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Abstract: Inspired by the neighbourhood cooperation, a new discrete optimisation algorithm is proposed. The so-called binary
neighbourhood field optimisation (BNFO), utilises the attractive field of the superior neighbour and the repulsive field of the
inferior neighbour. As a kind of local search, BNFO is able to deliver promising results efficiently within acceptable
computational time. BNFO is applied to solve the unit commitment problem (UCP), whose objective is to minimise the
operation cost of the generation units over the scheduling horizon. After numerical tests on several benchmark UCP cases, the
obtained costs are less expensive compared with conventional Lagrangian relaxation, genetic algorithm, evolutionary
programming, particle swarm optimisation and differential evolutionary. BNFO can converge to promising results with less
computation times, especially for the large-scale UCPs.

www.ietdl.org
1 Introduction

The unit commitment problem (UCP) refers to the scheduling of
start-up and shutdown operation of the generation units for
satisfying the forecasted demand over a short term period (1–7
days) in future. UCP plays a major role in the daily operation
planning of power systems, especially in the framework of the
deregulated power markets. UCP can be regarded as an
optimisation task to minimise the total operation cost of a
power system during the scheduling horizon, subject to a
number of system and unit constraints. The overall optimisation
problem can be divided into two sub-problems. One is the
mixed integer non-linear programming problem of determining
the on/off status of the generating units hourly in a short term
period; the other is the quadratic programming problem of
economic load dispatching (ELD) among the committed units.
It is a complicated procedure to find the optimal solution that
optimises both sub-problems; the difficulty grows in proportion
to the number of units and constraints.
Many methods have been applied to solve UCP in the past

decades. The major methods include priority list (PL) method
[1], dynamic programming (DP) [2], Lagrangian relaxation
(LR) [3–5] and mixed-integer linear programming [6, 7]. In
the PL method, baseline load units are committed at first
and peak load units at last. PL is fast, but easily obtaining
trapped in the local optimum with relatively high costs. The
DP method has been widely used in UCP, but its
disadvantage is the ‘curse of dimensionality’, which has
limited its application to very small-size system. The LR
methods focus on finding a feasible solution of the primal
objective function, while minimising the ‘duality gap’, that
is, the difference of the primal and the dual objective
function. Their main disadvantage is the difficulty of
searching the feasible solutions.
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Apart from the aforementioned conventional methods,
there are many meta-heuristic methods applied in UCP,
such as simulated annealing (SA) [8], tabu search (TS) [9],
artificial neural network [10], genetic algorithm (GA) [11,
12], evolutionary programming (EP) [13–15], particle
swarm optimisation (PSO) algorithm [16–18] and
differential evolution (DE) [19]. Other effective methods
have hybridised certain heuristic and meta-heuristic to
improve the resulted performance of UCP, such as the
hybrid EP and TS method [20] and the hybrid PSO and TS
method [21]. These meta-heuristic methods have become
more popular than the conventional methods, because they
can explore the whole search space with the ability of
escaping from local optima, especially when the problems
are difficult and multimodal. Global search algorithms, such
as GA, PSO and DE, need a large amount of computational
time to find the global optimum for the large scale UCP,
because they usually have random choices of direction to
approach possibly good solutions.
The mechanism of GA is based on the principles of natural

evolution. In GA, the offspring solutions are generated from
the parent solutions with three operators – selection,
crossover and mutation [22]. Each individual has the chance
to be selected into the breeding pool according to its fitness
value. Then the crossover and mutation operations are used
to reproduce offspring. For the crossover, individuals in the
breeding pool are recombined to explore the search space.
For the mutation, the individual randomly exploits its
surrounding region to generate the offspring. As GA can
use binary encoding method and its three operators can be
generally used in the discrete case, GA has been applied
into discrete optimisation problems.
PSO algorithm emulates the forging behaviour in the bird

flock and fish school [23]. In PSO, each member, called a
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 298–308
doi: 10.1049/iet-gtd.2012.0096



www.ietdl.org

particle, learns from the best particle in the population. Each
particle adapts its positions towards the best position of the
population and its own best position. Because of the
attraction of the two poles, each particle can escape out of
its surrounding region to explore the search space. DE is
another popular global search algorithm, which generates
offspring individuals by perturbing parents with differential
vectors of two random individuals [24]. In DE, the search
step is self-adapted along the evolving process because of
the balance between the exploitation and the exploration. It
is worth noting that PSO and DE are both based on the
vector field in the continuous space. Their operators cannot
be directly applied to discrete optimisation. Some research
works have focused on their extensions of discrete
optimisation, such as projecting the discrete space into the
continuous space [25], converting numerical operators (‘ + ’,
‘− ’) into logical operators (‘and’, ‘or’) [26].
However, the global search algorithms such as GA and PSO,

often fail in solving some difficult problems in the given
computation time. The main reason is their lack of local
search during the global exploration. A new meta-heuristic
algorithm called neighbourhood field optimisation (NFO) has
been proposed to balance exploitation and exploration in
order to accelerate the convergence speed [27]. The NFO
algorithm is inspired by the local cooperation behaviour in
the biology world, which is modelled as the neighbourhood
field. This paper newly proposes a binary NFO (BNFO)
algorithm for the combinational and discrete optimisation
problems to enhance the local search. BNFO can find the
global optimal efficiently with fast convergence speed.
BNFO is applied to solve a typical discrete problem, that is,
UCP. The proposed method is tested on the UCP systems
with the number of units in the range of 10–100. Our
simulation results show that BNFO is more effective and
accurate than other methods, such as SA, GA, PSO and DE.
This paper is organised as follows: Section 2 provides the

mathematical formulations of UCP; Section 3 introduces the
background of the NFO algorithm and presents the newly
proposed BNFO; Section 4 gives the details to solve UCP
with BNFO; Section 5 gives the numerical simulations and
the statistical comparisons with SA, GA, PSO and DE; and
the paper is concluded in Section 6.

2 Formulation of UCP

The objective of UGP is to find an optimal combinational set
of units’ on/off status, which minimises the total costs over
the scheduling horizon. The total costs include fuel costs,
start-up costs and shutdown costs as

min
∑T
t=1

∑N
i=1

fi P
t
i

( )
uti + STt

iu
t
i 1− ut−1

i

( )+ SDiu
t−1
i 1− uti

( )
(1)

where the first component is the fuel costs, the second
component is start-up costs and the third component is
shutdown costs. In (1), T is the total scheduling period, N is
the number of generators, Pt

i is power output of unit i at
time t, uti is on/off status of unit i at time t (uti = 1 means
the unit is on and uti = 0 means the unit is off), STt

i is
start-up cost of unit i at time t, SDi is shutdown cost of unit
i. The fuel cost of unit i is usually approximated by a
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quadratic function as

fi P
t
i

( ) = ai + biP
t
i + ci P

t
i

( )2
(2)

where ai, bi and ci are the cost coefficients. The start-up cost is
dependent upon the operating time. If the off time before
start-up is less than a required period, the cost is called hot
start cost, otherwise, the cost is called cold start cost. The
start-up cost can be defined as

STt
i = hot start cost, if Tdi ≤ Toffti ≤ Tdi + Tci

cold start cost, if Toffti . Ti,down + Tci

{
(3)

where Tdi is the required minimal down-time (MDT) for unit
i, Tci is cold start time of unit i, Toffti is the continuously off
time of unit i up to time t.
UCP has many equality and inequality constraints,

including system’s constraints and unit’s constraints as
follows [28].

2.1 System power balance

The total output power of all committed units needs to meet
the system power demand as

∑N
i=1

Pt
iu

t
i = Pt

D (4)

where Pt
D is system load demand at time t.

2.2 Unit power output limits

Each unit has a range of power output, which is represented as

Pi,min ≤ Pt
i ≤ Pi,max (5)

where Pi,min is the minimal power output of unit i and Pi,max is
the maximal power output of unit i.

2.3 System spinning reserve requirements

Spinning reserve requirements are necessary in the power
system for avoiding the load interruption. The reserved
value means the capability of generating excessive power
outputs beyond the forecasted demand,

∑N
i=1

utiPimax ≥ Pt
D + Pt

R (6)

where Pt
R is the spinning reserve at time t, Pimax is the

maximal power output of unit i.

2.4 Unit minimal up-time (MUT) and MDT

A unit must be on or off for a certain number of hours so that
the unit does not change its no/off status frequently for its
health. This constraint is used to enlarge the unit’s life-time
and efficiency

Tonti ≥ Tui
Toffti ≥ Tdi

{
(7)

where Tui is the required MUT of unit i, Tdi is the required
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MDT of unit i. Tonti and Toff

t
i are the consecutive hours that

unit i has been on and off at time t, respectively, which can be
calculated as

Tonti = Tont−1
i , if uti = 1

0, if uti = 0

{
,

Toffti =
Tofft−1

if , if uti = 0

0, if uti = 1

{ (8)

2.5 Ramp up rate and ramp down rate

For unit i, the ramp up rates constrain the maximal increase of
power output in two successive time periods, and the ramp
down rates constrain the maximal power decrease of the
unit. The constraints of the ramp up and down rates need to
be satisfied as

Pt
i − Pt−1

i ≤ RUi

Pt−1
i − Pt

i ≤ RDi

{
, if ut−1

i = 1 and uti = 1 (9)

where RUi is the maximal ramp up rate of unit i, RDi is the
ramp down rate of unit i.

3 Neighbourhood field optimisation
algorithms

3.1 Neighbourhood field optimisation algorithm

Some previous work about hybrid local search and
self-organising algorithms were proposed to emulate the
local phenomenon of nature [29, 30]. In biological world,
individuals often communicate with their neighbours within
the limited range of seeing and hearing. They are apt to
collect information from their surrounding regions, and
exchange the information with their neighbours. So
individuals in NFO algorithm are mostly affected by the
local environment rather than the global environment. In
NFO, each individual is updated under the concept of
‘learning from the neighbours’, that is following superior
neighbours and diverging from inferior neighbours [21].
The detailed procedure of NFO algorithm for a
minimisation problem f (x) is illustrated as follows:

1. Initialisation: randomise the initial np individuals, which
are sampled uniformly in the search space.
2. Localisation: for each individual xi,G at the generation G,
find the superior neighbour xci,G and the inferior neighbour
xwi,G (in the search space) as

xci,G = arg min
f xk,G( ),f xi,G( ) xk,G − xi,G

∥∥ ∥∥
xwi,G = arg min

f xk,G( ).f xi,G( ) xk,G − xi,G
∥∥ ∥∥

⎧⎪⎨
⎪⎩ (10)

where xci,G is the superior neighbour with the function value
smaller than f (xi,G) and xwi,G is the inferior neighbour with a
larger function value (for minimisation problems). ‖·‖ is the
distance evaluation (Euclidean distance is used). If xi,G is in
the best individual in the population, xci,G is defined as xi,G.
If xi,G is in the worst individual in the population, xwi,G is
defined as xi,G.
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3. Mutation: perturb each individual as

vi,G = xi,G + a rd1 xci,G − xi,G
( )

+ a rd2 xci,G − xwi,G

( )
(11)

where xci,G is the superior neighbour, xwi,G is the inferior
neighbour, rd1 and rd1 are two random vectors in [0, 1], α
is the learning rate. vi,G is the obtained mutant vector.
4. Crossover: recombine the mutation vector with the target
vector xi.

u j,i,G = v j,i,G, if rand(0, 1) ≤ Cr or j = jrand
x j,i,G, otherwise

{
(12)

where j = 1, 2,…, D is the dimension index; Cr is the
crossover probability; rand(0, 1) is a uniformly distributed
random number in the scale of [0, 1]; jrand is a random
component to accept the new mutant vector so that the trial
vector is different from the target vector.
5. Selection: in the next generation the individual will be
updated as the better one between xi and ui as (13).

xi,G+1 = ui,G, if f ui,G
( ) ≤ f xi,G

( )
xi,G, otherwise

{
(13)

6. If the stopping criteria are not satisfied, go to step 2.

As the neighbours considered in NFO are close with the
updated individual with an adjusting distance, NFO can
adapt the search behaviour between the local exploitation
and the global exploration. In NFO, the neighbourhood
field can approximate a descent direction of the objective
function shown in Fig. 1. The neighbourhood field is close
to the inverse gradient direction [20]. Therefore NFO can
effectively find the global optimum, and enhance the
diversity of the population at the same time.

3.2 Binary neighbourhood field optimisation

NFO has been firstly applied in continuous problems [20].
There is no work of neighbourhood field applied in discrete
optimisation problems before, but some real world
applications are discrete optimisation problems. For
example, UCP is a binary optimisation problem with 0–1
decision variables, which determines the on/off status of
generating units in each time period. When applying NFO
in UCP, NFO must be extended to a binary version. In this

Fig. 1 Direction of neighbourhood field in NFO in a
two-dimensional example

The differential vectors of xci–xi and xi–xwi are denoted as v1 and v2
The shaded area between v1 and v2 is likely to include the inverse direction of
the gradient at xi, which is denoted as the dashed arrow.
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 298–308
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Fig. 2 Pseudo-code of BNFO
paper, we extend NFO to BNFO for discrete optimisation
problems.
In BNFO, the individuals are coded as bit strings. Owing to

this different coding method, the location and mutation need
to be revised accordingly. In the location, the Hamming
distance is used instead of the Euclidian distance to find the
nearest neighbours. In the mutation, the mutant vector is
obtained by reformulating (14) as

vi,G⊖xi,G=ar1⊗ xci,G⊖xi,G
( )⊕ar2⊗ xci,G⊖xwi,G

( )
vi,G=xi,G⊖ ar1⊗ xci,G⊖xi,G

( )⊕ar2⊗ xci,G⊖xwi,G

( )[ ]
(14)

where⊖ denotes ‘XOR’ operator,⊗ denotes ‘AND’ operator,
and⊕ denotes ‘OR’ operator. αr1 and αr2 are random binary
integer vectors generated by

ar1 = rand1 , a
ar2 = rand2 , a

{
(15)

where rand1 and rand2 are random vectors uniformly
distributed in [0, 1] and α is the learning rate (0 < α < 1).
The other parts of BNFO are the same with the original

NFO. The details of BNFO are shown in Fig. 2. The figure
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 298–308
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has listed the pseudo-code of BNFO for general discrete
problems. It is clear that BNFO has a similar structure with
the structure of continuous NFO except the location and
mutation.

4 Application to UCP

In the UCP’s applications, BNFO is used to optimise the
unit-scheduling problem in the first step, and the
Lambda-iteration method [31] is used to solve the economic
load dispatch problem in the second step. These two steps run
iteratively until the algorithm meets the stopping criterion.
Optimising the first sub-problem of unit-scheduling is more
difficult than the other sub-problem of ELD. So this paper
mainly discusses how to model BNFO for the first
sub-problem, and the second sub-problem is solved by the
traditional Lambda-iteration method. These two sub-problems
are optimised iteratively until the algorithm meets the
stopping criterion shown in Fig. 3.

4.1 Initialisation

For the application of BNFO to UCP, each individual is
encoded as a binary string, in which a ‘1’ at a certain
location indicates that the unit is on at that particular hour,
301
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while a ‘0’ indicates that the unit is off. Over the scheduling
period T, the on/off status of all the N units can be expressed
as an integer matrix U as

U =
u11 u21 · · · uT1
u12 u22 · · · uT2

..

. ..
. ..

. ..
.

u1N u2N · · · uTN

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

where uti is the on/off status of unit i at time t. In the
initialisation process, the integer matrices are uniformly
randomised as either ‘0’ or ‘1’. By converting each matrix,
the individual in BNFO is a vector with length N*T as

xi = u11, u
2
1, . . . , u

T
1 , u

1
2, u

2
2, . . . , u

T
2 , u

1
N , u

2
N , . . . , u

T
N

[ ]

4.2 Constraints repair

The initialised vectors or the offspring vectors may violate the
constraints of UCP mentioned in the Section 2, which
includes the spinning reserve requirement, MUT, MDT and
power balance limits. In this paper, these constraints are
repaired under the following steps:

1. MUT and MDT constraints: The vectors are checked
whether they violate the MUT and down-time constraints.
Although the power demand may change frequently in the
scheduling period, frequent changing of the units’ status
need to be avoided. For the vectors violating the MUT and
MDT constraints, we repair them using a rule-based
heuristic method used in [17] as follows Fig. 4:
Fig. 5 has given the flowchart of above pseudo-code.

Fig. 3 Flowchart of the proposed method for UCP
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2. Spinning reserve constraint: The vectors are checked
whether they violate the spinning reserve constraint. The
amount of excessive spinning reserve is checked at each hour as

Dt =
∑N
i=1

utiPimax − Pt
D − Pt

R, (t = 1, 2, . . . , T ) (16)

If the spinning reserve is not sufficient (Δt < 0), the
uncommitted units need to be turned on according to their
efficiency rank list. The efficiency of unit i can be evaluated
by the average cost, which is the cost per unit of power
($/MW) when the unit is at its full capacity. The efficiency of
unit i can be formulated as

ei =
fi Pimax

( )
Pimax

= ai
Pimax

+ bi + ciPimax (17)

Fig. 4 Rule-based heuristic method [17]

Fig. 5 Flowchart of repairing MUT and down-time constraints
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 298–308
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Fig. 6 Heuristic-based method
In the following constraints’ handling, we always need to
generate a units’ list with the average costs in ascending
order. A stochastic sorting method has been employed in
this paper as follows. First, randomly select two units and
then add the more efficient unit in the end of list (in
ascending order). Second, for the remaining units out of the
list, do the first step and then place the selected unit
sequentially in the list until the list is full. For the solutions
that violate spinning reserve, the uncommitted units are
sorted stochastically in an ascending order of the average
cost. The following repair method is conducted according
to the obtained list.
We introduce a heuristic-based method to repair the vectors

for satisfying the spin reserve constraints as in Fig. 6:
Fig. 7 has given the flowchart of above pseudo-code.

3. Excessive spinning reserve constraint: After repairing the
time and spinning reserve constraints as mentioned above,
some redundant units may be turned on. This is called
excessive spinning reserve, which is not desirable because
of the high operation cost. We use a heuristic-based
algorithm to de-commit the redundant units. Stochastic sort
the committed units in descending order of the average
cost. Starting from the committed units in the first place of
the list, the units will be shut down if the decision does not
violate the constraints of the spinning reserve and MUT.
The flow chart of repairing the excessive spinning reserve
constraint is given in Fig. 8. The detailed procedure of
handling the excessive spinning reserve is as follows Fig. 9:
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 298–308
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4.3 Economic load distribution

When obtaining the feasible scheduling solutions, the fitness
function value in (1) is still unknown because the fuel cost
cannot be calculated without dispatching the load. The ELD
is an independent optimisation problem, which can be
regarded as a quadratic programming. ELD problem can be
easily solved by some numerical techniques. We use
Lambda-iteration method to optimise ELD problem [19,
28]. Given the solution xt at time t, Lambda-iteration
method searches an optimal power outputs Pt

i for all unit to
minimise the fuel cost

∑N
i=1 fi P

t
i

( )
uti.

4.4 Unit substitution

A heuristic search method called unit substitution is used to find
a better solution locally, based on the obtained solution by the
BNFO. The unit substitution runs repeatedly at the end of
each Ggap iterations shown in Fig. 3. Generally, generation
units can be classified into three types: base load units,
intermediate load units and peak load units. Base load units
have low operation cost, high startup cost and long MUT and
MDT requirements. Intermediate load units have medium
operating cost, medium startup cost, and medium MUT and
MDT requirements. Peak load units have high operation cost,
low startup cost and short MUT and MDT requirements.
Owing to these properties, peak load units could frequently
turned on/off, unlike intermediate load units in the peak load
303
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periods. If the intermediate units are committed in the peak load
periods, they cannot be turned off after the peak hour because of
the MUT constraint. These may cause excessive spinning
reserve and waste of money. Therefore if possible, those
intermediate load units could be de-committed in the peak
load periods and replaced by some peak load units to satisfy
the spinning reserve requirement.
A unit substitution method modified from [5] is utilised.

For each peak period, starting from 2 h after peak hour, if
the excessive spinning reserve exists, the unit substitution
will be carried out. The unit substitution method searches
the inefficient intermediate load units for de-commitment,
and commits the most efficient peak load units instead. If
the solution after the unit substitution does not violate

Fig. 7 Flowchart of repairing the spinning reserve constraint
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the constraints and has lower cost than the previous one,
it will be accepted as the new individual in the next
generation.

Fig. 8 Flowchart of repairing the excessive spinning reserve
constraint
Fig. 9 Detailed procedure of handling the excessive spinning reserve
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 298–308
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4.5 Fine tuning

For the obtained best solution, once certain zones are changed
from uncommitted to committed, the specified units may
change from the cold start-up to the hot start-up. This kind
of zone is called grey zone [19]. As the hot start-up cost is
much lower than the cold start-up cost, it is desirable that
the units can start up with hot start-up cost if possible.
Therefore grey zone can be found out for commitment if
the modification can reduce the total cost. To reduce the
total cost, the grey zone modification algorithm is utilised
to fine tune the best solution as follows.
Step 1: The best solution in the population is chosen for fine
tuning.
Step 2: Search the grey zones. If Toffti = Tclodi + Tdi + 1
and ut+1

i = 1, uti is a grey zone.
Step 3: If grey zones exist, randomly select one grey zone and
modify it to be committed.
Step 4: Economic load dispatch for the modified solution, and
calculate its total cost.

Fig. 10 Demanded power of the ten units
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 298–308
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Step 5: If the modified solution is better than the initial
solution, the modified solution will replace the initial one
go to step 1 until the procedure has repeated nft times.

5 Numerical tests

We test our proposed algorithm on several benchmark UCP
problems with different size of units, that is, 10, 20, 40, 60,
80 and 100 units [11]. The scheduling period is 24 h. The
power demand and the unit characteristic of the 10-unit
system are given in [11], which is shown in Fig. 10 and Table 1.
In Table 1, the initial status means the unit’s on/off time

before scheduling. A positive initial status indicates the
number of hours the unit has been already on, and a negative
status indicates the number of hour the unit has been already
off. For 20, 40, 60, 80 and 100-unit systems, the system data
are obtained by duplicating the base case (10-unit system),
whereas the load demands are adjusted in proportion to the

Fig. 11 Mean cost on the 20-unit system with different population
sizes
Table 2 Parameter evaluation of BNFO

Cr α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6

0.1 1 123 879 1 123 431 1 123 796 1 123 583 1 123 678 1 123 904
0.2 1 123 958 1 123 537 1 123 926 1 124 053 1 123 574 1 124 137
0.3 1 123 797 1 123 683 1 123 722 1 124 101 1 124 304 1 124 141
0.4 1 124 100 1 123 735 1 124 343 1 124 146 1 124 438 1 124 302
0.5 1 124 100 1 123 998 1 124 062 1 124 191 1 124 400 1 124 381
0.6 1 124 115 1 123 940 1 124 129 1 124 250 1 124 407 1 124 392
0.7 1 124 228 1 123 869 1 124 363 1 124 416 1 124 358 1 124 405

Table 1 Ten-unit system data

Unit 1 2 3 4 5 6 7 8 9 10

Pmax, MW 455 455 130 130 162 80 85 55 55 55
Pmin, MW 150 150 20 20 25 20 25 10 10 10
ai 1000 970 700 680 450 370 480 660 665 670
bi 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
ci 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00713
MUT, h 8 8 5 5 6 3 3 1 1 1
MDT, h 8 8 5 5 6 3 3 1 1 1
costhot 4500 5000 550 560 900 170 260 30 30 30
costcold 9000 10 000 1100 1120 1800 340 520 60 60 60
Tcold 5 5 4 4 4 2 2 0 0 0
initial status 8 8 − 5 − 5 − 6 − 3 − 3 − 1 − 1 − 1
305
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system size. In all cases, the spinning reserve requirements are
assumed to be 10% of the hourly demand. For each test case,
50 independent trials are conducted to evaluate the statistical
results and the median convergence characteristics. Numerical
tests have been coded in MATLAB on a computer with Core
2 CPU Q9650 and 4G RAM. In our algorithm, the maximum
number of function evaluations is set to 20 000; Ggap is 10 for
the unit substitution; and nft is set to 10 in the fine tuning.
Other parameters population size np, learning rate α and the
crossover probability Cr are evaluated in the following part.

5.1 Parameter analysis

The evaluation of parameter setting can illustrate their effects
to the final results. There are mainly two parameters in NFO:
learning rate α and the crossover probability Cr. The effect of
306
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α is to control the scale of search region, while Cr is used to
control the convergence speed. For users, the two parameters
need to be insensitive and problem independent. In this
experiment, we have evaluated how α and Cr affect the
performance of BNFO. Different settings of α and Cr are
tested on the 20-unit UCP problem. In this experiment, the
learning rate α is set to 0.1, 0.2, .0.3, 0.4, 0.5, 0.6 and 0.7.
For each learning rate, Cr is set to 0.1, 0.2, 0.3, 0.4, 0.5
and 0.6 for comparisons. The population size is set to 30 in
this experiment. With each pair of parameters, the mean
values of 50 trial results are listed in Table 2. In this table,
it can be noted that BNFO is not sensitive to these
parameters and can obtain acceptable results for different
settings. Furthermore, we find that the optimal parameters
lie in the scale α∈ [0.1, 0.5] and Cr∈ [0.1, 0.3]. If α is
larger, NFO may obtain trapped in the local minimum
Table 3 Numerical comparison

Method Best cost Mean cost Worst cost Std. dev. cost Difference, % Mean time, s

10-unit
GA 565 825 – 570 032 – 0.74 221
EP 564 551 565 352 566 231 – 0.30 100
SA 565 828 565 988 566 260 – 0.08 3
DE 563 977 564 028 564 241 103 0.05 3.6
IPSO 563 954 564 162 564 579 0 0.11 –
IQEA 563 977 563 977 563 977 0 0 15
QBPSO 563 977 563 977 563 977 0 0 18
BNFO 563 938 563 938 563 938 0 0 4
20-unit
GA 1 126 243 – 1 132 059 – 0.52 733
EP 1 125 494 1 127 257 1 129 793 – 0.38 340
SA 1 126 251 1 127 955 1 129 112 – 0.25 17
DE 1 123 988 1 124 339 1 124 539 243 0.05 71
IPSO 1 125 279 – 1 127 643 – 0.21 –
IQEA 1 123 890 1 124 320 1 124 504 126 0.05 42
QBPSO 1 123 297 1 123 981 1 124 294 377 0.09 50
BNFO 1 123 297 1 123 431 1 123 563 112 0.0002 29
40-unit
GA 2 251 911 – 2 259 706 – 0.35 2697
EP 2 249 093 2 252 612 2 256 086 – 0.31 1176
SA 2 250 063 2 252 125 2 254 539 – 0.20 88
DE 2 245 631 2 245 877 2 246 457 297 0.04 153
IPSO 2 248 163 – 2 252 117 – 0.18 –
IQEA 2 245 151 2 246 026 2 246 701 378 0.07 132
QBPSO 2 242 957 2 244 657 2 245 941 674 0.13 158
BNFO 2 242 957 2 243 241 2 244 237 367 0.005 92
60-unit
GA 3 376 625 – 3 384 252 – 0.23 5840
EP 3 371 611 3 376 255 3 381 012 – 0.28 2267
SA – – – – – –
DE 3 366 502 3 367 166 3 367 612 383 0.03 257
IPSO 3 370 979 – 3 379 125 – 0.24 –
IQEA 3 365 003 3 365 667 3 366 223 309 0.04 273
QBPSO 3 361 980 3 363 763 3 365 707 796 0.11 328
BNFO 3 361 527 3 662 137 3 363 251 321 0.0004 193
80-unit
GA 4 504 933 – 4 510 129 – 0.12 10 036
EP 4 498 479 4 505 536 4 512 739 – 0.32 3584
SA 4 498 076 4 501 156 4 503 987 – 0.13 405
DE 4 488 225 4 489 253 4 490 252 642 0.05 377
IPSO 4 495 032 – 4 508 943 – 0.31 –
IQEA 4 486 963 4 487 985 4 489 286 501 0.05 453
QBPSO 4 482 085 4 485 410 4 487 168 1054 0.11 554
BNFO 4 482 085 4 485 131 4 485 633 523 0.0008 331
100-unit
GA 5 627 437 – 5 637 914 0.19 15 733
EP 5 623 885 5 633 800 5 639 148 0.27 6120
SA 5 617 876 5 624 301 5 628 506 0.19 696
DE 5 608 603 5 609 174 5 610 160 700 0.03 485
IPSO 5 619 284 – 5 633 021 0.24 –
IQEA 5 606 022 5 607 561 5 608 525 578 0.04 710
QBPSO 5 602 486 5 604 275 5 606 178 952 0.07 883
BNFO 5 602 433 5 603 120 5 605 678 561 0.0006 528
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because of the excessive search. In contrast, if Cr is larger,
NFO is more difficult to converge to the global optimum
regardless of the learning rate. In our comparison studies, α
and Cr are set as the optimal values 0.2 and 0.1, respectively.
The population size is determined through experiments for

the 20-unit system with different population sizes. In this
experiment, learning rate α and the crossover probability Cr
are set to 0.2 and 0.1 (as optimal values). We have
evaluated the NFO’s performance with population sizes 10,
20, 30, 40, 50 and 60. The mean values after 50 trials on
each size are shown in Fig. 11. Under the same number of
function evaluations, a small size means a large number of
generations and a large size means a small number of
generations. In Fig. 11, it can be noted that the solution
quality is improved when increasing the population size at
first. When the size is larger than 30, the solution quality
turns worse and worse when increasing the population size.
The reason may be that a relatively small population size
makes the population easily converge to local optimum, and
a relatively large population size increases the burden of
computation time. The optimal population size is 30, which
is used in the following comparison studies.

5.2 Comparison study

For the six UCPs, the best, mean, worst costs and the standard
deviations obtained by improved quantum evolutionary
algorithm (IQEA) [15], quantum-inspired binary PSO
(QBPSO) [17], DE [19] and BNFO in 50 trials are
summarised in Table 3. We also analyse the statistical
difference as the percentage of deviation, that is, (Best–
Worst)/Best × 100%. Our results are compared with the
reported results using SA [8]; GA [11]; EP [13] and the
improved PSO (IPSO) [16]. Furthermore, we have
implemented three latest proposed algorithms, the IQEA
[15]; and a QBPSO [17] and the enhanced DE [19]. The
parameters of IQEA, QBPSO and DE follow the optimal
settings recommended in their original papers. For fair
comparisons, the maximal number of function evaluations
in each algorithm is set to 20 000, which is the same as the
setting in NFO.
From Table 3, it can be noted that BNFO performs superior

to the compared algorithms, in terms of solution quality and
CPU times especially on the large unit system. For the
10-unit system, the BNFO can find all solutions with the
lowest costs and no deviation. For the 20-, 40-, 60-, 80- and
100-Unit systems, BNFO is competitive with the lowest
mean cost compared with other algorithms. In terms of best
cost, mean cost and worst cost, BNFO is better than GA,
EP, SA, DE, IPSO and IQEA on all the UC problems.
Compared with QBPSO, BNF shows more robust with
lower mean cost, worst cost and smaller deviation. The best
costs of BNFP and QBSO are almost the same.
CPU time may reflect the difficulty of practical

implementations (especially online) when the number of
unit increases. The mean CPU time shown in Table 3 may
not be directly comparable because of different computers
used. Therefore it is still substantial to compare BNFO with
some recent algorithms [16–19] because of same level of
CPU speed (better than Pentium IV). In Table 3, the CPU
times of BNFO are much smaller than those of other
algorithms except SA. Furthermore, it is worth noting that
the CPU times of BNFO increase approximately linear with
respect to the system size of UCP, which is favourable for
large-scale UCP applications.
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It can be concluded that the results of BNFO are more
accurate and with smaller deviation compared with other
algorithms. This is significant to minimise the cost of
energy, and to maximise the efficiency of coal resource.

6 Conclusion

A new algorithm BNFO has been proposed to solve discrete
optimisation problems, which is inspired by the local
cooperation behaviour in biology. In BNFO, each
individual is affected by the superior neighbour and the
inferior neighbour. This effect has been modelled as
neighbourhood field, which is approximately on the
descending direction of the fitness function. BNFO is
efficiently applied to solve the UCP. The propose method is
a combination of BNFO and the conventional
Lambda-iteration method, which includes some other
constraints repairing heuristics. The total production costs
of BNFO over the scheduled period are less expensive than
the GA, EP, PSO and DE algorithms especially on the large
number of generation units.
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