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Abstract—Visualizing similarity data of different objects by exhibiting more separate organizations with local and multimodal

characteristics preserved is important in multivariate data analysis. Laplacian Eigenmaps (LAE) and Locally Linear Embedding (LLE)

aim at preserving the embeddings of all similarity pairs in the close vicinity of the reduced output space, but they are unable to identify

and separate interclass neighbors. This paper considers the semi-supervised manifold learning problems. We apply the pairwise

Cannot-Link and Must-Link constraints induced by the neighborhood graph to specify the types of neighboring pairs. More flexible

regulation on supervised information is provided. Two novel multimodal nonlinear techniques, which we call trace ratio (TR) criterion-

based semi-supervised LAE (S2LAE) and LLE (S2LLE), are then proposed for marginal manifold visualization. We also present the

kernelized S2LAE and S2LLE. We verify the feasibility of S2LAE and S2LLE through extensive simulations over benchmark real-world

MIT CBCL, CMU PIE, MNIST, and USPS data sets. Manifold visualizations show that S2LAE and S2LLE are able to deliver large

margins between different clusters or classes with multimodal distributions preserved. Clustering evaluations show they can achieve

comparable to or even better results than some widely used methods.

Index Terms—Semi-supervised manifold learning, trace ratio optimization, nonlinear dimensionality reduction, multimodality

preservation, pairwise constraints, marginal manifold visualization

Ç

1 INTRODUCTION

VISUALIZING image data via dimensionality reduction
(DR) has become increasingly important since many

emerging applications are closely related with high-
dimensional data, such as human gene distributions. These
data sets often contain numerous samples, each of which
contains huge number of features. The major issue of DR is
to find a projection matrix to transform the high-dimen-
sional data into the low-dimensional representations
appropriately with the intrinsic local or global geometry
structures being effectively preserved [1], [2]. When DR is
appropriately conducted, the compact meaningful repre-
sentation of the original data can be utilized for various
subsequent tasks, such as visualization. Linear Principal
Component Analysis (PCA) [3] and Linear Discriminant
Analysis (LDA) [4] are two representative DR methods.

Intrinsic multimodal and nonlinear structures are often
come across in real-life applications. For example, in facial
gender recognition, intraclass multimodal and nonlinear
structures appear when genders are classified to males and
females, because images of different persons are usually
captured under different conditions (e.g., lightings and
poses). Similarly, merging even or odd digits to a single

class usually involves multimodal nonlinear structures.
Obviously, it is advantageous to employ the nonlinear DR
techniques to the real data sets [5], [6]. Data points in a dense
area deliver similar manifolds [7]. To represent given data
well, it is vital to consider the local information of data. This
leads to the appearance of many locality or neighborhood
preserving methods [8], e.g., Laplacian Eigenmaps (LAE) [10],
Locally Linear Embedding (LLE) [1] and ISOMAP [36]. Non-
linear LAE, LLE, and ISOMAP deliver optimal embeddings
directly without exhibiting the projection axes and are
developed for data visualization. These unsupervised
methods are efficient in visualizing synthetic data sets [5]
and are powerful to handle nonlinear data. Note that LAE
and LLE keep all neighboring pairs close in the reduced
space. On the contrary, neighbors of different objects or
classes also deliver similar embeddings, so transformed
data of interclass neighbors are likely to be congregated. The
major reason for mixing the interclass neighbors is that they
do not consider any form of supervised information, such as
class labels or pairwise constraints (PC). In the real word,
unlabeled data are readily available but labeled ones are
usually expensive to obtain. By incorporating the class
information into the manifold learning, Supervised LLE
(SLLE) [27], Supervised ISOMAP (S-ISOMAP) [26] and
Semi-Supervised Maximum Margin Projection (MMP) [35] are
then proposed. Note that SLLE and S-ISOMAP are
supervised and may be overfitted to the training data when
only a limited number of labeled data are available.
Recently, by utilizing the prior information obtained from
the mapping of certain points, another type of semi-
supervised manifold learning algorithms including Semi-
Supervised Local Tangent Space Alignment (SS-LTSA) [16], [17],
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Semi-Supervised ISOMAP (SS-ISOMAP) [16], and Semi-

Supervised LLE (SS-LLE) [16], are proposed. SS-LTSA is a

semi-supervised extension of LTSA [11].
Domain knowledge in the form of pairwise Cannot-Link

(CL) and Must-Link (ML) constraints are widely used in

many areas, for instance [15], [18], [19], [22]. PC are created

depending on whether point pairs are in the same class or

not. Compared with the class labels, PC can be achieved

with minimal human effort and can provide more super-

vision information when labeled number is limited [18],

[22]. Therefore, it is a great advantage to utilize PC for

discriminant semi-supervised manifold learning, especially

when the labeled number is few. Two representative works

of PC derived algorithms are Semi-Supervised Dimensionality

Reduction (SSDR) [15] and Semi-Supervised Metric Learning

(SSML) [19] which incorporate PC with abundant unla-

beled data. SSDR and SSML can keep the intrinsic

structures of unlabeled samples and PC defined on the

labeled data, and considerable improvements in embed-

dings are exhibited. But note that SSDR is a global

algorithm and the terms involving PC in SSML are also

global. This paper applies the neighborhood graph induced

PC to guide the manifold learning and develops new

algorithms. In this paper, there are four major contribu-

tions. First, we propose two effective and novel LAE and

LLE criteria-based semi-supervised manifold learning

techniques called S2LAE and S2LLE under a trace ratio

criterion [28], [30]. S2LAE and S2LLE are naturally different

from virtually all previous semi-supervised manifold

learning methodologies. By utilizing the graph-induced

ML and CL constraints, the types of neighboring pairs are

categorized to intra- and interclass. By defining reasonable

criteria, large margins between intra- and interclass clusters

are organized and enhanced compactness of intracluster

neighbors can be obtained at the same time. Second,

compared with utilizing the class labels, the pairwise ML

and CL constraints can provide us with more supervised

information. More importantly, the PC sets are flexible in

providing more degree of freedom for generalization. In

other words, we can employ either partial or all constraints

for optimization. Note that when the number of labeled

samples or available constraints is small, unlabeled samples

can help boosting the performance. Third, practical

approaches are developed to extend S2LAE and S2LLE to

kernelized scenarios. Fourth, TR optimization [29], [33] is

used to solve our developed problems delivering more

specific solution according to the stronger orthogonal

constraints.
The outline of the paper is given as follows: In Section 2,

we briefly reviews LAE and LLE. In Section 3, we formulate

the proposed algorithms and their extensions. In Section 4,

we present the solution schemes of our problems. Subse-

quently, in Section 5, we describe the simulation settings

and evaluate our algorithms using benchmark MIT CBCL,

CMU PIE, MNIST, and USPS databases. Finally, the

concluding remarks are drawn in Section 6.

2 PRELIMINARIES

Given a data graph G ¼ ðV ;EÞ, where V is the set of
vertices fxigNi¼1 in n-dimensional space IRn and E is the set
of edges. Then, LAE and LLE can be defined as follows:

2.1 Laplacian Eigenamps Revisited

LAE [10] starts by constructing a neighborhood graph by
k nearest neighbor search (NNS), that is xi and xj are
connected by an edge if they are neighbors. Note that the
heat kernel method, the local scaling heuristic method [23]
and the simple-minded method can be used to define the
weights. For the simple-minded method, Wi;j ¼Wj;i ¼ 1 if
xi and xj are neighbors. The criterion for computing the
optimal embeddings is to solve the following problem:

Min
Y

1

2

XN
i;j¼1

yi � yj
�� ��2

Wi;j ¼ Min
YDY T¼I

Tr Y D�Wð ÞY T
� �

; ð1Þ

where I is an identity matrix, yi is the dimension-reduced
representation of xi and weight Wi;j incurs a heavy penalty
if neighboring pairs xi and xj are mapped far apart. The
notation k � k is the l2-norm, notation T denotes the
transpose of a vector or a matrix and Trð�Þ is trace operator.
Thus, minimizing (1) can ensure that if xi and xj are close,
then yi and yj are also close. Let L ¼ D�W be the
Laplacian matrix of W over the data in X ¼ ½x1jx2j . . .xN �
and D be an N-dimensional diagonal matrix with ith (or
jth, since W is symmetric) element being Dii ¼

P
j Wi;j,

then the solution Y 2d�N ðd � nÞ can be achieved as the
eigenvectors corresponding to with the d smallest eigenva-
lues of the generalized eigen-problem:

D�Wð Þ�j ¼ �jD�j; Y ¼ u2; . . . ; udþ1½ �T2 IRd�N: ð2Þ

2.2 Locally Linear Embedding Revisited

LLE [1] works in a similar manner to LAE. The first step is
to determine the k neighbors of each point xi by NNS, and
then compute the weights that can linearly reconstruct xi in
the best possible way from its neighbors by

"ð�Þ ¼
XN
i¼1

����xi � X
xj2N

ðxiÞ
þ

�i;jxj

����2

; s:t: 8i
X
j

�i;j ¼ 1; ð3Þ

where N
ðxiÞ
þ denotes the k nearest neighbor set of each

vertex xi. The weights �i;j summarize the effect of the
jth point on constructing the ith point [1], [34], satisfying

�i;j ¼
PN

r¼1 �
ðiÞ
jrPN

u¼1

PN
t¼1 �

ðiÞ
ut

; ð4Þ

where �ðiÞ ¼ ð@ðiÞÞ�1 and @ðiÞ satisfy

@ðiÞjr ¼ ðxi � xjÞ
Tðxi � xrÞ; ð5Þ

where xj and xr are neighbors of xi. Thus, the optimal low-
dimensional embedding can be achieved by

Min
Y

XN
i¼1

����yi � X
xj2N

xið Þ
þ

�i;jyj

����2

: ð6Þ
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Since 8i
P

j �i;j ¼ 1, the LLE objective function can be
reformulated as the following problem [24]:

arg min
Y Y T¼I

TrðY ðI ��ÞTðI ��ÞY TÞ

¼ arg min
Y Y T¼I

TrðY LY TÞ;
ð7Þ

where L ¼ D�W , with Wi;j ¼ ð�þ�T ��T�Þi;j if i 6¼ j,
else it equals to zero. D is a diagonal matrix with Dii ¼P

j Wi;j. Note that the matrix W in (7) is different from the
matrix W in LAE, but we still use the same notation
hereinafter for facilitating the descriptions. To solve the
above problem, the covariance matrix can be constrained to
be identity, i.e., ð1=NÞ

PN
i¼1 yiy

T
i ¼ I, otherwise Y ¼ 0 is

optimal. From (7), Y spanned by the basis vectors can be
obtained as eigenvectors fuT

j g
dþ1
j¼2 associated with d smallest

eigenvalues of the eigen-problem: L�j ¼ �j�j.
Note that LAE is similar to LLE from the following

aspects. Both the LLE matrix bQ ¼ ðI ��ÞTðI ��Þ and LAE
matrix D�W are symmetric positive semidefinite and are
related to the local preservation of data. As indicated in [20],
problem (2) can be written as Min

TrðbY bY TÞ¼c
Trð bY bL bY TÞ,

where the normalized Laplacian

bL ¼ I � bW ¼ D�1=2LD�1=2; bW ¼ D�1=2WD�1=2

and bY ¼ YD1=2, then the only difference is that bL is the
normalized graph Laplacian and � is an affinity matrix [20].
Note that when matrix � ¼W ¼ ð1=nÞeeT, we can have
ðI ��ÞTðI ��Þ ¼ I � bW , which means that LAE is equiva-
lent to LLE in this case [20]. The detailed analyses between
LAE and LLE can be referred to [20].

3 SEMI-SUPERVISED MULTIMODAL NONLINEAR

DIMENSIONALITY REDUCTION

3.1 Motivation and Objective

LAE and LLE are two most representative local structure
preserving multivariate visualization approaches. Next,
we describe the principles of LAE and LLE criteria from
the marginal perspective. Recall the LAE criterion in (1). If
we substitute the squared euclidean distance d2ðyi; yjÞ into
(1), the problem (1) can be rewritten as

"LAE Yð Þ ¼Min
Y

1

2

XN
i¼1

XN
j¼1

d2ðyi; yjÞWi;j; ð8Þ

where d2ðyi; yjÞ ¼ kyi � yjk2 denotes the squared euclidean
distance between the low-dimensional embeddings yi and
yj. Similarly, we can obtain the LLE embeddings by solving
the above problem with Wi;j ¼ ð�þ�T ��T�Þi;j if i 6¼ j,
else it equals to zero. We consider a binary-class case shown
in Fig. 1, in which each class has two isolated clusters,
i.e., multimodal. The solid lines and dotted lines connect
within-class and between-class neighbors in the undirected
neighborhood graph. Note that we only show partial edges
connecting neighboring pairs. In LAE and LLE, weights Wi;j

are used to reflect the proximity relations in the neighbor-
hood graph. Obviously, when the weight value Wi;j

increases, distance d2ðyi; yjÞ must decrease to minimize the
summation. As LAE and LLE keep the local distances of all
neighboring pairs, a nonzero weight Wi;j will be set in all
the solid lines and dotted lines as shown in Fig. 1. When
weight Wi;j becomes heavier, distance d2ðyi; yjÞ between
the similarity pairs has to be minimized for balancing the
value of the objective. In other words, all margins between
the similarity pairs in the reduced output spaces of LAE
and LLE will be smaller than that in the original space.
Thus, by optimizing the criteria of LAE and LLE, the
embeddings of the clusters can be geometrically displayed
in Fig. 1. For DR, obtaining high separation of interclass
neighbors in addition to preserving the local information is
important. But it is worth noting that the criteria of the
regular LAE and LLE are unable to achieve this objective.

The problem of previous manifold learning methods,
including LAE and LLE, stem from its inability to take
interclass similarity data separation into account, as they
only focus on preserving the geometrical structures of all
similarity points. So, it is natural to define more efficient
criteria to improve the tightness of intracluster similarity
pairs and push intercluster neighbors far apart to achieve
larger margins for feature extraction. To tackle the short-
comings of LAE and LLE, this work considers new criteria
and proposes a solution to this problem with geometrical
interpretations based on the marginal perspective.

We describe our criterion from a pairwise constrained

perspective. The neighborhood graph-induced pairwise ML

and CL constraints are employed for identifying the types of

the neighboring pairs. The definitions of ML and CL
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constraints will be detailed in the next section. ML and CL

reflect the supervised information of samples, which is more

practical way than trying to obtain the class labels [15], [18].

Intuitively, the proximity relations of neighbors constrained

by ML should be enhanced, while the proximity relations

between similarity pairs in CL should be weakened as much

as possible, because we aim at separating them. Note that to

balance the objective functional value, Wi;j and d2ðyi; yjÞ in

LAE and LLE have the opposite meanings. Motivated by

these analyses, for LAE, when weight value Wi;j increases,

we can reduce the distance d2ðyi; yjÞ in order to minimize the

summation
PN

i¼1

PN
j¼1 d

2ðyi; yjÞWi;j if xi and xj are con-

strained by ML. On the contrary, if vertices xi and xj are

constrained by CL, a heavy penalty Wi;j will be imposed to

maximize the summation
PN

i¼1

PN
j¼1 d

2ðyi; yjÞWi;j, implying

that the distance d2ðyi; yjÞ will be significantly expanded in

the feature space. Note that similar discussions exist for LLE.

In Fig. 2, we show some typical examples of ML and CL

constraints. Based on the above criteria, margins between

interclass clusters can be significantly broadened and the

margins between points of the intraclass clusters are

significantly shrunk in the reduced space as shown in

Fig. 2. Most importantly, the intrinsic multimodal structures

can be efficiently kept, because margins between intraclass

clusters are enlarged. In this study, we focus on addressing

this issue to achieving the marginal discriminant manifold

learning as described in later sections.

3.2 Graph-Induced Pairwise ML and CL Constraints

Based on the definition of local neighborhood, we compute

the constraint sets in a graph-induced approach. First, data

graph G ¼ ðV ;EÞ with N vertices and NðN � 1Þ=2 edges is

obtained. Denote by N
ðxiÞ
þ the k nearest neighbor set of xi. A

weight is put on the edge eðxi; xjÞ 2 E between xi and xj if

xj 2 V and xi 2 V . Then, define

eðxi; xjÞ ¼ 1; if xj 2 N ðxiÞþ or xi 2 NðxjÞþ ; LaðxjÞ ¼ LaðxiÞ
eðxi; xjÞ ¼ �1; if xj 2 NðxiÞþ or xi 2 NðxjÞþ ; LaðxjÞ 6¼ LaðxiÞ
eðxi; xjÞ ¼ 0; if xj 62 N ðxiÞþ and xi 62 NðxjÞþ ;

8><>:
ð9Þ

where LaðxiÞ denotes the class label of point xi. In this way,

a neighborhood graph eGN ¼ ð eVN; eENÞwith nonzero weights

is formed, satisfying eVN ¼ V . The purpose of constructing

graph eGN is to represent the similarities between each

vertex pair, where similarity is measured by eNðxi; xjÞ 2 eEN .

If the index and corresponding points of graph eGN are

recorded, intra- and interclass neighborhood graphs can be

obtained. We refer the neighborhood graphs constrained by

ML and CL to as ML-graph and CL-graph, respectively.

Then, the pairwise ML and CL constraint sets are defined as

ML ¼ ðxi; xjÞjeNðxi; xjÞ ¼ 1; vðxiÞ 2 eVN;
vðxjÞ 2 eVN; LaðxjÞ ¼ LaðxiÞ

( )
; ð10Þ

CL ¼ ðxi; xjÞjeNðxi; xjÞ ¼ �1; vðxiÞ 2 eVN;
vðxjÞ 2 eVN; LaðxjÞ 6¼ LaðxiÞ

( )
; ð11Þ

where vðxiÞ is vertexxi in graph eGN . Note that eGN andGhave
the same number of vertices and nonzero edges. Note that all
edge lengths in ML-graph should be “minimized,” while all
edge lengths in CL-graph should be “maximized.” Based on
the ML and CL constraints, more separate embeddings of
interclass neighbors can be delivered. More importantly,
natural clusters within each class or object, i.e., intrinsic
multimodality, can be preserved.

3.3 Semi-Supervised LAE (S2LAE)

A reasonable criterion for our proposed trace ratio criterion-
based semi-supervised LAE (S2LAE) algorithm is to
maximize the following objective function:

Max
Y

‘
2

P
i;j kyi � yjk

2�i;j þ
ð1�‘Þ

2

P
ðxi;xjÞ2CL kyi � yjk

2 eWCL
i;j

1
2

P
ðxi;xjÞ2ML kyi � yjk

2 eWML
i;j

;

ð12Þ

where � is an N �N matrix with entries �i;j ¼ 1=N and
‘�ð2 ½0; 1�) is a tradeoff parameter for balancing the two
terms in the numerator of (12). Note that adjacency matriceseWML and eWCL are defined for keeping the local relation-
ships between data points constrained by ML and CL,
respectively. Matrices eWML and eWCL will be used in later
sections without introductions. Note that the number of CL
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constraints is usually smaller than that of the ML
constraints, term ð1=2Þ

P
i;j kyi � yjk

2�i;j over all data points
is added to make the above problem more stable. Similar to
LAE, optimizing (12) is equivalent to ensuring that if pairs
xi and xj are originally close and are constrained by ML,
then yi and yj will be close as well; else if xi and xj are close
but are constrained by CL, then yi and yj should be
separated. The first term in the numerator of (12) plays a
significant role in preserving the global covariance struc-
tures of both labeled and unlabeled samples. The “un-
labeled” means the data have not been accompanied with
class labels and are not involved in the pairwise constraints.
The motivation for exploiting unlabeled samples is to use
them to boost the performance when the supervised
information is fewer. When all data points are used to
construct eWML, eWCL and constrained data matrices, that iseWML, eWCL, ML, and CL constrained data matrices have the
same size N , then the problem (12) can be formulated as the
following TR problem [29], [30]:

Max
Y

1
2

P
i;j kyi � yjk

2ð‘�i;j þ ð1� ‘Þ eWCL
i;j Þ

1
2

P
i;j kyi � yjk

2 eWML
i;j

¼ Max
YY T¼I

TrðY eLCLY TÞ
TrðY eLMLY TÞ

;

ð13Þ

where e�CL
i;j ¼ ð‘�i;j þ ð1� ‘Þ eWCL

i;j Þ , matrices eLCL ¼ eDCL �e�CL and eLML ¼ eDML � eWML. Note that we only weight

the similarity pairs constrained by ML and CL when

defining the matrices eWML and eWCL. After conducting

k NNS over the total data matrix, we can then apply

similar methods to construct the weights. For the simple-

minded method, eWML
i;j ¼ eWML

j;i ¼ 1 and eWCL
i;j ¼ eWCL

j;i ¼ 1 if

vertices i and j are constrained, and else 0. eDML and eDCL

are diagonal matrices with eDML
ii ¼

P
j
eWML
i;j and eDCL

ii ¼P
j
e�CL
i;j . Then, the solution Y can be obtained by solving

the above TR problem.

3.4 Semi-Supervised LLE (S2LLE)

A constrained extension of LLE is also presented. We refer
this invariant to as trace ratio criterion-based semi-
supervised LLE. S2LLE shares similar implementation
procedures to LLE. If all data points are used to construct
the adjacency matrices and constrained data matrices, the
reconstruction errors in S2LLE can be measured by using
the following criterion:

"ðe�ML; eWCLÞ

¼
‘
2

P
i;j kxi � xjk

2�i;j þ
ð1�‘Þ

2

P
ðxi;xjÞ2CL kxi � xjk

2 eWCL
i;jP

ðxi;xjÞ2ML kxi �
P

xj2N
ðxiÞ
þ

e�ML
i;j xjk

2
;

ð14Þ

with respect to
P

j
e�ML
i;j ¼ 1, where eWCL denotes the CL

constrained weight matrix applied in S2LAE, � is similarly

defined as in S2LAE and ð1=2Þ
P

i;j kxi � xjk
2�i;j ¼ SðtÞ is the

total scatter matrix. Then, the weight matrix e�ML with

entries e�ML
i;j summarizes the contribution of the jth sample to

the ith reconstruction, which satisfies

e�ML
i;j ¼

XN
r¼1

bXðiÞjr�XN
u¼1

XN
t¼1

bXðiÞut ; ð15Þ

where bXðiÞ ¼ ðb@ðiÞÞ�1 and local covariance matrix b@ðiÞ
satisfies the following formulation:

b@ðiÞjr ¼ ðxi � xjÞTðxi � xrÞ; where ðxi; xjÞ; ðxi; xrÞ 2ML;

ð16Þ

where xj and xr are neighbors of xi. Then, each observation

xi is mapped to a low-dimensional vector yi. The low-

dimensional coordinates can be determined by optimizing

the following optimization problem for S2LLE:

"ðY Þ ¼Max
Y

1
2

P
i;j kyi � yjk

2ð‘�i;j þ ð1� ‘Þ eWCL
i;j Þ

1
2

P
i;j kyi � yjk

2 eWML
i;j

; ð17Þ

where eWML
i;j ¼ ðe�ML þ e�MLT � e�MLT e�MLÞi;j when i 6¼ j,

and else 0. That is, optimizing the above criterion can

ensure that if sample pair xi and xj are neighbors in the

original space and are constrained by ML, then yi and yj
should be close in the reduced space as well; otherwise, if

pairs xi and xj are neighbors constrained by CL, then yi and

yj should be separated. Similarly, we can obtain

Max
YY T¼I

TrðY ð eDCL � e�CLÞY TÞ
TrðY ð eDML � eWMLÞY T

¼ Max
YY T¼I

TrðY eLCLY TÞ
TrðY eLMLY TÞ

; ð18Þ

where e�CL ¼ ð‘�þ ð1� ‘Þ eWCLÞ. Matrices eDML and eDCL

have entries eDML
ii ¼

P
j
eWML
i;j and eDCL

ii ¼
P

j
e�CL
i;j . So, the

embedding Y can be achieved from solving (18).
Note that if there exist vectors P ¼ ½p1; . . . ; pd� 2 IRn�d

such that Y ¼ PTX, our S2LAE and S2LLE methods can be

effectively linearized to embed new points. The out-of-

sample extrapolation method with a global regression

regularization [6] can also be used to linearize our methods.

3.5 Kernelized Extensions of S2LAE and S2LLE

We in this section show the method of kernelizing S2LAE

and S2LLE. Recently, kernelized LAE [25] was proposed for

DR of nonvectorial data, in which W was replaced by a

kernel matrix K with Ki;j ¼ h�ðxiÞ; �ðxjÞi ¼ �ðxiÞT�ðxjÞ [12]

to measure the similarities between points. For kernelized

cases, the Gaussian RBF kernel is often used. As indicated in

[25], weights Wi;j are restricted to be euclidean distances

between vectorized representations of data, whileK contains

the proximity relations among all input data and the

relations are encoded in a reduced space in the sense of

euclidean distance by a minimization procedure. With this

method, we can similarly kernelize S2LAE by replacingeWCL; eWML by eKCL; eKML, where eKCL and eKML are kernel

matrices over points constrained by CL and ML, respectively.

Because CL and ML reflect the local information of data, we

can preprocess eKCL and eKML to keep the local information as

[25], i.e., eKML
i;j ¼ eKML

j;i ¼ 0; eKCL
i;j ¼ eKCL

j;i ¼ 0 when xj 62 NðxiÞþ
or xi 62 N ðxjÞþ . With all points to construct eKML; eKCL and
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constrained data matrices, kernelized S2LAE (KS2LAE) can

be similarly solved as S2LAE.

Next, we show the kernelized S2LLE using the approach

of kernelizing LLE [34]. Based on the kernel matrixK, which

implicitly defines a mapping � from original space to a

kernel space, then the reconstruction error associated with

�ðxiÞ in kernlized S2LLE can be defined by the same

problem in (14) with respect to
P

j
e�ML
i;j ¼ 1. Note that eWCL

here is similarly replaced by eKðCLÞ. In kernel space, the local

Gram matrix b@ðiÞ with elements is defined as

b@ðiÞjr ¼ ð�ðxiÞ � �ðxjÞÞTð�ðxiÞ � �ðxrÞÞ
¼ Kii �Kir �Kji þKjr;

where ð�ðxiÞ; �ðxjÞÞ; ð�ðxiÞ; �ðxrÞÞ 2 CL;
ð19Þ

where �ðxjÞ and �ðxrÞ are neighbors of �ðxiÞ in kernel
space. Similarly, to compute the embedding for KS2LLE, we
implicitly regard if �ðxiÞ and �ðxjÞ are neighbors con-
strained by ML, their embeddings will be close in the
dimension-reduced space; otherwise, their embeddings
should be separated. The solution of KS2LLE can be
obtained by solving the same problem in (18) with respect
to the matrices eWCL

i;j and e�ML
i;j defined above.

3.6 Efficient Solution for Trace Ratio Problem

We in this section show how to solve the problems of
S2LAE; S2LLE and their kernelized extensions. We take the
TR problem of S2LAE in (13) for example, which is a typical
nonconvex optimization problem and no close-form solu-
tion for this TR problem exists. To solve problem (13), it is
usually transformed into the following simple but inexact
ratio trace expression [21]:

Y � ¼ arg max
Y

Tr½ðY eLMLY TÞ�1ðY eLCLY TÞ�; ð20Þ

which can be solved by applying the generalized eigen-
decomposition (GED). But note that the obtained solution is
not necessarily able to optimally solve the original TR
problem and is not orthogonal [29]. As stated in [29], in
linearized cases, when evaluating the similarities between
data points based on euclidean distance, the nonorthogonal
projections may put different weights on different projection
directions thus changing the similarities, while for orthogo-
nal projections, such similarities can be preserved. Hence,
TR optimization is empirically better than the GED. Guo et
al. [28] show that the global optimum of TR problem can be
equivalently solved by using a trace difference (TD) problem.
To find the best TR value �� and Y �, it is equivalent to solve a
TD problem, that is to find the zero point of F ð�Þ ¼
arg maxY Y T¼I TrðY ð eLCL � � eLMLÞY TÞ ¼ 0. Thus, the optimal
matrix Y � is given by

Y � ¼ arg max
Y Y T¼I

Tr½Y ð eLCL � �� eLMLÞY T�: ð21Þ

Note that in TR optimization, the orthogonal constraint

is always assumed. Another iterative method called ITR

[29] is recently proposed to solve the TR problem. ITR

tackles the TR problem by directly optimizing the objective

TrðYv eLCLY T
v Þ=TrðYv eLMLY T

v Þ when the row vectors of Yv

are orthogonal together. Given �v at step v; Yv can be

obtained from the following problem:

Y v ¼ arg max
Y Y T¼I

TrðY ð eLCL � �v eLMLÞY TÞ; ð22Þ

and renew �vþ1 as the trace ratio value given by Yv: �
vþ1 ¼

TrðYv eLCLY T
v Þ=TrðYv eLMLY T

v Þ until convergence. Theoretical
analyses show that ITR can converge to the global optimum
[29]. As shown in [33], the eigen-decomposition step of ITR
is very time consuming. Recently, a fast trace solver of the
TR problem was proposed in [33]. The algorithm in [33]
adopts an effective method to accelerate the convergence
speed, so the time complexity is greatly reduced and the
algorithm is proved to be faster than ITR [33]. In the study,
the algorithm in [33] is used to solve the TR problems of our
methods. In summary, the computational procedures can be
performed as follows:

1. Initialize Y0 as an arbitrary rowly orthogonal matrix
such that Y0Y

T
0 ¼ I and v ¼ 1;

2. Repeat Steps 3 to 5 until convergence of the
algorithm;

3. Compute �v ¼ TrðYv�1
eLCL Y T

v�1Þ=TrðYv�1
eLML Y T

v�1Þ;
4. Compute the d eigenvectors f�v�g

d
�¼1 of eLCL � �v eLML.

Set � ¼ �v and repeat the following operations until
there is no change to Yv:

a. S o r t ð�v�Þ
Tð eLCL � �v eLMLÞ�v�; � ¼ 1; 2; . . . ; d i n

descending order and select the transpose of
first d0 eigenvectors to construct the matrix Yv;

b. Compute � ¼ TrðYv eLCLY T
v Þ=TrðYv eLMLY T

v Þ;
5. Update v ¼ vþ 1;
6. Output �� ¼ � and the optimal matrix Y � ¼ Yv.
Note that kernelized methods heavily rely on the kernels

and parameters. In this work, we mainly evaluate the
S2LAE and S2LLE algorithms for visualization.

4 SIMULATION RESULTS AND ANALYSIS

Extensive settings are prepared to verify the efficiency of
S2LAE and S2LLE. The performance of S2LAE; S2LLE is
compared with PCA, LDA, LAE, LLE, SLLE [27], Hessian
LLE (HLLE) [9], ISOMAP, S-ISOMAP, LTSA [11], SS-LLE,
SS-LTSA, MMP, SSML, and SSDR. For LAE and LPP, the
heat kernel, i.e., expð�kxi � xjk2=tÞ, with t ¼ 5 is used to
define the adjacency matrix. The simple-minded method is
used to define the adjacency matrix for MMP and our
methods. For S-ISOMAP, parameters 	 and 
 applied to
define the inter- and intraclass dissimilarity are set to 0.5
and the average euclidean distance between all pairs of
samples, respectively. For our methods, ‘� is set to 0.5. A
regularization term �I with � ¼ 0:001 is applied in the GED
type methods. For visualization, we mainly evaluate the
embeddings in terms of interclass separability and intra-
class compactness. We also numerically evaluate the
embeddings using clustering similarity evaluation metric.
All simulations were performed on a PC with Intel Core i5
CPU 650 at 3.20 GHz 3.19 GHz 4 G.

In our study, four real databases, including MIT CBCL face
database (Available from http://cbcl.mit.edu/software-
datasets/FaceData2.html), MNIST database (Available from
http://yann.lecun.com/exdb/mnist/), CMU PIE database
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[14], and USPS database [13] are presented. Some typical
sample images of the databases are shown in Fig. 3.

4.1 Similarity Evaluation Metric

The clustering evaluation metric [32] is used for evaluating
the performance of our methods. The clustering perfor-
mance is evaluated by comparing the obtained cluster label
of each digit or face data with that provided by the data
corpus. Given a sample xi, let ri and fi be the obtained
cluster label and the class label provided by the data corpus.
The clustering accuracy is defined as

AC ¼
PN

i¼1 �ðfi;MapðriÞÞ
N

; ð23Þ

where N is the total amount of data, �ðp; qÞ is the delta
function which equals one if p ¼ q and equals zero
otherwise, and MapðriÞ is the permutation mapping func-
tion, mapping each cluster label ri to the equivalent class
label from data corpus. The best mapping can be found by
the Kuhn-Munkres algorithm [31]. LetC be the set of clusters
obtained from the ground truth and C0 from our method.
Their mutual information metric MIðC;C0Þ is defined by

MIðC;C0Þ ¼
X

ci2C;c0j2C0
Prðci; c0jÞ:log2

Prðci; c0jÞ
PrðciÞ:Prðc0jÞ

; ð24Þ

where PrðciÞ and Prðc0jÞ are, respectively, the probabilities
that a point randomly selected from the data corpus
belongs to the clusters ci and c0j, and Prðci; c0jÞ is the joint
probability that the arbitrarily selected point belongs to the
clusters ci and c0j. MIðC;C0Þ takes values between zero and
maxðHðCÞ; HðC0ÞÞ as inputs, where HðCÞ and HðC0Þ
are the entropies of C and C0. In order to simplify the
comparisons between different pairs of cluster sets, the
normalized mutual information (Mutual_I) metric is
employed, which is described as

MIðC;C0Þ ¼ MIðC;C0Þ
maxðHðCÞ; HðC0ÞÞ : ð25Þ

So, it is straightforward to check MIðC;C0Þ ranges from 0
to 1, i.e., MI equals to one if the two sets of clusters are
identical, and zero if they are completely independent.

4.2 Face Manifold Visualization Analysis

4.2.1 MIT CBCL Face Recognition Database

The MIT CBCL face recognition database consists of face

images of 10 persons. In this study, the synthetic face set

(324 images per person) from the database is tested. The

images are captured under different illuminations, poses

(up to about 30 degrees of rotation in depth and

backgrounds. Each image is denoted by a 1,024-dimen-

sional vector in the image space. In our simulations,

150 faces per person are randomly selected for manifold

visualization. We test each method on the whole sampled

set, i.e., 10 persons (1,500 images totally). Number k in

NNS is set to 95 for S2LAE and twice times for S2LLE. For

the other methods, k is fixed to 35. For SSML, SSDR and

our methods, 50 percent constrains, which are randomly

selected from the constraint sets, are applied in all

simulations if without special remarks. In all our simula-

tions, 40 images per person or digit of each data set are

randomly selected as labeled in MMP and are used to

compute the prior information for SS-LLE and SS-LTSA.

The rest images are treated as unlabeled. The result of

each method is illustrated in Fig. 4. We apply the

clustering evaluation induced by the k-means clustering

algorithm to compare the performance of each method.

The clustering evaluation process is described as follows:

First, after using DR to embed the face data into a low-

dimensional face subspace, k-means clustering algorithm is

applied. The cluster number, k, in k-means algorithm is set

to the number of persons. For each setting, k-means

algorithm is applied 100 times with different initializa-

tions, and the averaged clustering accuracies and Mutual_I

over first 30 best results are recorded.
Observing from the visualizations, it is clear that SSDR,

our S2LAE and S2LLE methods implicitly emphasize the
natural clusters of faces and deliver the separated clusters
between dissimilar faces. It can be noticed that LDA and
MMP also work well in achieving enhanced interface
separation and intraface compactness, but they project most
persons to a compact area. This may result in relatively high
clustering evaluation errors, while our S2LAE and S2LLE
produce large margins between different faces and achieve
enhanced compactness of intraperson faces. LAE, LLE,
SLLE, S-ISOMAP, SS-LLE, LTSA, SS-LTSA, and SSML
embed some faces appropriately, but most faces are mixed
in their embeddings. PCA, ISOMAP, and HLLE perform
relatively poorly on this data set, because they are incapable
of identifying and separating different faces.

We report the clustering results in Table 1, in which NumF
is face class number. From Table 1, we obtain similar
observations to the visual results in Fig. 4. S2LAE works
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Fig. 4. The 2D manifold embedding obtained by each method on the MIT face database (10 persons).

TABLE 1
Performance Comparisons on the Real MIT CBCL, CMU PIE, MNIST, and USPS Databases



remarkably well via delivering the highest clustering

accuracy rates and mutual information. Also, SSDR and

S2LLE obtain comparable results to LDA. The results of SLLE

and S-ISOMAP are comparative, and the performance of SS-

LLE, SSML, and SS-LTSA is also comparable. HLLE delivers

the lowest clustering accuracy compared with other meth-

ods. To show the effect of different proportions of constraints

on the clustering performance, we show the clustering

results of our methods based on different constraints in

Fig. 5. It must be noted that the same simulation setting are
used in these cases. For fixed proportion of constraints, the
results are averaged by 30 random selections of constraints. It
can be found that the overall clustering accuracies and
mutual information increase with the increasing proportion
of constraints. More importantly, S2LAE and S2LLE exhibit
satisfactory results by applying relatively small proportion
of constraints.

To demonstrate the locality preserving power of S2LAE
and S2LLE, we choose the images of the first two persons
(324 images per person) from the original face set as
illustration. The results are compared with LAE and LLE.
For LAE and S2LAE, the k number in NNS is set to 85, and
twice times for S2LLE. The k number is set to 30 for LLE.
The 2D embeddings are shown in Fig. 6. We can see that
LAE, S2LAE, and S2LLE can deliver more separated
manifolds and can organize the natural clusters of the
faces. We can also conclude that S2LAE and S2LLE are
capable of preserving the intrinsic local information of
faces. From Fig. 6, it is clear that the poses and lighting
conditions of the faces change continuously and smoothly
from frontal to side, from dark to light.

4.2.2 CMU PIE Face Database

The CMU PIE database contains 68 individuals with 41,368

face images as a whole. The face images were captured

under varying poses, illuminations and expressions. The

sampled set, which is publicly available at http://www.

zjucadcg.cn/dengcai/Data/FaceData.html/Pose27(lights-

change) is tested. In this set, the pose and expressions are

fixed, and there are 21 images per individual of 68 persons

(totally 1,428 images) under different lighting conditions.
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Fig. 5. Clustering results versus proportion of constraints on the four real

databases. (a) S2LAE and (b) S2LLE.

Fig. 6. Two-dimensional embedding of MIT CBCL face recognition database (two persons).



Each face is denoted by a 1,024-dimensional vector in the

image space. We choose 11 persons for this study. The

number k in NNS is set to 45 for S2LAE and S2LLE. For

other methods, k is set to 15. The sampled set is

preprocessed by PCA to reduce the dimensionality of the

data set to 200. The results are illustrated in Fig. 7. We

obtain the following observations: 1) LDA, MMP, SSDR,

S2LAE, and S2LLE can exhibit clear separate face mani-

folds of the 11 persons by comparing with other methods.

Note that LDA and S2LAE deliver the largest margins

between different faces by organizing enhanced intraface

compactness. 2) SLLE and SSML perform better than the

remaining methods. 3) Unsatisfactory results are produced

by PCA, LAE, LLE, ISOMAP, HLLE, LTSA, S-ISOMAP, SS-

LLE, and SS-LTSA, because they are unable to identify the

interperson faces. The clustering results are summarized in

Table 1. We compute the averaged clustering accuracy

rates and Mutual_I over the first 30 best records of

100 times initializations. From Table 1, we can observe

that 1) Our S2LAE; S2LLE, and SSDR achieve the compe-

titive or even better results to the supervised LDA and

MMP. 2) The results obtained by PCA, LAE, LLE,

ISOMAP, HLLE, LTSA, S-ISOMAP, SS-LLE, and SS-LTSA

are close. SLLE and SSML deliver the higher accuracy rates

and Mutual_I compared to these methods. The clustering

results against the proportion of constraints are illustrated

in Fig. 5, which shows the increasing proportion of

constraints can enhance the clustering performance.

4.3 Handwritten Digital Manifold Visualization

4.3.1 MNIST Handwritten Digit Database

The MNIST database has 70,000 handwritten digit images.
Each image has 28� 28 pixels, so each image is denoted by a
784-dimensional vector. This study tests each method
through visualizing the digits and comparing their clustering
results. We randomly choose 150 images from digits “0-9” for
simulations. The k value in NNS is set to 145 for our methods
and is set to 35 for the other NNS type methods. We show the
2D digital embeddings in Fig. 8. The clustering results are
described in Table 1, where NumD is the digital class
number. The k-means clustering algorithm is again used for
clustering evaluation. The averaged accuracy and Mutual_I
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Fig. 7. The 2D manifold embedding obtained by each method on the CMU PIE database (11 persons).



of each method over the first 30 records are reported. We

obtain the following observations:

1. Unsatisfactory visualization results appear for PCA,
LDA, ISOMAP, HLLE, S-ISOMAP and SSML. They
are unable to embed the intrinsic related low-
dimensional digital manifolds respectably, because
digital data of similar digits tend to have similar
embeddings in the reduced output space. As a
result, these digits are likely to be projected in their
close vicinity, resulting in increasing errors in
clustering evaluations.

2. LAE exhibits similar embedding to LLE, SLLE,
LTSA, and SS-LLE. Note that they all fail to
implicitly emphasize the natural clusters of digits
and are unable to deliver separated clusters between
dissimilar digit images.

3. Comparing with other techniques, the visual mea-
surements reveal the strong performance of S2LAE
and S2LLE. Most importantly, the results show that
the intrinsic multimodal structures are effectively
preserved. We also find that MMP, SS-LTSA, and

SSDR can separate some digits from other clusters,
but most of the digits are still mixed with each other.

4. The clustering results in Table 1 are consistent with
the visual results of Fig. 8. Results show that, among
all tested methods, S2LAE and S2LLE deliver the
highest clustering accuracies and Mutual_I. The
results of LAE, LTSA, LLE, SLLE, SS-LLE, SS-LTSA,
and MMP are comparable and are higher than those
of the remaining methods. The clustering results
against proportions of constraints are illustrated in
Fig. 5, which show similar result when the propor-
tion of constraints increases.

4.3.2 USPS Handwritten Digit Database

The USPS database consists of 9,298 handwritten digits

(“0-9”). In this study, the sample set available at http://

cs. nyu.edu/~roweis/data.html is tested. The images are

16� 16 pixels in 8-bit grayscale images of “0” through

“9,” and each digit has 1,100 images. So, each image is

represented by a 256-dimensional vector in the original

space. Some examples are shown in Fig. 3. As similar
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Fig. 8. The 2D manifold embedding obtained by each method on the MNIST database (digits “0-9”).



digits have similar embeddings, the data of similar digit

exhibit similar manifolds. In this work, we randomly

choose 150 images per digit for our simulations. The

k value in NNS is set to 145, and 25 for our methods and

other NNS type methods, respectively. The clustering

evaluation system setting is the same as described in the

above. We apply each method to visualize the digit data

and compare their embeddings. Fig. 9 depicts the

2D embeddings of digits (“0-9”). We observe that

1. PCA, LAE, LLE, HLLE, ISOMAP, SLLE, S-ISOMAP,
SS-LLE, SS-LTSA, and SSML cannot produce high
interdigit separation and enhanced intradigit com-
pactness, although they all seem to be able to
preserve certain intrinsic structure characteristics.

2. LDA, MMP, and SSDR separate most of the digits,
but they are incapable of improving the tightness of
the same digits at the same time.

3. LAE, SS-LLE, LTSA, and SS-LTSA are capable of
capturing the intrinsic manifold structures of the
digits to some extent, but they cannot exhibit the

separated embeddings of the digits and tend to mix
some images of different digits into a single cluster.

4. Compared with the other methods, our S2LAE and
S2LLE perform superiorly in organizing the en-
hanced intradigit compactness and interdigit separa-
tion without losing the multimodal structures.

The averaged clustering results are summarized in

Table 1, which shows that S2LAE delivers the best records

compared with other methods. S2LLE achieves comparable

results to LDA, MMP, and SSDR. The performance of LTSA

is slightly inferior to those delivered by LAE, LLE, SS-LLE,

and SS-LTSA. PCA, ISOMAP, HLLE, SLLE and S-ISOMAP

deliver the worst clustering results by comparing with the

other methods. We evaluate the performance of our

methods with varied proportions of constraints in Fig. 5.

We find that our S2LAE and S2LLE methods can obtain

satisfactory results with small proportion of constraints

applied. Also, we find the increasing proportion of

constraints can enhance the overall performance.
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Fig. 9. The 2D manifold embedding obtained by each method on the USPS database (digits “0-9”).



5 CONCLUDING REMARKS

Effective semisupervised extensions of LAE and LLE,

namely S2LAE and S2LLE, are presented for multimodal

nonlinear dimensionality reduction and marginal visualiza-

tion. Different from virtually all existing discriminate

manifold learning approaches, S2LAE and S2LLE use the

neighborhood graph-induced pariwise constraints, which

are derived from the labels of points, to guide the manifold

learning. In extracting the representative features, S2LAE

and S2LLE aim to preserve the discriminant manifold

structures embedded in the pairwise constraints as well as

global covariance structures of all training points. Also,

S2LAE and S2LLE aim at preserving the local information

of intraclass similarity pairs, and separating the embed-

dings of interclass neighbors. To solve the problems of

S2LAE and S2LLE efficiently, the orthogonal trace ratio

optimization is applied, leading to a specific solution with

orthogonal projection axes. Based four real data sets, the

manifold visualizations indicate that our S2LAE and S2LLE

methods can provide more separations for the embeddings

of multiple objects. Facial and handwritten digital data

embeddings show S2LAE and S2LLE can reveal the local

manifold and multimodal characteristics of faces and digits

effectively. Because of the stronger constraints brought by

the pairwise constraints, margins of different faces or digits

are significantly enlarged in the projected spaces of S2LAE

and S2LLE. These margins are larger than those produced

by many previous supervised and semi-supervised algo-

rithms. The clustering evaluations also examined the

efficiency of our techniques. The numerical results show

that our algorithms deliver better results than many state-

of-the-art dimensionality reduction and data visualization

techniques. We also observe that our S2LAE and S2LLE

deliver satisfactory results by using relatively smaller

proportions of constraints in most cases. For all k nearest

neighbor search type algorithms, including our S2LAE and

S2LLE, exploring determining an optimal k value for

locality or neighborhood preservation is still an open

problem. Another important future work is to theoretically

extend our algorithms to linearized scenarios for handing

pattern classification problems.
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