we find that

NFO could not outperform all studied algorithms on all

functions, but NFO could deliver excellent performance in

most of our studied cases, especially in multimodal

problems.

4.3 Comparisons with some state-of-the-art algorithms

We also compare NFO with some state-of-the-art algo-

rithms. They are comprehensive learning particle swarm

optimization algorithms (CLPSO) (Liang et al. 2006),

Table 6 Successful rates and

number of fitness evaluations in

10-D case (25 runs)

Algorithms f1 f2 f3 f4 f5 f6 f7

PSO

SR 100 100 100 96 100 88 100

FEs 8.50e?3 1.85e15 1.425e?4 2.92e?04 1.76e?04 2.55e?04 3.71e?04

SOMA

SR 100 0 20 72 100 8 92

FEs 1.86e?4 – 2.90e?04 2.60e?4 3.63e?4 5.57e?4 6.36e?4

DE

SR 100 100 92 100 100 96 100

FEs 8.55e?3 1.89e?5 1.420e14 2.60e?4 1.76e?4 2.50e14 3.65e?4

CGO

SR 100 0 100 100 100 48 100

FEs 1.06e?4 – 2.94e?4 2.43e?4 2.33e?4 2.17e?5 5.94e?4

NFO

SR 100 4 100 100 100 80 100

FEs 6.23e13 2.08e?5 1.77e?4 1.40e14 1.33e14 6.70e?4 3.05e14

Table 7 Successful rates and

number of fitness evaluations in

50-D case (25 runs)

Algorithms f1 f2 f3 f4 f5 f6 f7

PSO

SR 100 0 0 0 0 12 0

FEs 2.23e?5 – – – – 1.97e?5 –

SOMA

SR 100 0 4 12 100 100 72

FEs 1.94e?5 – 3.17e15 6.16e15 3.46e?5 2.56e?5 5.96e15

DE

SR 100 0 100 0 100 100 100

FEs 2.05e?5 – 4.00e?5 – 3.89e?5 2.85e?5 9.48e?5

CGO

SR 100 0 40 0 100 100 0

FEs 3.09e?5 – 2.36e?6 – 5.93e?5 4.63e?5 1.59e?6

NFO

SR 100 0 100 100 100 100 100

FEs 1.40e15 – 7.87e?5 6.46e?5 2.58e15 1.94e15 6.19e?5

Fig. 7 The convergence graph profiles on 50-D functions (median

function value). a Sphere function. b Rosenbrock’s function. c Rastr-

igin’s function. d Schaffer’s function. e Ackley’s function. f Grie-

wank’s function. g Stretched V sine wave function

c
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covariance matrix adaptation evolution strategy (CMA-ES)

(Hansen and Ostermeier 2001; Auger and Hansen 2005),

global and local search genetic algorithm (GL-25) (Garcia-

Martinez et al. 2008) and J. Brest’s adaptive DE (jDE)

(Brest et al. 2006). In CLPSO, a particle uses its own

historical best information and the historical best infor-

mation of another random particle to update its velocity.

The standard CMS-EA (Hansen and Ostermeier 2001) is

used in the comparison, in which offspring solutions are

sampled according to a multivariate normal distribution

represented by a covariance matrix. GL-25 is a hybrid real-

coded genetic algorithm which combines the global and

local search for the global optimization. In jDE, it is stated

that better parameter values tend to generate individu-

als which are more likely to survive and thus these val-

ues should be adaptively propagated to offspring

generations.

In this experiment, the parameter settings in CLPSO,

CMA-ES, GL-25 and jDE are the same as the optimal

settings in their original papers. Table 8 summarizes the

mean values and standard derivations over 25 runs on 50-D

generalized functions. Table 9 summarizes the mean val-

ues and standard derivations over 25 runs on 50-D

CEC2005 functions. For each run, each algorithm is stop-

ped when its fitness evaluation times meet the maximum

fitness evaluation number 5eþ5. The results of Wilcoxon

rank-sum tests between NFO and the four methods are also

given in the table.

For the generalized functions f1; . . .; f7, NFO performs

better than CLPSO, CMA-ES, GL-25 and jDE with most

accurate results. In Table 8, results of Wilcoxon tests show

that NFO is significantly better than CLPSO, CMA-ES,

GL-25 and jDE on 7, 7, 7 and 3 functions, respectively,

while it is not significantly worse than the compared

algorithms. For the CEC2005 functions F1–F14, the anal-

ysis will be given in three folds according to features of

functions.

1. Rotated unimodal functions F1–F5:

CMA-ES can solve three unimodal functions, F1, F2 and

F3, which have outperformed other algorithms. The pos-

sible reason is that the adaptive strategy leads to fast

convergence speeds. It is obvious that NFO still has com-

petitive performance, delivering significantly better results

than CLPSO and GL-25 on four and two functions

respectively. NFO is a little worse than jDE because

adaptive strategy in jDE can enhance the robustness of an

algorithm.

2. Basic multimodal functions F6–F12:

On these seven functions, CMA-ES is still the best

performer with the most accurate results on five functions

F5, F6, F7, F8 and F11; jDE performs the best on functions

F9 and F12; NFO performs the best on F10; CLPSO per-

forms the best on F9. Compared with GL-25, NFO is sig-

nificantly better on five functions and is significantly worse

on two functions. Compared with CPLSO, NFO is signif-

icantly better on three functions, and is significantly worse

on one function. Thus, NFO is better or at least comparable

with these algorithms on basic multimodal functions.

3. Expanded multimodal functions F13–F14:

On the two expanded functions, it can be noticed that

NFO shows better than CLPSO, CMA-ES, GL-25 and jDE.

The statistical tests also show that NFO is significantly

different from them.

In all, CMA-ES performs better than CLPSO, GL-25,

jDE and NFO with most accurate results on these 14

CEC2005 functions. For the functions, NFO is slightly

worse than jDE and CMA-ES. One possible reason is that

adaptation of parameters can enhance the accuracy and

robustness of algorithms, which has not been considered in

NFO. For the expanded functions, NFO must be the best

performer with more accurate results. In Table 9, the

Table 8 Comparison with state-of-the-art algorithms on 50-D generalized functions (25 runs)

CLPSO mean ± std. dev. CMA-ES mean ± std. dev. GL-25 mean ± std. dev. jDE mean ± std. dev. NFO mean ± std. dev.

f1 3.22e-19 ± 9.88e-20- 1.24e-27 ± 2.21e-28- 3.59e-26 ± 1.00e-25- 0 ± 0& 0 ± 0

f2 4.69e?01 ± 8.33e?00- 4.35e?01 ± 1.06e?00- 4.32e?01 ± 2.56e-05- 4.32e?01 ± 1.51e-14- 5.93e202 – 6.39e202

f3 3.98e-02 ± 1.99e-01- 6.83e?02 ± 1.49e?02- 5.96e?01 ± 1.25e?01- 0 ± 0& 0 ± 0

f4 1.23e?00 ± 7.98e-01- 3.57e?00 ± 6.32e-01- 2.35e?00 ± 4.13e-01- 1.67e?00 ± 8.90e-01- 1.10e210 – 4.94e210

f5 1.35e-08 ± 3.36e-09- 1.98e?01 ± 8.64e-02- 6.29e-13 ± 1.14e-12- 6.68e-14 ± 1.18e-14- 2.46e214 – 2.50e215

f6 1.97e-12 ± 3.93e-12- 7.89e-04 ± 2.82e-03- 5.12e-15 ± 4.64e-15- 0 ± 0& 0 ± 0

f7 1.07e-02 ± 1.72e-03- 1.48e?02 ± 1.64e?01- 8.68e?00 ± 1.85e?00- 0 ± 0& 0 ± 0

- 7 7 7 3

? 0 0 0 0

& 0 0 0 4

Note: ‘‘-’’, ‘‘?’’ and ‘‘&’’ denote that the performance of each compared algorithm is worse than, better than, and similar with that of NFO,

respectively
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results of Wilcoxon tests show that NFO is significantly

better than CLPSO, CMA-ES, GL-25 and jDE on 10, 6, 9

and 4 functions, respectively, while these compared algo-

rithms are significantly better than NFO on 2, 7, 4 and 8

functions. It can be noticed that NFO has obtained com-

petitive performance with significant difference compared

with the state-of-the-art algorithms, especially for more

complex expanded problems.

5 Conclusion

A new stochastic algorithm, NFO, is developed to solve

multimodal problems globally. The newly proposed algo-

rithm fully employs the local cooperation behavior to

generate a new type of search mechanism ‘‘learning from

the neighbors’’. NFO has been tested on several demanding

benchmark problems. The presented results show that NFO

is able to surpass several popular algorithms under com-

prehensive evaluations with respect to accuracy, conver-

gence rate and robustness. This is a significant

improvement because only a few algorithms with local

information can deliver global optimization efficiently for

the multimodal problems.

NFO uses a totally different approach that models the

principle ‘‘learning from the neighbors’’ instead of the

popular principle ‘‘learning from the bests’’. The concept of

‘‘learn from the neighbors’’ models practical situations that

superior neighbor is more realistic as a target for learning

rather than the found best one in the global environment.

This concept is proved to be useful and efficient for per-

forming global optimization. In NFO, these neighborhood

field are more or less on the descending direction of fitness

function, which can accelerate the search process.
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