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SEMISUPERVISED MULTIMODAL DIMENSIONALITY REDUCTION
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The problem of learning from both labeled and unlabeled data is considered. In this paper, we present a novel
semisupervised multimodal dimensionality reduction (SSMDR) algorithm for feature reduction and extraction.
SSMDR can preserve the local and multimodal structures of labeled and unlabeled samples. As a result, data pairs
in the close vicinity of the original space are projected in the nearby of the embedding space. Due to overfitting,
supervised dimensionality reduction methods tend to perform inefficiently when only few labeled samples are
available. In such cases, unlabeled samples play a significant role in boosting the learning performance. The
proposed discriminant technique has an analytical form of the embedding transformations that can be effectively
obtained by applying the eigen decomposition, or finding two close optimal sets of transforming basis vectors. By
employing the standard kernel trick, SSMDR can be extended to the nonlinear dimensionality reduction scenarios.
We verify the feasibility and effectiveness of SSMDR through conducting extensive simulations including data
visualization and classification on the synthetic and real-world datasets. Our obtained results reveal that SSMDR
offers significant advantages over some widely used techniques. Compared with other methods, the proposed
SSMDR exhibits superior performance on multimodal cases.
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1. INTRODUCTION

Attributed to the rapid scientific and technological innovations, handling high-
dimensional data, e.g., multivariate visualization and gene expressions, has become increas-
ingly important and popular. This leads to more research on the topics of dimensionality
reduction techniques. Most of previous works can be categorized as supervised, unsupervised,
or semisupervised. Research has not only focused on developing new learning algorithms, but
preserving intrinsic structure information has proved to be important for high-dimensional
data analysis (Roweis and Saul 2000; Hinton and Salakhutdinov 2006). Unsupervised prin-
cipal component analysis (PCA) (Mardia, Kent, and Bibby 1980), multidimensional scaling
(MDS) (Cox and Cox 2001), and supervised Fisher linear discriminant analysis (FDA)
(Duda, Hart, and Stor 2001) are three of the most popular dimensionality reduction tech-
niques used for multidimensional data representation, visualization, and pattern recogni-
tion. In the area of unsupervised visualization, visualization-induced self-organizing map
(ViSOM) (Yin 2002a, 2002b) is a widely used method. It projects high-dimensional data
onto two-dimensional maps while preserving the data topology and interneuron distances,
but requires the map size to be predefined. This constraint in some cases may pose certain
effects on its performance, hindering effective display of data characteristics (Xu, Xu, and
Chow 2010). It is well known that PCA, MDS, and ViSOM do not take the underlying
class information and intrinsic local manifold information hidden in the data into account.
They only perform unsupervised learning with the global structures preserved. Unlike them,
FDA is a supervised globalized method which works well when the samples class labels
are available, but it tends to deliver less satisfactory results when data points of the same
class form several isolated clusters (Torre and Kanade 2005; Sugiyama 2007; Zhang and
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Ye 2011), i.e., multimodality. Intrinsic multimodal structure is often encountered in many
real applications such as facial gender recognition. The problem of intrinsic multimodality
appears when genders are classified into males and females, because face images of different
subjects or individuals are captured under different external conditions. Usually, solving a
multiclass problem can be performed by using a two-class method. However, this involves
preprocessing procedures of merging some of the classes, which will subsequently result
in the within-class multimodality problem. Thus, preserving multimodality for dimension-
ality reduction and multidimensional data visualization is a major issue that requires to be
addressed.

To represent the data efficiently and reduce the dimensionality appropriately, it is essen-
tial to preserve the local and multimodal structures hidden in the data. The above-mentioned
methods, however, fail to satisfy this requirement. In contrast, locality preserving projection
(LPP) (He and Niyogi 2004) mines the local manifold of the data points and keeps the pro-
jections of data pairs that are in close vicinity in the original space and close in the reduced
feature space. LPP is able to reduce the dimensionality of multimodal data with local struc-
ture information preserved. Recently, LPP- and FDA-based local FDA (LFDA) (Sugiyama
2006, 2007) and LFDA- and PCA-based semisupervised local FDA (SELF) (Sugiyama et al.
2008, 2010) methods were proposed for supervised and semisupervised dimensionality re-
duction. One of the major advantages of these methods lies in their ability to embed the
multimodal real data effectively. Also, there are other graph-embedding-based nonlinear
methods, such as locally linear embedding (LLE) (Roweis and Saul 2000; Lawrence and
Sam 2003), laplacian eigenmaps (LE) (Belkin and Niyogi 2001), and ISOMAP (Tenenbaum,
Silva, and Langford 2000), developed for performing dimensionality reduction and multidi-
mensional data visualization. These unsupervised graph algorithms are popular and efficient
in visualizing the synthetic data. However, ISOMAP and LLE are still constrained by certain
limitations, for example, the inflexible definition of the geodesic distances for ISOMAP and
the unclear interpretation of the weights-based metrics for LLE (Bengio et al. 2004). In this
paper, we show that data visualizations produced by both ISOMAP and LLE tend to be
relatively inaccurate on capturing the manifold structures of the multimodal datasets, e.g.,
XOR and the real pen-based handwritten digits dataset.

Many previous works have shown that supervised dimensionality reduction methods
become inefficient when the number of labeled samples is limited. This leads to increasing
interest and attention in the semisupervised techniques (Belkin, Niyogi, and Sindhwani 2006;
Zhu 2006; Sugiyama et al. 2008, 2010; Zhang and Yeung 2008a). Recently, there are popular
and effective semisupervised learning algorithms, such as semisupervised discriminant anal-
ysis (SDA) (Cai, He, and Han 2007a) and SELF (Sugiyama et al. 2008, 2010), proposed for
dimensionality reduction and feature extraction. In this paper, we also refer to the use of both
labeled and unlabeled samples. We propose a multimodality preserving algorithm, namely,
semisupervised multimodal dimensionality reduction (SSMDR), for performing dimension-
ality reduction on the semisupervised scenarios. Different from the objective functions of the
above-mentioned learning methods, SSMDR is capable of finding a pair of LPP transforma-
tions for two datasets. As a result, SSMDR is able to represent high-dimensional multimodal
data in the best possible way, because SSMDR will not embed the multimodal data points
into a single cluster. Through conducting extensive simulations, we show that SSMDR can
achieve the comparative or even better results than some widely used methods.

The rest of this paper is organized as follows. In Section 2, we formulate the linear di-
mensionality reduction problem and briefly review some existing classical learning methods.
In Section 3, we mathematically formulate the proposed projection algorithm. In Section 4,
we compare SSMDR with the existing PCA, MDS, FDA, LPP, NPE, LFDA, IsoProjection,
CCA, ViSOM, LE, LLE, ISOMAP, SDA, and SELF methods under several synthetic and
benchmark datasets. Finally, we offer the concluding remarks in Section 5.
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2. PRELIMINARIES

In this section, we present the linear dimensionality reduction problem and review two
related classical methods.

2.1. Linear Dimensionality Reduction

Let xi ∈ Rn(i = 1, 2, . . . ,m) be the vectors of m n-dimensional data and
fi (∈ {1, 2, . . . , c}) be the associated class labels, where c is the number of classes. Let
ζi ∈ Rd (1 ≤ d ≤ n) be the low-dimensional representation of data xi , where d is the se-
lected dimensionality. Without loss of generality, we present the n × d transformation matrix
by ξ̂x ; thus; the embedding of xi and ζi is given by ζi = ξ̂x

T
xi , where T denotes the transpose

of a matrix or a vector. In this paper, we focus on discussing the linear representations and
also will consider extending the discussions to the nonlinear scenarios, which means that the
mapping from x to ζ is nonlinear.

2.2. Fisher Linear Discriminant Analysis

FDA (Duda et al. 2001; Martinez and Kak 2001) finds the optimal vectors for discrimina-
tion. Let mt be the number of labeled samples in the class t ∈ {1, 2, . . . , c} and

∑c
t=1 mt = m.

The classical FDA computes an optimal transformation matrix, mapping each column of X in
the n-dimensional space to a feature vector in the d-dimensional space, satisfying d ≤ n. Let
S(t), S(bc), and S(wc) be the total scatter matrix, between-class scatter matrix, and within-class
scatter matrix, respectively, then we have the following:

S(wc) =
c∑

t=1

∑
i : fi =t

(xi − M̃ (t))(xi − M̃(t))
T, (1)

S(bc) = S(t) − S(wc) =
c∑

t=1

mt (M̃ (t) − M̃)(M̃ (t) − M̃)T, (2)

where
∑

i : fi =t denotes the summation over i such that fi = t , M̃ (t) = (1/mt )
∑

i : fi =t xi is the

average vector of samples in the tth class and M̃ = (1/m)
∑c

t=1

∑
i : fi =t xi is the global mean

of all samples. Provided that S(wc) has full rank, then the n × d FDA transformation matrix
TFDA can be defined as

TFDA = arg max
ξ̂x ∈Rn×d

[
tr

((
ξ̂x

T
S(wc)ξ̂x

)−1
ξ̂x

T
S(bc)ξ̂x

)]
= arg max

ξ̂x ∈Rn×d

∣∣∣ξ̂x
T

S(bc)ξ̂x

∣∣∣∣∣∣ξ̂x
T

S(wc)ξ̂x

∣∣∣ (3)

Thus, the maximization discrimination vectors can be obtained. Note that tr (H ) is the
trace of the matrix H .

2.3. LPPs

Unlike the global structure preservation capability of FDA, LPP (He and Niyogi 2004;
He et al. 2005) aims at preserving the local manifold structure of data. It is worth noting that
local information preservation is important. For a given data matrix X = [x1, x2, . . . , xm],
LPP finds an efficient projection transformation, TLPP , for mapping a dataset into a set of
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data points in Rd(d ≤ n) with the local manifold information preserved. Let Ã denote the
similarity matrix, i.e., an m × m matrix with Ãi ,j being the affinity value between data points
xi and x j . Note that Ãi ,j is large and correspondingly ‖ζi − ζ j‖2 is small if xi and xj are
close and Ãi ,j is small, and correspondingly, ‖ζi − ζ j‖2 is large if xi and x j are projected far
apart. There are several different measures to define Ã, for instance, the nearest neighbors
method (Roweis and Saul 2000), the heat kernel method (Belkin and Niyogi 2001), and
the local scaling heuristic approach (Zelnik-Manor and Perona 2005). Then, the objective
function of LPP is defined as

TLPP = arg min
ξ̂x ∈Rn×d

1

2

m∑
i, j=1

∥∥ξ̂x
T

xi − ξ̂x
T

x j

∥∥2
Ãi ,j = arg min

ξ̂x ∈Rn×d

Tr
(
ξ̂x

T
X (W̃ − Ã)XTξ̂x

)
,

subject to ξ̂x
T

X W̃ XTξ̂x = Id,

(4)

where W̃ is an m-dimensional diagonal matrix with ith input element being W̃ii = ∑m
j=1 Ãi ,j .

Equation (4) implies that LPP finds an efficient locality preserving transformation matrix
such that data pairs in the close vicinity in Rn are still compact in the low-dimensional
feature space Rd . The matrix W̃ provides an accurate measure on the data points from the
perspective of geometric argument (Belkin and Niyogi 2003), but this term is usually omitted
for simplicity (Ham et al. 2004; Sugiyama 2007). Let {ψr }d

r=1be the eigenvectors, ordered
according to the generalized eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λd of the following generalized
eigen problem: X L̃ XTψ = λX W̃ XTψ , where L̃ = W̃ − Ã is the so-called Laplacian matrix
(Chung 1997). Then, a solution of TLPP is given as TLPP = (ψ1|ψ2| . . . ψd). The locality
preserving capability of LPP is of particular applicable for image retrieval and recognition
(He et al. 2003, 2005).

3. SSMDR

We, in this section, elaborate the novel contributions of this paper. The objective is to
propose an SSMDR algorithm that is able to compute a pair of projection transformations
with high local information preservation and discrimination powers for two datasets X̃ and Ỹ .

3.1. Motivation and Objective

In Figure 1, the examples of Toy and XOR datasets are shown. The two-dimensional two-
class data are projected into a one-dimensional embedding space, where L1 and L2 are the
one-dimensional embedding spaces on which the points are projected, and the black arrows
are the directions of projections. Note that we take certain possible projection directions,
e.g., L1 or L2, to represent the data points of “�”-class and “�”-class.

For the simplest Toy1 dataset in Figure 1(a), L1 and L2 are all optimal. Note that there
are many methods that are able to perform well on this dataset and separate data points of
different classes (“�” and “�”) nicely from each other. However, multimodality datasets,
which are common in most of real-world data, are more challenging and can be problematic
to the dimensionality reduction methods, because the multimodal distributions tend to be
lost due to the complex intrinsic structure characteristics. Multimodal datasets usually have
isolated within-class clusters, such as the following used Toy2, Toy3, and XOR datasets.

For the Toy2 dataset in Figure 1(b), L2 can embed the multimodal data respectably by
separating between-class samples and preserving within-class multimodality, but L1 gives
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FIGURE 1. Examples of dimensionality reduction on the following four datasets: (a) on Toy1; (b) on Toy2;
(c) on Toy3; and (d) on XOR.

undesired result and tends to mix the projections of the data in different classes. For the
Toy3 dataset in Figure 1(c), L1 embeds the partial multimodal data nicely, but L2 delivers
relatively poor result that tends to mix the embeddings of the samples in different classes.
The reason for collapsing the points in “�”-class and “�”-class into a single cluster is due
to the fact that the datum is originally compact in the original input space. For the Toy2 and
Toy3 datasets, we can consistently find an optimal low-dimensional embedding space L1 or
L2 to embed the data and nicely separate data points of different classes from each other.
However, it is noted that in the XOR dataset shown in Figure 1(d), L1 or L2 are both unable to
represent the data in an acceptable way. This is mainly due to the within-class multimodality
of each class.

Apparently, from the one-dimensional embedding spaces constructed from these
datasets, L1 and L2 tend to work satisfactorily, in turn, which implies that L1 and L2 seem
to compensate the weaknesses of each other. As illustrated in Figures 1(c) and (d), neither
L1 nor L2 is a fully optimal solution of the Toy3 and XOR datasets. For the Toy1 dataset,
we may say that L1 and L2 deliver the same result. Thus, to represent the data points in the
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best possible way, it is natural to investigate whether or not the embedding results of the
multimodal data can be improved by finding both L1 and L2 at the same time. In this paper,
we will address this issue in later section.

From the perspective of dimensionality reduction, supervised methods tend to overfit the
labeled data when the labeled number is small or limited. In such cases, unlabeled samples
with low cost will be useful to enhance the performance. In addition, the underlying class
labels of labeled data, local manifold, and intrinsic multimodal information hidden in the
data should also be considered. PCA, an unsupervised method, is able to preserve the global
covariance structures of the dataset. Moreover, owing to the unsupervised nature of PCA, it
can efficiently be applied to unlabeled data. In this study, we focus on proposing a new idea
of integrating the local information and unlabeled data with the objective of computing the
projection transformations. As a result, we are capable of deriving an effective semisupervised
multimodal algorithm, called SSMDR in this paper. The proposed SSMDR algorithm utilizes
the locality preserving property for the labeled data and aims at computing a pair of projection
transformations for both labeled and unlabeled data in a semisupervised way.

3.2. Formulation

Given m pairs of labeled multivariate data {(xi , yi )}m
i=1 accompanied with the class la-

bel fi (∈ {1, 2}), where xi , yi ∈ Rn, i = 1, 2, . . . ,m denotes an input vector from the data
matrices X = [x1, x2, . . . , xm] and Y = [y1, y2, . . . , ym]. The tth class has mt data sam-
ples, i.e.,

∑2
t=1 mt = 2m. For unlabeled data points, we have l pairs of unlabeled samples

{(xi , yi )}m+l
i=m+1, that is, there are m + l (m ≤ l) examples in total. Without loss of generality,

we assume that the data points in labeled sets X and Y are ordered according to their class
labels. Suppose that we are given a sample of instances ((x1, y1), . . . , (xm, ym)) of (X, Y ),
SSMDR aims to find a pair of transformations, ξ̂x and ξ̂y , for them, one for each dataset. We
can then use the transformation ξ̂x to represent (x1, x2, . . . , xm) and analogously ξ̂y to embed
(y1, y2, . . . , ym) for obtaining new low-dimensional coordinates.

To improve the tightness among neighboring pairs and separate nonneighboring pairs,
we consider shrinking distance metrics between the projections of similar patterns be-
longing to the same set X (or, Y ) by minimizing ξ̂x

T ∑m
i, j=1 (xi − x j )(xi − x j )T Ã(wc)

i ,j ξ̂x

and ξ̂y
T ∑m

i, j=1 (yi − y j )(yi − y j )T Ã(wc)†
i ,j ξ̂y , while maximizing the distances be-

tween the projections of pairwise patterns from different sets by maximizing

ξ̂x
T ∑m

i, j=1 (yi − x j )(yi − x j )T Ã(bc)
i ,j ξ̂x and ξ̂y

T ∑m
i, j=1 (xi − y j )(xi − y j )T Ã

(bc)† ξ̂y

i ,j , where the

transformations ξ̂x
T

x and ξ̂y
T

y denote the low-dimensional representation of data x and y,
respectively. Note that matrices Ã(wc), Ã(wc)†, Ã(bc), and Ã(bc)† are defined for preserving the
locality and are regarded as the similarity measures between data points, where Ã(wc)

i ,j ( Ã(wc)†
i ,j )

represents the local relations of intraclass data pairs in X (Y ) and Ã(bc)
i ,j ( Ã(bc)†

i ,j ) represents the
local relations of between-class data pairs in X (Y ) and Y (X ), which will be detailed in the
next section. It is noted that the localized metric of SSMDR is employed for multimodal-
ity preservation purpose and utilized for measuring labeled samples in the semisupervised
learning. This metric is similarly defined in (Ye et al. 2010) for designing binary multiplane
classifier, which is a supervised globalized technique. In this present work, SSMDR opti-
mizes the within- and between-class scatters in the similar way to the LPP criterion. It is
worth noting that the within-class scatters of our proposed SSMDR can be considered as the
supervised locality preserving LPP metric.
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3.3. Interpretation of the Locality

In performing feature extraction or dimensionality reduction, preserving the local struc-
ture of data is important. Local nearest neighbors tend to deliver similar distributions and
embeddings, so class labels of data lying on a dense area are probably the same (Zhou
et al. 2004). Recently, some locality-preservation-based methods (Roweis and Saul 2000;
Lawrence and Sam 2003; He and Niyogi 2004; Sugiyama 2006, 2007; Sugiyama et al. 2008,
2010) have been proposed and used in image representation and recognition. The key step of
locality preservation is about constructing the neighborhood graphs and setting the weights
to obtain a similarity matrix. The local neighbors of xi (yi ) can be defined by using either
the Euclidean neighbor (Hinton and Salakhutdinov 2006), or the k-nearest neighborhood
(Belkin and Niyogi 2003). In this work, k-nearest neighborhood search is used. We construct
two within-class graphs for the samples in labeled sets X and Y by putting an edge between
nodes i and j if samples xi (yi ) and x j (y j ) from the same object are “close” and have the
same class labels. We can then select the simple-minded method (Belkin and Niyogi 2001),
the heat kernel method (Belkin and Niyogi 2001), or the local scaling heuristic method
(Zelnik-Manor and Perona 2005) to set the weights for the similarity matrix.

Suppose that there are total χ objects O1, O2, . . . , Oχ in the datasets X and Y . Let
∀L N N (xi )(∀L N N (yi )) denote the sample set that comprises the local neighbors of sample
xi (yi ), thus x j (y j ) belongs to ∀L N N (xi ) (∀L N N (yi )) if sample x j (y j ) is the neighbor of xi (yi ).
We can then employ the heat kernel method to define the similarity matrices �̃(X ) = {�̃(X )

i, j
}m

i, j=1

and �̃(Y ) = {�̃(Y )
i, j

}m
i, j=1 for given sample pairs (xi , x j ) and (yi , y j ), where

�̃
(X )
i, j ={
exp

(−‖xi − x j‖2/τ (X )
)
, if x j ∈ ∀LNN (xi ) or xi ∈ ∀LNN (x j ), xi ∈ Oa, x j ∈ Ob, a = b,

0, otherwise
(5a)

�̃
(Y )
i, j ={
exp

(−‖yi − y j‖2/τ (Y )
)
, if y j ∈ ∀LNN (yi ) or yi ∈ ∀LNN (y j ), yi ∈ Oa, y j ∈ Ob, a = b,

0, otherwise
(5b)

where τ (X ) = ∑m
i, j=1 ‖xi − x j‖2/m(m − 1) and τ (Y ) = ∑m

i, j=1 ‖yi − y j‖2/m(m − 1). Note
that Eqs. 5 and 6 reflect the local information around each data point, i.e. the smaller the
distance ||xi − x j ||(||yi − y j ||), the closer the data points xi (yi ) and x j (y j ) of the same
object. Thus the �̃(X )

i, j
(�̃(Y )

i, j
) incurs a heavy penalty, where �̃(X )

i, j
(�̃(Y )

i, j
) denote the (i,j)-th entry of

the similarity matrix �̃(X )(�̃(Y )). According to the similarity matrix �̃(X )
i, j

(�̃(Y )
i, j

), we only weight
the values for the sample pairs that are mutually neighbors from same object. Similarly we
define an adjacency matrix �̃(Y X ) = {�̃(Y X )

i, j
}m

i, j=1 for measuring the locality between multiple
objects in Y and X sets as

�̃
(Y X )
i, j ={
exp

(− ∥∥Yi−X j

∥∥ /τ (Y X )
)
, if Yi ∈ ∀N N (X j ) or X j ∈ ∀N N (Yi ), X j ∈ Oa, Yi ∈ Ob, a �=b,

0, otherwise
(6)
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where τ (Y X ) can be similarly estimated. We can then employ the similar definition methods
of [24][33] to formulate the matrices Ã(wc), Ã(wc)† and Ã(bc). Let C∗ D denote the Hadamard
products [39] between two matrices C and D with the same sizes, that is(C∗ D)i j = Ci j Di j .

Thus the weight matrices Ã(wc), Ã(wc)†, Ã(bc) and Ã(bc)† can be defined as Ã(wc) = �̃(X )∗�̃(X ),
Ã(wc)† = �̃(Y )∗�̃(Y ), Ã(bc) = �̃(XY )∗�̃(XY ) and Ã(bc)† = Ã(bc)T. In this study, we aim at keeping
the local information �̃(X )

i, j
and �̃(Y )

i, j
unchanged, because we focus on keeping transformed

data in nearby of the reduced feature space if they are in the close vicinity of the original
space.

3.4. The Objective Function

In practical high-dimensional applications, small sample size (SSS) problem is frequently
encountered. When the number of sample dimensions is significantly larger than the number
of data or when the number of labeled data is limited, supervised dimensionality reduction
methods tend to get overfitted to the labeled data (Cai, He, and Han 2007b; Sugiyama et al.
2008, 2010). To prevent overfitting, a widely used approach is to introduce a regularizer, for
instance, Tikhonov regularizer (Belkin, Matveeva, and Niyogi 2004): J ∗(θ ) = ‖θ‖2 = θTθ .
Motivated by the graph-embeddings-based approaches, e.g., Roweis and Saul (2000), Tenen-
baum et al. (2000), Belkin and Niyogi (2001), Lawrence and Sam (2003), and Zhang and
Yeung (2008b), we in this study aim at constructing two regularization items for the unla-
beled samples. Let Xu = [xm+1, xm+2, . . . , xm+l] and Yu = [ym+1, ym+2, . . . , ym+l] denote
the unlabeled sets, we define

j(ξ̂x ) = 1

2l

l∑
i, j=1

∣∣∣∣ξ̂x
T

xm+i − ξ̂x
T

xm+ j

∣∣∣∣2 Ñ (X )
i, j

= 1

2l
ξ̃x

T

⎛⎝2
l∑

i=1

⎡⎣ l∑
j=1

Ñ (X )
i, j

⎤⎦ xm+i xm+i
T − 2

l∑
i, j=1

xm+i Ñ (X )
i, j xm+ j

T

⎞⎠ ξ̃x

= 1

l
ξ̂x

T
Xu(W̃ X − Ñ X )Xu

Tξ̂x = 1

l
ξ̂x

T
Xu L̃ (X )

u Xu
Tξ̂x ,

(7)

where L̃ (X )
u = (W̃ (X ) − Ñ (X )) and W̃ (X ) is a diagonal matrix with ith entry being W̃ (X )

i i =∑m+l
j=m+1 Ñ (X )

i ,j , where Ñ (X )
i ,j is the (i,j)th entry of Ñ (X ). It is noted that when each element

Ñ (X )
i ,j of the matrix Ñ (X ) equals to 1

l , then J (ξ̂x ) is equivalent to the total scatter matrix of

the PCA criterion and W̃ (X ) will be the identity matrix. As a result, the term J (ξ̂x ) will
play a significant role in preserving the global covariance structures of all the data points,
including labeled and unlabeled samples. The motivation for exploiting unlabeled samples
is to employ them to boost the performance when the available number of labeled samples is
limited. The normalization coefficient 1

l in equation (7) is used for balancing the functional

value J (ξ̂x ). Similarly, let matrix L̃ (Y )
u = (W̃ (Y ) − Ñ (Y )), where W̃ (Y ) is a diagonal matrix

whose entries are column (or row since Ñ (Y ) is symmetric) sums of matrix Ñ (Y ), that is,
W̃ (Y )

i i = ∑m+l
j=m+1 Ñ (Y )

i ,j , then similar formulation exists for the regularizer J (ξ̂y) described as

J (ξ̂y) = 1

l
ξ̂y

T
Yu(W̃ (Y ) − Ñ (Y ))Y T

u ξ̂y = 1

l
ξ̂y

T
Yu L̃ (Y )

u Y T
u ξ̂y. (8)
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By combining the terms defined for the labeled and unlabeled samples, we formulate
the objective functions of the SSMDR as follows:

ξ̂x = arg max
ξ̂x

(1 − μA)ξ̂x
T

Ã(lbc)ξ̂x + μA J (ξ̂x )

(1 − μA)ξ̂x
T

Ã(lwc)ξ̂x + μA J ∗(ξ̂x )
, (9)

ξ̂y = arg max
ξ̂y

(1 − μA)ξ̂y
T

Ã(lbc)†ξ̂y + μA J (ξ̂y)

(1 − μA)ξ̂y
T

Ã(lwc)†ξ̂y + μA J ∗(ξ̂y)
, (10)

where J (ξ̂x )(J (ξ̂y)) is a regularized term induced by the unlabeled samples in Xu(Yu) and
μA is a control parameter. In this paper, we also employ the Tikhonov regularizers, J ∗(ξ̂x ) =
ξ̂x

T
ξ̂x and J ∗(ξ̂y) = ξ̂y

T
ξ̂y , to avoid the possible singularity of the denominators, as shown in

equations 9 and 10. And Ñ (X ) and Ñ (Y ) are set to be l × l matrices with each entry, 1
l . It is

noted that labeled sets X and Y and unlabeled sets Xu and Yu are generated from X̃ and Ỹ . In
the optimizations, the unlabeled datasets Xu and Yu are defined for measuring the total data
matrix, including X̃ and Ỹ ; thus, we have Xu L̃ (X )

u XT
u = Yu L̃ (Y )

u Y T
u when the PCA criterion is

applied.
In this work, we formulate the optimization models based on the discriminative manifold

structure embedded in the supervised LPP criterion and the global covariance structures
embedded in all data points. Following the objectives of PCA and LPP, the embedding
transformations of SSMDR can be analytically computed by using eigen decomposition.
The present methodology of this work is considered as the semisupervised extension of the
optimized problems in Zhang and Ye (2011), improving the performance by incorporating
unlabeled data into the problems for optimization and learning. As a result, the proposed
SSMDR can be viewed as a learning method between supervised and unsupervised scenarios.
It is also noted that SSMDR can characterize the within-set compactness and between-set
separation by utilizing the discriminant features as the fully supervised FDA.

3.5. Definition and Typical Behavior

The projection transformation, T 1
SSMDR, is composed of the generalized eigenvectors

associated with the first d largest generalized eigenvalues of the following generalized
eigenvalue problem:

Ã(rlbc)ξ̂x = λ̃x Ã(rlwc)ξ̂x . (11)

Similarly, the projection transformation, T 2
SSMDR, comprises the generalized eigenvec-

tors associated with the first d largest generalized eigenvalues of the following generalized
eigenvalue problem:

Ã(rlbc)†ξ̂y = λ̃y Ã(rlwc)†ξ̂y, (12)

where Ã(rlbc) and Ã(rlbc)† represent the extended localized between-class scatters and Ã(rlwc)

and Ã(rlwc)† are the regularized local within-class scatters, which are, respectively, defined as

Ã(rlwc) = (1 − μA) Ã(lwc) + μA In, Ã
(rlbc) = (1 − μA) Ã(lbc) + μA

l
Xu L̃ (Y )

u XT
u , (13)

Ã(rlwc)† = (1 − μA) Ã(lwc)† + μA In, Ã(rlbc)† = (1 − μA) Ã(lbc)† + μA

l
Yu L̃ (Y )

u Y T
u , (14)



SEMISUPERVISED MULTIMODAL DIMENSIONALITY REDUCTION 79

FIGURE 2. SSMDR algorithm.

where μA ∈ [0, 1] is a control parameter. That is, Ã(rlwc)( Ã(rlwc)†) changes to Ã(lwc)( Ã(lwc)†)
when μA = 0, and Ã(rlwc)( Ã(rlwc)†) is transformed to the identity matrix as μA = 1. Simi-
larly, matrix Ã(rlbc)( Ã(rlbc)†) changes to Ã(lbc)( Ã(lbc)†) for discrimination when μA = 0, and
Ã(rlbc)( Ã(rlbc)†) changes to the total scatter matrix for structure preservation when μA = 1.
These properties endow the proposed SSMDR method the capability to characterize the
discriminant feature with the intrinsic structure characteristics effectively preserved. Then,
the twin objective functions of the proposed SSMDR algorithm can be formulated as

T 1
SSMDR = arg max

ξ̂x ∈Rn×d

[
tr
((
ξ̂x

T
Ã(rlwc)ξ̂x

)−1
ξ̂x

T
Ã(rlbc)ξ̂x

)]
(15)

and

T 2
SSMDR = arg max

ξ̂y∈Rn×d

[
tr
((
ξ̂y

T
Ã(rlwc)†ξ̂y

)−1
ξ̂y

T
Ã(rlbc)†ξ̂y

)]
. (16)

In other words, SSMDR finds a pair of optimal transformations for discrimination plus
preservation. SSMDR aims at structuring a low-dimensional space, under which the localized
between-class spread is maximized and the regularized local within-class scatter or spread is
minimized. In SSMDR, similarity matrices �̃(X ) and �̃(Y ) are, respectively, computed for the
labeled samples in X and Y , and matrices Ñ (X ) and Ñ (Y ) are computed for unlabeled samples.
The efficient implementation of the SSMDR is summarized in Figure 2, where { fi }2m

i=1 are
the class labels for labeled samples. zeros(n, n) denotes a n × n matrix with all zeros, 1m
denotes an m-dimensional vector with all ones, and diag(A1m) denotes a diagonal matrix
with input elements, A1m . It is noticed that the generalized eigenvalues and eigenvectors can
be solved by an eigen solver, such as eigenvalue decomposition.
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3.6. Computational Analysis of SSMDR

In the pattern recognition community, we often require to conduct dimensionality reduc-
tion when large amount of high-dimensional data is accompanied with the underlying class
label information and the spatial information. To address this issue, we formulate the local-
ized within-class scatter Ã(lwc) and between-class scatter Ã(lbc) using the following forms. In
this way, one can easily describe the relations between pairs of features regarding whether
sample pairs are close with each other or far apart. Thus, we can express the scatter matrices
Ã(lwc) and Ã(lbc) in a local manner as the following formulation:

Ã(lwc) = 1

2

m∑
i, j=1

(xi − x j )(xi − x j )
T Ã(wc)

i ,j = 1

2

m∑
i, j=1

(
xi x

T
i + x j x

T
j − xi x

T
j − x j x

T
i

)
Ã(wc)

i ,j ,

(17)

That is, optimizing Ã(lwc) directly will not project the data points belonging to the
same set into a single cluster as performing FDA, because Ã(lwc) measures the pairwise
distances between data points. And most importantly, the intrinsic multimodal structures can
be efficiently preserved. It is noted that the metric of Ã(lwc) is equivalent to the supervised
LPP criterion when class labels are available. Similarly, we express Ã(lbc) as

Ã(lbc) = 1

2

m∑
i, j=1

(yi − x j )(yi − x j )
T Ã(bc)

i ,j = 1

2

m∑
i, j=1

(
yi yT

i − yi x
T
j − x j yT

i + x j x
T
j

)
Ã(bc)

i ,j ,

(18)

where Ã(wc) and Ã(bc) are m × m matrices. Based on the similarity matrices �̃(X ) and �̃(Y ), we
weight the values for the sample pairs in the same object. We do not exert penalties for the
nonneighboring sample pairs belonging to the same class. We also do not exert penalties for
neighboring pairs from different objects or classes, because we aim at separate them. First,
we give a matrix interpretation of the scatter Ã(lwc). Then, the localized within-class scatter
Ã(lwc) can be formulated in a matrix form as the following:

Ã(lwc) = 1

2

m∑
i=1

xi

⎛⎝∑
j

Ã(wc)
i ,j

⎞⎠ xT
i + 1

2

m∑
j=1

x j

(∑
i

Ã(wc)
i ,j

)
xT

j

− 1

2

m∑
i, j=1

xi Ã(wc)
i ,j xT

j − 1

2

m∑
i, j=1

x j Ã(wc)
i ,j xT

i ,

=
m∑

i=1

xi F̃ (wc)
ii xT

i −
m∑

i, j=1

xi Ã(wc)
i ,j xT

j

=
m∑

i=1

F̃ (wc)
ii xi x

T
i − X Ã(wc) XT = X W̃ (wc) XT, (19)

where W̃ (wc) = F̃ (wc) − Ã(wc) and F̃ (wc) is an m-dimensional diagonal matrix with ith entry
being F̃ (wc)

ii = ∑
j Ã(wc)

i ,j . F̃ (wc)is commonly called the Laplacian matrix of Ã(wc) in the

spectral graph theory (Chung 1997). It is easy to verify that Ã(wc) and W̃ (wc) are all symmetric
and positive semidefinite matrices. Similarly, the localized between-class scatter matrix
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Ã(lbc)can be expressed in a matrix interpretation as

Ã(lbc) = 1

2

m∑
i=1

yi

(∑
j

Ã(bc)
i, j

)
yT

i + 1

2

m∑
j=1

x j

(∑
i

Ã(bc)
i, j

)
xT

j

− 1

2

m∑
i, j=1

yi Ã(bc)
i, j

xT
j − 1

2

m∑
i, j=1

x j Ã(bc)
j,i

yT
i

= 1

2
(Y D̃(bc)Y T + X M̃ (bc) XT) − 1

2
(Y Ã(bc) XT + X Ã(bc)TY T)

(20)

where D̃(bc) and M̃ (bc) are m-dimensional diagonal matrices with ith (or jth) element be-
ing D̃(wc)

ii = ∑m
j=1 Ã(bc)

i ,j and M̃ (wc)
j j = ∑m

i=1 Ã(bc)
i ,j . Thus, the first optimization problem of

SSMDR can be expressed as

T 1
SSMDR = arg max

ξ̂x[r ] ∈Rn×1

ξ̂T
x[r ]

Ã(rlbc)ξ̂x[r ]

subject to ∀ r ∈ {1, 2, . . . , d} : ξ̂T
x [r ]

Ã(rlwc)ξ̂x [r ] − 1 = 0,

(21)

or equivalently

T 1
SSMDR = arg max

ξ̂x[r ] ∈Rn×1

[(
ξ̂ T

x[r ]
Ã(rlwc)ξ̂x[r ]

)−1(
ξ̂ T

x[r ]
Ã(lbc)ξ̂x[r ]

)]
Ã(lwc)†, (22)

where Id is the identity matrix on Rd . That is, SSMDR aims to find the transformation
matrix T 1

SSMDR such that the localized between-class scatter in the embedding space (i.e.,
T 1T

SSMDR Ã(rlbc)T 1
SSMDR) is to be maximized and the regularized local within-class scatter in

the embedding space (i.e., T 1T

SSMDR Ã(rlwc)T 1
SSMDR) is to be minimized. The regularized local

within-class scatter Ã(rlwc)†
	 and the extended between-class scatter Ã(rlbc) are formulated as

Ã(rlwc) = (1 − μA) Ã(lwc) + μA In, Ã(rlbc) = (1 − μA) Ã(lbc) + μA

l
Xu L̃ (X )

u XT
u .

We assume that the generalized eigenvalues {λ̃x[r ]}d
r=1 of equation (21) or equation (22)

are sorted in descending order and the generalized eigenvectors {̂ξx[r ]}d
r=1 are normalized as

ξ̂T
x[r ]

Ã(rlwc )̂ξx[r ] = 1 for r = 1, 2, . . . , d. Then, a solution of the transformation T 1
SSMDR is

given by

T 1
SSMDR = (ξ̂x[1] |ξ̂x[2] |. . . |ξ̂x[d] ),

where {̂ξx[r ]}d
r=1 are the generalized eigenvectors corresponding to the first d generalized

eigenvalues, i.e., {λ̃x[r ]}d
r=1. By considering the equivalence relation between equations (21)

and (22), we can see that SSMDR finds the transformation T 1
SSMDR such that nearby sample

pairs in the original space Rn and the projected data are still compact in the reduced space with
the normalization constraint T 1T

SSMDR Ã(rlwc)T 1
SSMDR = Id . This can be solved by using an

eigen solver. That is to say SSMDR attempts to preserve the data manifold of all the samples.
All of these definitions and formulations are suitable for the transformation matrix T 2

SSMDR.
We see from the Appendix A that F̃ (wc)† is a diagonal matrix whose entries are column (or
row, since Ã(wc)† is symmetric) sums of the matrix Ã(wc)†, i.e., F̃ (wc)†

ii = ∑m
j=1 Ã(wc)†

i ,j ; thus,
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the localized within-class scatter Ã(lwc)† and localized between-class scatter Ã(lbc)† can be
expressed as

Ã(lwc)† = Y
(
F̃ (wc)† − Ã(wc)†) Y T = Y W̃ (wc)†Y T, (23)

Ã(lbc)†† = 1

2

(
X D̃(bc)†XT + Y M̃ (bc)†Y T

) − 1

2

(
X Ã(bc)†Y T + Y Ã(bc)†TY T

)
(24)

where D̃(bc)† and M̃ (bc)† are m-dimensional diagonal matrix with ith (or jth) element being
D̃(wc)†

ii = ∑m
j=1 Ã(bc)†

i ,j and M̃ (wc)†
j j = ∑m

i=1 Ã(bc)†
i ,j . It is also noted that Ã(lbc) = Ã(lbc)† in the

computations due to the fact that Ã(bc) = Ã(bc)†. Then, we obtain the second optimization
problem for SSMDR, which is analogously defined as

T 2
SSMDR = arg max

ξ̂y[r ] ∈Rn×1

ξ̂T
y[r ]

Ã(rlbc)†ξ̂y[r ]

subject to ∀ r ∈ {1, 2, . . . , d} : ξ̂T
y[r ]

Ã(rlwc)†ξ̂y[r ] − 1 = 0,

(25)

where the regularized local within-class scatter or spread Ã(rlwc)† and the extended between-
class scatter Ã(rlbc)† are similarly defined as the following:

Ã(rlwc)† = (1 − μA) Ã(lwc)† + μA In, Ã(rlbc)† = (1 − μA) Ã(lbc) + μA

l
Yu L̃ (Y )

u Y T
u .

Analogous to the computational process of T 1
SSMDR, the second transformation matrix

T 2
SSMDR can be given by T 2

SSMDR = (ξ̂y[1] |ξ̂y[2] .|. . . |ξ̂y[d] ), where {ξ̂y[r ]}d
r=1 are the general-

ized eigenvectors of the eigen problem in equation (25) associated with the first d largest
generalized eigenvalues λ̃y[r ], r = 1, 2, . . . , d, where d ≤ n.

3.7. Discussion

For efficient multidimensional data visualization and feature extraction via dimensional-
ity reduction, there are a number of linear or nonlinear, local or global, supervised, unsuper-
vised, or semisupervised algorithms proposed. In this work, a newly formulated objective-
based multimodal SSMDR method is considered. It is interesting from some distinctive
perspectives. In later sections, we will discuss some issues related to our method.

3.7.1. Comparative Analysis. Similar to the main focuses and measurement criteria of
some existing discriminative dimensionality reduction methods, e.g., FDA and LFDA, the
proposed SSMDR method aims to minimize the within-class compactness and maximize
between-class separation as well. However, SSMDR is significantly different from them based
on newly defined objectives. SSMDR exhibits certain typical behaviors and advantages over
them:

(1) The classical FDA method tends to become inefficient when facing the multimodal data
distributions, e.g., XOR dataset. Moreover, FDA is restricted by the upper bound on the
dimensionality of the reduced space (Martinez and Kak 2001; He et al. 2005). So does
semisupervised SDA, though SDA has a regularized term incorporating the intrinsic ge-
ometrical structure inferred from labeled and unlabeled data. Correspondingly, SSMDR
is a discriminant plus preservation technique which can extricate from the bound and,
most importantly, it can represent the multimodal data respectably.
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(2) The popular PCA of minimizing the sample reconstruction error does not consider the
local information of data. So does MDS. Although LPP, NPE, LE, LLE, SDA, LFDA,
and SELF are formulated based on the local or neighborhood information preservation,
but they are unable to represent the multimodal XOR and challenging “incomplete tire”
in our study. Moreover, FDA and LFDA may become overfitted when the number of
labeled data is small. In contrast, local information of data can be effectively kept by
SSMDR and it can embed the points of XOR and “incomplete tire” effectively. Similar
to SDA and SELF, SSMDR can be avoided from being overfitted to the small number
of labeled data. It is worth noting that simulation results show that SELF and SDA still
cannot embed the multimodal data points efficiently.

(3) The above-mentioned methods all aim at finding a set of transforming basis vectors for
preservation or discrimination. Different from them, our multimodal SSMDR method
aims at finding two sets of locality preserving basis vectors for learning the projections.
This property is analogous to canonical correlation analysis (CCA). Though SSMDR
and CCA can tackle the problems posed by the multimodal distributions, there are natural
differences between them. These issues will be discussed in detail in next section.

3.7.2. Comparison with CCA. CCA (Hardoon, Szedmak, and Shawe-Taylor 2004) is
a widely used method in pattern recognition. The objective of CCA is to find two sets of
optimal basis vectors for two sets of variables, one for each set, such that the correlation
between the projections of the variables onto these basis vectors was mutually maximized.

Given two multivariate sets X ∈ Rp, Y ∈ Rq with X = [x1, x2, . . . , xm] and Y =
[y1, y2, . . . , ym], CCA aims at finding two optimal projection vectors ξ̂x and ξ̂y such that the

correlation coefficient between ξ̂x
T

X and ξ̂y
T
Y is maximized. That is,

ρ = arg max
ξ̂x ,ξ̂y

⎛⎝ ξ̂x
T
Cxy ξ̂y√

ξ̂x
T
Cxx ξ̂x .ξ̂y

T
Cyy ξ̂y

⎞⎠ , subject to ξ̂x
T
Cxx ξ̂x = 1, ξ̂y

T
Cyy ξ̂y = 1, (26)

where Cxy is the between-class covariance matrix of X and Y sets, and Cxx and Cyy are the
covariance matrices of X and Y sets, respectively. The maximum canonical correlation is the
maximum of ρ with respect to the basis vectors ξ̂x and ξ̂y , where ξ̂x and ξ̂y can be obtained
by solving the following two generalized eigenvalue problems:(

CxyC−1
yy Cyx 0

0 CyxC−1
xx Cxy

)(
ξ̂x

ξ̂y

)
= λ̃

(
Cxx 0

0 Cyy

)(
ξ̂x

ξ̂y

)
, (27)

where the eigenvalue is the canonical correlation to be optimized. Though CCA and SSMDR
both aim at finding a pair of projective basis vectors for dimensionality reduction and feature
extraction, there are significant differences between them. One of these includes that CCA is
unable to preserve the locality between points, but SSMDR incorporates the local manifold
information with the scatters or spreads enabling the intrinsic local structures around data
point to be preserved. Besides, CCA does not take into account the class information of
data. It is naturally an unsupervised learning method, while SSMDR takes full advantage of
all the underlying class labels of labeled data to improve the performance. In most practical
applications, unlabeled samples are readily available, but labeled ones are expensive to
obtain. SSMDR can utilize a small number of labeled data and great amount of unlabeled
data to perform semisupervised dimensionality reduction. Another marked difference is that
CCA and SSMDR aim at evaluating the within-class and between-class scatters using the
different measurement criteria.



84 COMPUTATIONAL INTELLIGENCE

3.7.3. Kernel SSMDR for Nonlinear Dimensionality Reduction. In this subsection, we
consider to extend SSMDR to nonlinear dimensionality reduction scenarios by employing
the standard kernel approach (Schölkopf and Smola 2002). Let 	 be the mapping from Rn

to N p(p > n), which can be implicitly defined by a kernel function, that is, the (i, j)th entry
is given by

Ki j = K (xi , x j ) = 〈	(xi ),	(x j )〉 = 	(xi )
T	(x j ), (28)

where 〈.〉 denotes the inner product in the mapped space N . Gaussian kernel, a typical choice
of the kernel function, is given by

K (x, xT) = exp (−||x − xT||2/2σ 2). (29)

Schölkopf pointed out that every solution in the kernel space, N , could be written
as an expansion in terms of the mapped training data (Schölkopf and Smola 2002). Let
	(X ) = (	 (x1) ,	 (x2) , . . . , 	 (xm)) ,	 (Y ) = (	 (y1) ,	 (y2) , . . . , 	 (ym)), then the pro-
jection vectors ξ̂x

	
and ξ̂y

	
defined in high-dimensional kernel space can be rewritten as

ξ̂x
	 =

m∑
i=1

T̂x[i]	(xi ) = 	(X )T̂x , (30)

ξ̂y
	 =

m∑
i=1

T̂y[i]	(yi ) = 	(Y )T̂y . (31)

As detailed in Section 3.5, the generalized eigenvalue problems that need to be solved in
SSMDR are shown, where the identity matrix In on Rn is used to avoid the singularity and
ensure the stability of the generalized eigen-decomposition problem. The localized scatters
Ã(rlbc)
	 and Ã(rlwc)

	 in the high-dimensional kernel feature space can then be formulated as

Ã(rlbc)
	 = (1 − μA)

2
[	(Y )D̃(bc)	(Y )T +	(X )M̃ (bc)	(X )T

− (	(Y ) Ã(bc)	(X )T +	(X ) Ã(bc)T	(Y )T)] + μA

l
	(Xu)L̃ (X )

u 	(Xu)T, (32)

Ã(rlwc)
	 = (1 − μA)	 (X )

(
F̃ (wc) − Ã(wc)

)
	 (X )T + μA I

= (1 − μA)	 (X ) W̃ (wc)	 (X )T + μA I. (33)

Substituting Ã(lbc)
	 , Ã(rlwc)

	 , and equation (30) into the generalized eigenvalue problem in
equation (11), we can obtain

Ã(lbc)
	 	 (X ) T̂x = δ̃x Ã(rlwc)

	 	 (X ) T̂x . (34)

Multiply equation (34) by 	(X )T from the left-hand side, then we can get[
(1 − μA)

2

(
Kxy D̃(bc)Kyx + Kxx M̃ (bc) Kxx − K (bc)) + μA

l
Kxxu L̃ (X )

u Kxu x

]
T̂x

= δ̃x

(
(1 − μA) Kxx W̃ (wc) Kxx + μA Kxx

)
T̂x , (35)

where K (bc) = Kxy Ã(bc) Kxx + (Kxy Ã(bc)Kxx )T is the kernel matrix between labeled data in
X , Kxy = 	(X )T	 (Y ) = K T

yx is the kernel matrix between labeled samples in X and Y ,
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and Kxxu = 	(X )T	 (Xu) is the kernel matrix between labeled samples in X and unlabeled
samples in Xu and Kxu x = K T

xxu
. Let

ϒ
	

1 = (1 − μA)

2

[
Kxy D̃(bc)Kyx + Kxx M̃ (bc) Kxx − Kxy Ã(bc) Kxx − (

Kxy Ã(bc) Kxx

)T
]

+ μA

l
Kxxu L̃ (X )

u Kxu x ,

ϒ
	

2 = (1 − μA) Kxx W̃ (wc) Kxx + μA Kxx ,

thus, equation (35) can be reformulated as the following:

ϒ
	

1 T̂x = δ̃xϒ
	

2 T̂x . (36)

Because ϒ
	

2 = (1 − μA)Kxx W̃ (wc) Kxx + μA

l Kxxu L̃ (X )
u Kxu x is a symmetric and positive

semidefinite matrix and is not always of full rank, we need to regularize it to avoid the
singularity and assure the stability of the generalized eigenvalue problems by adding the
term μI I with a small positive scalar μI . We therefore replace equation (36) by

ϒ
	

1 T̂x = δ̃x

(
ϒ

	

2 + μI I
)
T̂x . (37)

Let {T̂x[r ]}d
r=1 be the generalized eigenvectors associated with the first d largest gen-

eralized eigenvalues δ̃x[r ] , r = 1, 2, . . . , d of the generalized eigenvalue problem in equa-

tion (37), where they are sorted and normalized as δ̃χ[1] ≥ δ̃χ[2] ≥ . . . ≥ δ̃χ[d−1] ≥ δ̃χ[d] and

T̂x[r ]

T
(ϒ

	

2 + μI I )T̂x[r ] = 1forr = 1, 2, . . . , d.
The extended algorithm implies that the samples data points appear only via the forms of

inner products. The projection transformation T̂y in the kernel feature space can be computed
by using the similar techniques (see Appendix B for the detailed computations). Then, the
solution of T̂y is given by

T̂y = (T̂y[1] |T̂y[2] | . . . |T̂y[d] ). (38)

It is important to note that the size of matrices to be eigen-decomposed in the kernel
formulations only depends on the amount of data samples, but not on the input dimensionality.
Thus, the kernelized extensions can improve the computational efficiency when the number
of samples is smaller than the input dimensionality.

4. EVALUATIONS ON SEMISUPERVISED LEARNING

This section evaluates the performance of the proposed SSMDR method and other
established approaches (i.e., PCA (Mardia et al. 1980), FDA (Duda et al. 2001), LPP (He
and Niyogi 2004), neighborhood preserving embedding (NPE) (He et al. 2005), isometric
projection (IsoProjection) (Cai et al. 2007a), LFDA (Sugiyama 2006, 2007), LE (Belkin and
Niyogi 2001), ViSOM (Yin 2002a), LLE (Roweis and Saul 2000; Lawrence and Sam 2003),
MDS (Cox and Cox 2001), ISOMAP (Tenenbaum et al. 2000), CCA (Hardoon et al. 2004),
SDA (Cai et al. 2007b), and SELF (Sugiyama et al. 2010)). We use six datasets for visualizing
the multidimensional points and classification. Note that PCA, LPP, NPE, IsoProjection, LE,
ViSOM, LLE, MDS, ISOMAP, and CCA are unsupervised methods; FDA and LFDA are
supervised approaches; and SDA, SELF, and SSMDR are semisupervised algorithms.
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4.1. Simulation Settings

First, we introduce the setting of the parameters. For LFDA and SELF, the weigh matrix
is computed by the local scaling method (Zelnik-Manor and Perona 2005) and the heat kernel
(Belkin and Niyogi 2001) for LPP, LE, and SDA. The parameter and kernel width for the heat
kernel and the graph weights are obtained by fivefold cross validation (Lin, Liu, and Chen
2005). For the locality or neighborhood-preservation-induced approaches, when the nearest
neighbor search is applied, the amount of nearest neighbors, k, is always set to 12 when no
further explanation is given. For ViSOM, the map size is 20×20, the number of iterations
is 1,000, and the control parameter in the weight updating formula is set to 0.1. Besides,
the control parameter between LFDA and PCA is 0.5 for SELF, and the parameter between
FDA and the regularized term is 0.5 for SDA. We also test “SSMDR (0.5)” (SSMDR with
μA =0.5) in the simulations.

Numerous simulations in (Chapelle, Schölkopf, and Zien 2006) have been conducted
to evaluate the semisupervised learning methods. Our obtained results show that the per-
formance of dimensionality reduction depends on the types of datasets. For classification,
we use the one-nearest-neighbor classifier with Euclidean metric to avoid the bias caused
by the choice of the learning methods. The steps can be briefly described as follows. First,
we calculate the image subspaces from the sample set (labeled and unlabeled), project the
points into d-dimensional feature space, and create new patterns for learning. We choose the
training data (labeled and unlabeled) and test data (unlabeled) from the new sample pool,
and then train a classifier model. Finally, new data points are identified by a one-nearest-
neighbor classifier. For dimensionality reduction, we aim at embedding the sample points
into subspaces with different reduced dimensions. In this paper, different settings over dif-
ferent reduced dimensions and labeled numbers are used to demonstrate the effectiveness
of these methods. All the used algorithms are implemented in Matlab 7.1. We perform all
simulations on a PC with Intel(R) Core(TM) i5 CPU 650 @3.20GHz 3.19 GHz 4G.

4.2. Data Preparation

In this study, two synthetic and four benchmark datasets are tested for visualization
and classification. The first one is the two-class XOR dataset. Each class has 1,000 points
and two isolated clusters. The second one is the “incomplete tire” dataset associated
with two class labels and has 1,000 instances in each class, and each data point is rep-
resented by a three-dimensional feature. The third one is the pen-based recognition of
handwritten digits database (available from: http://archive.ics.uci.edu/ml/machine-learning-
databases/pendigits/), consisting of 10,992 images of “0”–“9”, in which each image con-
sists of 16 attributes and integers in the range from 0 to 100. The fourth one is letter
image recognition database (available from: http://archive.ics.uci.edu/ml/ machine-learning-
databases/letter-recognition/), in which the images are based on 20 different fonts and each
letter was randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was
converted into 16 attributes scaled to a range of integers from 0 through 255. The fifth one is
the optical recognition of handwritten digits database which consists of 5,620 digits of “0”–
“9” (available from: http://archive.ics.uci.edu/ml/ machine-learning-databases/optdigits/).
The size of each image is 8×8 = 64 pixels, with integers ranged from 0 to 16. And the
last one is the well-known COIL-20 database (available from: http://www.cs.columbia.edu/
CAVE/software/softlib/coil-20.php), in which the size of each image is 32×32 pixels, with
256 gray levels per pixel. Thus, each point of the COIL-20 database is represented by a
1,024-dimensional vector.
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4.3. Multidimensional Data Visualization via Dimensionality Reduction

For data visualization, we mainly evaluate the performance of the learnt embedding
spaces in terms of between-class separability, within-class compactness, and intrinsic mul-
timodality preservation capabilities. For SSMDR, the subspace is spanned by the pair of
transformations ξ̂x = (ξ̂x[1], . . . , ξ̂x[r ] ) and ξ̂y = (ξ̂y[1], ξ̂y[r ] ), and data points will be projected
onto ξ̂x and ξ̂y to generate low-dimensional feature vectors. Here, r equals to 2 that is the
original data will be projected into a two-dimensional space, and the two classes of each
dataset are denoted by “�” and “�.” For XOR and “incomplete tire,” we mainly evaluate the
representation capability of the two-dimensional embedding space obtained by each method.

Here, we use the multimodal XOR shown in Figure 1(d) to demonstrate the efficiency of
the embedding space found by SSMDR. For visualization, we set the k of nearest neighbors
to 6. One fiftieth of the data points are used as labeled and the rest as unlabeled. The
visualization results are exhibited in Figure 3, in which the horizontal axis is the first feature
extracted by each method, while the vertical axis is the second feature. It is noticed that
FDA can only extract one meaningful feature in the two-class problems, which is due to the
limitation of the trace of the matrix (Sugiyama 2007; He et al. 2005). Thus, we randomly
select the second feature. Based on the presented results, the following observations are
found. First, PCA, FDA, LPP, NPE, LFDA, IsoProjection, CCA, and SELF can effectively
preserve the intrinsic local and multimodal structure information hidden in the data, but
they fail to separate samples of “�”-class and “�”-class effectively. This is due to the fact
that they are intrinsically compact in the original input space. Second, SSMDR achieves
within-class compactness with local and multimodal structures preserved, while SDA, MDS,
ViSOM, and the graph-embedding-based LE, LLE, and ISOMAP are unable to deliver the
required results. They tend to mix samples of different classes with each other completely in
the feature spaces. Third, CCA is able to deliver results that are comparable to our proposed
SSMDR method. This is due to the fact that both CCA and SSMDR compute two sets of
basis vectors for projection, which is naturally different from the other methods. We in the
later section will demonstrate the outstanding characteristics of SSMDR in visualization by
using multimodal XOR dataset. We will then conduct another two multidimensional data
visualization simulations using two benchmark datasets.

Here, we test these methods on two benchmark datasets, namely, “incomplete tire” and
pen-based recognition of handwritten digits, and investigate how they behave in visualization.
As described in Roweis and Saul (2000) and Yang et al. (2006), the “incomplete tire” dataset
is a highly challenging problem to dimensionality reduction (Roweis and Saul 2000), because
to date there has no effective mapping function found to be able to embed the data points
of “incomplete tire” to a linear subspace with higher between-class separation and local
information preserved. For the pen-based recognition of handwritten digits dataset, we
randomly choose 400 examples of digits “3,” “5,” “8,” and “9” and create our digit set
for visualizing the embedding results, because digits “3,” “5,” ‘8,” and “9” are similar in
shapes and thus tend to have similar embedding, which may impose greater difficulties to
handwritten digital visualization. In our study, we merge digits “3” and “5” to a single class
represented by “�,” and “8,” and “9” to another class represented by “�.” Figure 4 shows the
original distributions of points of the two datasets. Figures 5 and 6 depict the data embedded
in the embedding space learned by each method. In Figures 5 and 6, the five-pointed stars,
circles, and triangles denote the three classes and the filled and unfilled symbols represent
labeled and unlabeled samples, respectively.

For the synthetic “incomplete tire” dataset, we choose three points out of 10 of the
points from each class as labeled, while the rest are treated as unlabeled. Because two class
samples of the “incomplete tire” dataset are completely mixed with each other in the original
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FIGURE 3. The embedding results of samples in the synthetic XOR dataset, where the filled or unfilled
five-pointed stars and triangles are the labeled or unlabeled samples.
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FIGURE 4. Original distributions of the points of the synthetic “incomplete tire” and pen-based recognition
of handwritten digits datasets in the two-dimensional spaces.

input space, the learnt embedding spaces of unsupervised PCA, LPP, NPE, IsoProjection,
LE, ViSOM, LLE, MDS, and ISOMAP; supervised FDA and LFDA; and semisupervised
SDA and SELF all fail to represent the labeled and unlabeled data points, although intrinsic
structure information can be effectively preserved by some of these methods. Also, these
methods are all unable to achieve between-class separation. On the contrary, it can be seen
from the bottom row of Figure 5 that CCA and SSMDR methods can nicely represent the
labeled and unlabeled sample points.

For the pen-based recognition of handwritten digits dataset, a quarter of samples are used
as labeled and the rest as unlabeled. We observe from the visualization results in Figure 6
that: (1) PCA, LPP, NPE, LFDA, LE, LLE, MDS, and ISOMAP clearly possess within-class
multimodality preservation capability and separate one of the clusters of “�”-class and
“�”-class from each other, but data points of the other clusters are seriously mixed; (2) SDA
and IsoProjection lose the multimodal structure of the “�”-class and fails to separate points
belonging to different classes well; (3) ViSOM tends to mix the partial data of different
classes and seems to preserve the intrinsic multimodal structure. However, a small number
of points are mapped far apart from the cluster center compared to where they are expected
to be; (4) CCA nicely separates the data points of “�”-class and “�”-class, but multimodal
data in each class are projected into a single cluster, which means that multimodal structure
is lost; and (5) due to the multimodality, FDA not only fails to separate points, it also fails to
find the intrinsic characteristics of the multimodal challenging datasets of this kind.

Based on above results and analysis, we can conclude that SSMDR is a promising method
in visualizing the multimodal real data. SSMDR can overcome the difficulties posed by the
challenging “incomplete tire” dataset. This is an essential property in recognizing the images
or objects in the real-world applications.

4.4. Letter Recognition

We address a classification task by employing the real-world letter recognition database
from the UCI ML repository (Blake and Merz 1998). In this study, we randomly choose
400 images (totally 1,600 examples) from letters “A,” “B,” “C,” and “D” and create a
new sample set by merging letters “A” and “C” to a single class (labeled as 1, denoted
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FIGURE 5. The embedding results of samples in the “incomplete tire” dataset, where the filled or unfilled
five-pointed stars and triangles are the labeled or unlabeled samples.
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FIGURE 6. The embedding results of samples in the pen-based recognition of handwritten digits dataset,
where the filled or unfilled five-pointed stars and triangles are the labeled or unlabeled samples.
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FIGURE 7. (a) Examples of character images of the letter recognition database. (b) The distribution of the
dataset in a two-dimensional space.

by “�”) and letters “B” and “D” to another class (labeled as 2, denoted by “�”). Some
preprocessed typical sample images shown in Peter and David (1991) of the letter image
recognition database are displayed in Figure 7(a). And the original distribution of the data
points is exhibited in Figure 7(b). Intrinsic within-class multimodality appears when samples
of different letters are merged into a single class, because the character images are based on
20 different fonts of letters.

We aim at testing PCA, FDA, LPP, LFDA, SELF, SDA, and SSMDR on the
dataset. We choose the average classification accuracy over repetitions as the metric.
Let the mean accuracy be � = (1/N )

∑N
i=1�i and the standard deviation be std(�i ) =√

(1/ (N − 1))
∑N

i=1

(
�i − �̄

)2
, where �i is the classification accuracy rate in the ith rep-

etition and N is the number of repetitions. In all presented results, classification accuracy
rates are averaged over 20 runs of different reduced dimensions or labeled numbers. The
one-nearest-neighbor classifier is also applied to the original image space as baseline. Dif-
ferent proportions of labeled data are selected relative to the number of total samples. Here,
we first fix the numbers of labeled data and vary the reduced dimensions. Four simulation
settings with different degrees of supervision are considered. For semisupervised learning,
we randomly choose L (= 50, 75, 100, 125) images, accompanied with the class labels, per
individual to form the labeled set (4×L in total) and the rest form the unlabeled set. For
classification, labeled and unlabeled samples chosen from the labeled and unlabeled sets
form the training set and the rest are regarded as test samples. For the unsupervised meth-
ods, e.g., PCA, we employ the unlabeled training set to train the learner. For the supervised
methods, e.g., FDA and LFDA, only labeled samples are used for training the learner. For
the semisupervised methods, we apply the training set, including both labeled and unlabeled
data, to train the classifier or learner.

Figure 8 shows the mean classification accuracy rates under different degrees of super-
vision by a one-nearest-neighbor classifier as a function of the reduced dimensions, where
Dim is the number of the dimensionality of the original image space, Lab is the number
of labeled samples, Unlab is the number of unlabeled samples, and Rep is the number of
repetitions. We have the following observations from the results: (1) for each configuration,
the performance of FDA and SDA tends to change in a tiny small range as the number of
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FIGURE 8. Mean classification accuracy rates for the letter recognition dataset by a one-nearest-neighbor
classifier as a function of the reduced dimensions, where Dim is the number of the dimension of the original
space, Lab is the number of labeled data, Unlab is the number of unlabeled data samples, and Rep is the number
of repetitions.

reduced dimensions increases. This is due to the fact that for FDA and SDA, there are at
most c−1 nonzero generalized eigenvalues. Thus, an upper bound on the dimensionality of
the reduced space is c−1 (Martinez and Kak 2001; He et al. 2005), where c is the number
of classes. (2) Since the baseline method uses all the dimensionality of the features for
classification, the classification accuracies exceed those of FDA and SDA for Lab(= 400,
500). (3) PCA, LFDA, and SELF tend to perform well in a complementary way and deliver
comparable results to the baseline method for the cases of Lab(= 200, 500). (4) SSMDR
works well and tends to compensate the weaknesses of the other methods. Its classification
accuracy rises steadily and at a faster rate compared with other methods when the number
of reduced dimensions increases. And most importantly, when the number of dimensions
reaches around five, we can obtain satisfactory results that are consistently superior to
those of other methods. (5) Although LPP is able to deliver satisfactory results when L (=
75, 100, 125) images per individual, LPP is unable to deliver favorable result compared
with SSMDR. LFDA and SELF deliver close results compared with LPP and SSMDR for
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TABLE 1. Means and Standard Deviations of the Classification Accuracy Rates for the Letter Recognition
Dataset over Different Numbers of Reduced Dimensions and Labeled Data.

Data Name

Letter (Dim = 16, Lab = 200, Letter (Dim = 16, Lab = 300,
Unlab = 1,400, Rep = 20) Unlab = 1,300, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

PCA 0.8913 0.0503 0.9450 0.0376 0.9227 0.0554 0.9704 0.0362
FDA 0.9425 0.0038 0.9497 0.1113 0.9606 0.0048 0.9652 0.1010
LPP 0.9281 0.0294 0.9500 0.0974 0.9630 0.0365 0.9900 0.0887
LFDA 0.9437 0.0068 0.9520 0.1077 0.9747 0.0152 0.9890 0.1006
SELF 0.9463 0.0076 0.9560 0.1125 0.9685 0.0201 0.9890 0.1011
SDA 0.9351 0.0078 0.9480 0.1076 0.9605 0.0044 0.9652 0.0978
Our method 0.9453 0.0489 0.9876 0.2981 0.9684 0.0382 0.9995 0.3550
Baseline 0.9420 0.0023 0.9512 0.0432 0.9531 0.0018 0.9754 0.0407

Data Name

Letter (Dim = 16, Lab = 400, Letter (Dim = 16, Lab = 500,
Unlab = 1,200, Rep = 20) Unlab = 1,100, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

PCA 0.9352 0.0613 0.9817 0.0334 0.9307 0.0397 0.9783 0.0378
FDA 0.9615 0.0061 0.9704 0.0946 0.9589 0.0067 0.9660 0.1042
LPP 0.9664 0.0403 0.9950 0.0848 0.9604 0.0380 0.9900 0.0923
LFDA 0.9715 0.0147 0.9887 0.0979 0.9688 0.0119 0.9833 0.1062
SELF 0.9713 0.0142 0.9900 0.0982 0.9683 0.0117 0.9817 0.1059
SDA 0.9615 0.0064 0.9690 0.0950 0.9591 0.0031 0.9687 0.1005
Our method 0.9724 0.0332 0.9998 0.3450 0.9743 0.0255 0.9984 0.3568
Baseline 0.9756 0.0020 0.9850 0.0383 0.9745 0.0014 0.9867 0.0463

Lab (= 300, 400). (6) When the number of labeled data in each class increases, the classifi-
cation performance of almost all methods increases accordingly.

Table 1 presents an overall view of the means and standard deviations (Std) of the
classification accuracy for the letter recognition dataset over the reduced dimensions.
The best result and averaged running time (in seconds) of each method are also de-
scribed in Table 1. For image classification and recognition, let θi = [℘i1,℘i2, . . . , ℘in] and
θ j = [℘ j1,℘ j2, . . . , ℘ jn] represent two feature matrices, then the distance metric between
θi and θ j can be described as Dist(θi , θ j ) = ∑n

t=1 ‖θi t − θ j t‖2. Suppose matrices θ1 and
θ2 are used for storing the two-class data samples labeled by 1 and 2, for any new image
data θ , if Dist(θ, θ1) = min Dist(θ, θ j )and θ1 belongs to class 2, then θ is classified as
class 2, and class 1 otherwise. The recognition accuracy, obtained by a one-nearest-neighbor
classifier, is used as the measurement standards. From Table 1, it can be observed that: (1)
in all cases, SSMDR consistently delivers the highest classification accuracy, e.g., the best
result for the case of Lab (= 300) is 0.9876, and 0.9995, 0.9998, and 0.9984 for the other
configurations. The subspace according to the best obtained result over repetitions is called
the optimal image subspace. (2) For runtime performance, linear PCA, FDA, and LPP are
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FIGURE 9. Mean classification accuracy rates for the letter image recognition dataset over different numbers
of reduced dimensions and labeled data, where d is the number of reduced dimension.

computationally efficient. SSMDR delivers similar results compared with LFDA, SELF, and
SDA. (3) As shown in Figure 8, the classification accuracies of PCA, LPP, and our proposed
SSMDR rise from a relatively low level to a higher level. It is noticed that they all share the
similar trends and standard deviations.

To investigate how the labeled number affects the classification accuracy, we consider
four configurations with different reduced dimensions. We conduct the simulations on the
letter image recognition dataset by varying the labeled numbers. For semisupervised learn-
ing, we randomly choose L (= 10, 20, . . . , 130) images per individual as labeled (4×L in
total). Figure 9 depicts the mean classification accuracy rates by a one-nearest-neighbor
classifier, from which SSMDR delivers the highest accuracies in all cases. The classifica-
tion accuracies of all the methods increase gradually when the number of labeled data and
reduced dimensions increases. Note that though PCA and LPP are unsupervised methods,
better results are obtained, because high input dimensionality helps improving the learning
performance of the classifier. LPP also works well under each configuration. Semisupervised
SELF tends to deliver comparable results to LPP and SSMDR when the number of labeled
data increases. Baseline still works well and delivers comparable or even better performance
compared with PCA, FDA, LFDA, and SDA.
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TABLE 2. Means and Standard Deviations of the Classification Accuracy Rates for the Letter Recognition
Dataset with Different Numbers of Reduced Dimensions and Labeled Data.

Dataset Name

Letter (Dim = 16, d = 8, Rep = 20) Letter (Dim = 16, d = 10, Rep = 20)
Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

PCA 0.9652 0.0019 0.9785 0.0620 0.9713 0.0020 0.9837 0.0639
FDA 0.9551 0.0022 0.9625 0.6711 0.9572 0.0028 0.9695 0.6628
LPP 0.9772 0.0026 0.9892 0.3322 0.9842 0.0023 0.9940 0.3378
LFDA 0.9721 0.0023 0.9838 0.6837 0.9809 0.0015 0.9882 0.6696
SELF 0.9702 0.0024 0.9824 0.6740 0.9809 0.0084 0.9880 0.6929
SDA 0.9566 0.0028 0.9647 0.6350 0.9579 0.0031 0.9725 0.6516
Our method 0.9783 0.0029 0.9899 0.3919 0.9870 0.0024 0.9937 0.4139
Baseline 0.9762 0.0026 0.9882 0.0725 0.9764 0.0017 0.9877 0.0680

Dataset Name

Letter ( Letter (Dim = 16, d = 12,  = 20) Dim = 16, d = 14, RepRep = 20)
Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

PCA 0.9750 0.0014 0.9875 0.0628 0.9749 0.0016 0.9868 0.0625
FDA 0.9585 0.0029 0.9755 0.6582 0.9582 0.0019 0.9720 0.6612
LPP 0.9841 0.0017 0.9940 0.3393 0.9838 0.0016 0.9925 0.3488
LFDA 0.9809 0.0012 0.9925 0.6858 0.9779 0.0016 0.9900 0.6824
SELF 0.9812 0.0102 0.9905 0.6671 0.9795 0.0019 0.9900 0.6840
SDA 0.9587 0.0030 0.9712 0.6597 0.9579 0.0020 0.9685 0.6673
Our method 0.9914 0.0026 0.9972 0.4048 0.9945 0.0022 0.9985 0.4021
Baseline 0.9767 0.0012 0.9892 0.0705 0.9762 0.0016 0.9887 0.0713

We detail the means and standard deviations of the classification accuracy rates for the
letter recognition dataset over different numbers of reduced dimensions and labeled data in
Table 2. The best result and mean running time are also listed. Table 2 shows that SSMDR
is able to deliver the highest mean accuracy and the best test result. And the performance of
SSMDR is stable when the number of labeled data increases. This leads to the small errors
and standard deviations that are comparable to those of LPP, SDA, and SELF. Comparing
with SSMDR, other semisupervised methods deliver lower classification accuracies. Most
importantly, SSMDR can deliver satisfactory results even when only a small number of
labeled data are given, e.g., the accuracy is about 98% with only L (= 10) labeled data in
each individual. For the fixed reduced dimensions, SSMDR needs less running time compared
with LFDA, SELF, and SDA when the amount of labeled data increases.

4.5. Handwritten Digital Recognition

In this subsection, we apply PCA, FDA, LPP, LFDA, SELF, SDA, and SSMDR methods
to the benchmark real-world optical recognition of handwritten digits database from the UCI
ML repository (Blake and Merz 1998) for classification and performance evaluation. In this
study, we randomly choose 400 examples (1,800 examples in total) from digits “0,” “1,” “2,”
“3,” “4,” and “5,” where even digits “0,” “2,” and “4” are merged to a single class (labeled
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FIGURE 10. Some digit sample images of the optical handwritten digits database.

as 1) and odd digits “1,” “3,” and “5” for another class (labeled as 2), and create our sample
set. Our objective is to classify the odd digits from the even digits. Figure 10 shows typical
sample images of the optical handwritten digits database. Because data of different digits are
mixed into several separate points in the original two-dimensional space, illustration for the
original distribution is omitted here. Within-class multimodality appears because samples of
different digits are captured from the different writing styles.

In our simulations, we first fix the labeled numbers as the optimal value and vary the
amount of the reduced dimensions for performance comparison. For semisupervised learning,
a random subset with L (= 20, 40, 60, 80) samples, accompanied with the class labels, per
digit is selected as the labeled set (6×L in total) and the rest are regarded as unlabeled
samples. The one-nearest-neighbor classifier is again used for performing classification and
the classification accuracy rates are averaged over 20 runs.

Figure 11 shows the mean classification accuracy under different degrees of supervision.
From the obtained results, we have the following observations: (1) For each configuration,
SSMDR can almost always achieve the highest accuracy as the amount of labeled data
points increases and the accuracy increases steadily till reach the best record and then keep
small fluctuation. (2) PCA performs well, despite the fact that it is an unsupervised method,
because the projection to the two-dimensional PCA subspace can give reasonably separate
embedding. (3) LPP also works well and the performance increases slightly faster than
those of LFDA, SELF, and SSMDR methods. However, SSMDR tends to outperform the
other methods, including unsupervised PCA and LPP and semisupervised SDA and SELF,
when the number of reduced dimension, d, increases to about 15 or higher in all cases. (4)
SELF works poorly when the number of reduced dimension is relatively small and delivers
the similar result compared to LFDA and FDA. (5) SDA performs better than FDA, but
the performance of FDA and SDA is still constrained by the upper bound of the reduced
space dimension. (6) Due to the fact that the baseline method uses all the dimension of the
features, the baseline method achieves comparable result to PCA, LPP, and our method, and
its performance even outperforms some other several methods.

The means and standard deviations of the classification accuracy rates for the optical
handwritten digits dataset over the reduced dimensions are given in Table 3, in which the
best test result and averaged running time (in seconds) of each method are listed. From
Table 3, we can find that: (1) comparing to the other methods, SSMDR can achieve the
highest classification accuracy in all cases, e.g., the best record of the case of Lab (=120)
for SSMDR is 0.9904, 0.9767 for PCA, 0.8975 for FDA, 0.9635 for LPP, 0.9433 for LFDA,
0.8592 for SELF, 0.9164 for SDA, and 0.9664 for baseline. The best results of PCA, SSMDR,
and the baseline method are superior to other studied methods. In addition, it is noticed that
the best results of PCA and SSMDR outperform those obtained by the baseline method. The
subspace according to the best record is regarded as the optimal image space. (2) From the
perspective of computational time, linear PCA and FDA are still the most computationally
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FIGURE 11. Mean classification accuracy rates for the optical handwritten digits dataset.

efficient among all cases. It is noted that our SSMDR is slightly slower than LPP, LFDA,
SELF, and SDA for Lab (= 120), but it is worth noting that the SSMDR runtime performance
tends to be close to or even better than those of other methods for Lab (= 360, 480).

Next, we aim at testing the semisupervised SELF, SDA, and SSMDR approaches using
six configurations with different labeled numbers by fixing the number of reduced dimensions
first. For semisupervised learning, we randomly choose L(= 5, 10, 15, . . . , 100) examples
per individual as labeled. Figure 12 depicts the chart of the mean classification accuracy
rates and standard deviations, from which the following observations are found. First, the
accuracies of SSMDR exceed those of SDA and SELF in all cases and keep steady, resulting
in small standard deviations. This contributes to improving the performance of recognition
systems. When the number of reduced dimensions increases, the trends of SSMDR become
much steadier. Most importantly, SSMDR shows that it is able to deliver satisfactory results
despite being given with small number of labeled data, e.g., the accuracy of SSMDR is
around 92% for the case of d(= 20). Other semisupervised methods, however, fail to reach
this level. Second, the accuracy rate of SDA is in the medium level lying between SELF and
our proposed SSMDR. It is also noticed that SDA in general is more stable than SELF. Third,
large errors frequently occur in SELF, causing large errors and standard deviations, which
result in increasing the likelihood of unstable classification.
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TABLE 3. Means and Standard Deviations of the Classification Accuracy Rates for the Optical Handwritten
Digits Dataset over Different Numbers of Reduced Dimensions and Labeled Data.

Dataset Name

Digits (Dim = 16, Lab = 120, Digits (Dim = 16, Lab = 240,
Unlab = 1,680, Rep = 20) Unlab = 1,560, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

PCA 0.9643 0.0430 0.9686 0.0685 0.9588 0.0220 0.9707 0.0621
FDA 0.8908 0.0040 0.8975 0.0708 0.9132 0.0047 0.9208 0.2468
LPP 0.9449 0.0545 0.9635 0.0627 0.9462 0.0643 0.9689 0.2005
LFDA 0.9150 0.0624 0.9433 0.0718 0.9071 0.0972 0.9676 0.2551
SELF 0.8030 0.0798 0.8592 0.0725 0.8536 0.0868 0.9121 0.2541
SDA 0.9068 0.0033 0.9164 0.0706 0.9316 0.0054 0.9364 0.2461
Our method 0.9458 0.0864 0.9904 0.3839 0.9427 0.1015 0.9977 0.5551
Baseline 0.9664 0.0025 0.9728 0.0365 0.9614 0.0034 0.9762 0.0764

Dataset Name

Digits (Dim = 16, Lab = 360, Digits (Dim = 16, Lab = 480,
Unlab = 1,440, Rep = 20) Unlab = 1,320, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

PCA 0.9540 0.0434 0.9644 0.3451 0.9703 0.0344 0.9804 0.5119
FDA 0.9511 0.0092 0.9611 0.5581 0.9499 0.0045 0.9583 0.9619
LPP 0.9534 0.0732 0.9761 0.3754 0.9566 0.0443 0.9757 0.5681
LFDA 0.8878 0.0921 0.9481 0.5746 0.9396 0.0114 0.9655 0.9953
SELF 0.8289 0.1165 0.9500 0.5734 0.9224 0.0532 0.9536 0.9920
SDA 0.9564 0.0083 0.9667 0.5565 0.9500 0.0094 0.9619 0.9648
Our method 0.9604 0.0709 0.9954 0.5427 0.9619 0.0606 0.9940 0.4973
Baseline 0.9735 0.0031 0.9813 0.1035 0.9781 0.0029 0.9855 0.1181

Table 4 summarizes the means and standard deviations of the classification accuracy
rates for the handwritten digits dataset. The best record and mean running time are also
provided. As listed in Table 4, SSMDR method tends to outperform SDA and SELF in terms
of classification accuracy and system stability. And SSMDR is found to be competitive in
runtime performance. SELF delivers comparable result to SDA when the number of labeled
data increases. Due to the fact that SELF tends to work relatively unsteady, its standard
deviation is relatively larger than those of the SDA and SSMDR.

4.6. Columbia Object Image Library (COIL-20)

A classification example using the popular Columbia object image library (COIL-20)
image database is studied. The database contains a total of 1,440 with black background for
20 different subjects. Figure 13(a) shows typical examples for the 20 subjects of the COIL-20
database. We apply all the sample images and create two-class problem by merging the 1st,
3rd, . . . , 19th subjects to a single class (labeled as 1, denoted by “�”) and the 2nd, 4th, . . . ,
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FIGURE 12. Mean classification accuracy rates and standard deviations for the optical handwritten digits
dataset.

20th subject to another class (labeled as 2, denoted by “�”). The original distribution of the
dataset is exhibited in Figure 13(b). The dataset is also regarded as multimodal when images
of different subjects are merged into a single class, because different objects are captured
under different degrees.
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TABLE 4. Means and Standard Deviations of the Classification Accuracy Rates for the Optical Handwritten
Digits Dataset over Different Numbers of Reduced Dimensions and Labeled Data.

Dataset Name

Digits (Dim = 200, Data = 1,800, Digits (Dim = 200, Data = 1,800,
d = 15, Rep = 20) d = 20, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

SELF 0.8087 0.0977 0.9058 0.5578 0.8038 0.0950 0.8986 0.5458
SDA 0.9177 0.0577 0.9421 0.5463 0.9224 0.0465 0.9461 0.5355
Our method 0.9460 0.0193 0.9700 0.5806 0.9751 0.0132 0.9913 0.6273

Dataset Name

Digits (Dim = 200, Data = 1,800, Digits (Dim = 200, Data = 1,800,
d = 25, Rep = 20) d = 30, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

SELF 0.8285 0.0867 0.9097 0.6033 0.8513 0.0833 0.9373 0.6176
SDA 0.9236 0.0428 0.9509 0.6019 0.9288 0.0274 0.9486 0.6168
Our method 0.9767 0.0099 0.9865 0.6893 0.9795 0.0116 0.9875 0.7026

Dataset Name

Digits (Dim = 200, Data = 1,800, Digits (Dim = 200, Data = 1,800,
d = 35, Rep = 20) d = 40, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

SELF 0.8572 0.0719 0.9247 0.6178 0.8845 0.0691 0.9396 0.6049
SDA 0.9293 0.0288 0.9515 0.6190 0.9308 0.0220 0.9474 0.6060
Our method 0.9809 0.0095 0.9878 0.6749 0.9816 0.0117 0.9890 0.6890
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FIGURE 13. (a) Sample examples of the 20 subjects in the COIL-20 database. (b) The original distribution
of the used dataset in a two-dimensional space.
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FIGURE 14. Mean classification accuracy rates for the COIL-20 database by a one-nearest-neighbor classifier.

In this dataset, simulations are conducted in the similar way that we first fix the labeled
samples and vary the number of reduced dimensions. For semisupervised learning, we
randomly choose L(= 6, 8, 10, 12) images per individual as labeled (20×L in total) and the
remaining as unlabeled. Prior to this study, we use PCA to preprocess the dataset by reducing
the dimensionality of the original space to 200 for comparisons. We compare FDA, LPP,
LFDA, SELF, and SDA with our SSMDR method. Figure 14 shows the mean classification
accuracy over different degrees of supervision. From the results, it can be noticed that
SSMDR delivers the best learning performance in most cases when the number of labeled
data increases. The accuracy increases gradually from a relatively low level to a higher one,
and the accuracy tends to stabilize around d(= 50) in all cases. For the case of Lab (=
120), LPP is unable to deliver an acceptable result, but its accuracy increases rapidly when
the number of labeled data increases to high level. This is believed to be attributed to the
classifier used. It is interesting to see that LPP even delivers comparable result to SSMDR.
When the number of labeled data increases, SDA and SELF tend to deliver better results. The
accuracy of SDA increases in a faster rate compared to SELF in most cases. As a regularized
variant of FDA, SDA outperforms FDA when the number of labeled data increases to a high
level. Also, as a regularized variant of LFDA, SELF works well in a complementary way
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TABLE 5. Means and Standard Deviations of the Classification Accuracy Rates for the COIL-20 Dataset
over Different Numbers of Reduced Dimensions and Labeled Data.

Dataset Name

COIL (Dim = 200, Lab = 120, COIL (Dim = 200, Lab = 160,
Unlab = 1,320, Rep = 20) Unlab = 1,280, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

FDA 0.8501 0.0108 0.8758 1.0757 0.8397 0.0172 0.8804 1.0957
LPP 0.7634 0.0275 0.7858 1.0754 0.8893 0.0476 0.9107 1.0909
LFDA 0.8563 0.0355 0.8800 1.0738 0.8679 0.0603 0.9032 1.0967
SELF 0.8000 0.0894 0.8775 1.1102 0.8259 0.0791 0.8893 1.1134
SDA 0.7009 0.0099 0.7167 1.0778 0.7840 0.0111 0.7991 1.0949
Our method 0.8921 0.0256 0.9038 1.1922 0.9111 0.0268 0.9295 1.1978

Dataset Name

COIL (Dim = 200, Lab = 200, COIL (Dim = 200, Lab = 240,
Unlab = 1,240, Rep = 20) Unlab = 1,200, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

FDA 0.7975 0.0130 0.8250 1.1170 0.8181 0.0066 0.8302 1.1110
LPP 0.9030 0.0268 0.9200 1.1020 0.9380 0.0197 0.9510 1.0895
LFDA 0.8647 0.0257 0.8913 1.1216 0.8789 0.0334 0.9083 1.1179
SELF 0.8370 0.0719 0.9000 1.1306 0.8609 0.0873 0.9198 1.1215
SDA 0.8243 0.0128 0.8433 1.1189 0.9115 0.0075 0.9292 1.1113
Our method 0.9172 0.0267 0.9347 1.1907 0.9514 0.0152 0.9693 1.1567

and appears to be easily affected by the labeled numbers. SELF tends to achieve comparable
result to LFDA.

According to the above illustrations on the COIL-20 database over different numbers
of reduced dimensions, the means and standard deviations of the classification accuracy are
shown in Table 5. The best test record and averaged running time are also detailed. It can
be seen that SSMDR consistently delivers the best results in all cases. SSMDR also delivers
the comparable or even smaller standard deviations than LFDA and SELF. The runtime
performance of SSMDR is comparable to that of the semisupervised SELF method. It can
also be observed that LPP delivers comparable accuracy and standard deviations to LFDA
and SSMDR. SSMDR has a comparable running time to the FDA and LFDA methods in all
the configurations.

Here, we prepare a classification to test the semisupervised SELF, SDA, and SSMDR
approaches using six configurations over different amounts of labeled data by first setting
the number of reduced dimensions to a fixed value. We randomly select L(= 1, 2, . . . , 15)
examples per individual as labeled data (20×L in total). Figure 15 illustrates the mean
classification accuracy rates and standard deviations, from which we can observe that: (1)
SSMDR almost always delivers the highest accuracy in all cases. It is important to note
that SSMDR can deliver satisfactory results with small labeled numbers, e.g., its accuracy
reaches around 88% for the case of d (= 30). The other two semisupervised SDA and SELF
methods, however, deliver relatively lower accuracies. Moreover, the accuracy of SSMDR
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FIGURE 15. Mean classification accuracy rates and standard deviations for the COIL-20 database over
different numbers of reduced dimensions and labeled data.

keeps steady when the number of labeled data increases. This results in small standard
deviations, and contributes to a stable recognition system. The accuracy of SELF increases
at a faster rate than SDA when the number of labeled samples and reduced dimensionality
increases. From our obtained results, the SELF method exhibits a comparable or even better
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TABLE 6. Means and Standard Deviations of the Classification Accuracy Rates for the COIL-20 Dataset
over Different Numbers of Reduced Dimensions and Labeled Data.

Dataset Name

COIL (Dim = 200, Data = 1,440, COIL (Dim = 200, Data = 1,440,
d = 15, Rep = 20) d = 30, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

SELF 0.6773 0.0208 0.7235 1.3988 0.8003 0.0449 0.8779 1.3868
SDA 0.8270 0.0810 0.9099 1.3719 0.8241 0.0894 0.9325 1.3577
Our method 0.8938 0.0282 0.9263 1.7868 0.9160 0.0188 0.9383 1.6477

Dataset Name

COIL (Dim = 200, Data = 1,440, COIL (Dim = 200, Data = 1,440,
d = 45, Rep = 20) d = 60, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

SELF 0.8313 0.0412 0.8795 1.4134 0.8509 0.0494 0.9051 1.4333
SDA 0.8223 0.0938 0.9350 1.3831 0.8334 0.0765 0.9293 1.4024
Our method 0.9245 0.0208 0.9395 1.5913 0.9298 0.0220 0.9425 1.5228

Dataset Name

COIL (Dim = 200, Data = 1,440, COIL (Dim = 200, Data = 1,440,
d = 75, Rep = 20) d = 90, Rep = 20)

Result

Method Mean Std Best Time (s) Mean Std Best Time (s)

SELF 0.8594 0.0467 0.9139 1.4155 0.8941 0.0529 0.9510 1.4517
SDA 0.8204 0.0899 0.9303 1.3864 0.8395 0.0832 0.9451 1.4197
Our method 0.9325 0.0223 0.9473 1.6859 0.9503 0.0214 0.9641 1.7570

performance than that of SDA when the number of reduced dimensions increases to 60
or more. At last, it can be seen from the trends of the semisupervised SDA, its accuracy
increases from relatively low levels to the high ones.

The means and standard deviations of classification accuracy rates for the COIL-20
dataset are summarized in Table 6, in which the best result and mean running time are also
listed. It can be observed that SSMDR outperforms the semisupervised SDA and SELF
in terms of classification accuracy, best test record, and system stability. The running time
performance of SSMDR is comparable to the other methods. As the number of reduced
dimensions and labeled samples increases, SELF tends to perform better than SDA for the
COIL-20 dataset. When the number of reduced dimensions increases, the mean accuracy of
SELF increases gradually from 0.6773 to 0.8003 to 0.8313 to 0.8509 to 0.8594, and finally
reaches the highest record of 0.8941. The corresponding figures for SDA are 0.8270, 0.8241,
0.8223, 0.8334, 0.8204, and 0.8395. From our obtained results, the standard deviations of
SDA are larger than those of the semisupervised SELF and SSMDR methods.

Based on the above results, we can conclude that SSMDR is a promising dimensionality
reduction and feature extraction technique for high-dimensional image data representation.
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This study shows that SSMDR is a useful technique for classifying real-world image
databases.

5. CONCLUSIONS

It is widely known that most existing supervised, unsupervised, or semisupervised di-
mensionality reduction techniques are able to preserve the global or local structure character-
istics of given data, but they are usually inapt to preserve the intrinsic multimodal structures.
However, dealing with data in the class of multimodal is often required in most real-world
applications. In this paper, we incorporate the local manifold information into the within-
and between-set scatter matrices. Considering that labeled data are relatively expensive to
obtain, to mine useful information from unlabeled data samples, terms based on the PCA
criterion are defined for preserving the global covariance structures of labeled and unla-
beled data. We then propose a novel semisupervised multimodal dimensionality reduction
algorithm, namely, SSMDR, for efficient feature representation and extraction. SSMDR is
naturally formulated on the matrix interpretations of the defined localized scatters and aims
at computing a pair of optimal projection transformations for two sets of variables. As a
result, SSMDR can keep within-set data pairs compact and between-set sample pairs apart.
Also, the projections of interset points can be effectively separated together without losing
the local and multimodal information. By defining reasonable criteria, we show that SSMDR
can keep data pairs in the close vicinity of the original input space nearby in the embedding
space. We also show that SSMDR can deliver excellent performance when the number of
labeled data is relatively smaller than other semisupervised methods. This is an important
characteristic because the amount of labeled data samples is usually small in semisupervised
case. Another major advantage of SSMDR is that the embedding transformations can be
obtained analytically by solving two generalized eigenvalue problems.

In this paper, we focus on linear dimensionality reduction and show that a kernelized
SSMDR can be obtained by the kernel trick. However, the performance of the kernelized
SSMDR heavily depends on the choice of the kernel function and its kernel parameters. Thus,
how to choose the best possible kernel function and parameter still needs to be investigated.
At last, SSMDR is theoretically derived for handling two-class problems, but it can still be
used for dealing with multiclass by merging some of the objects or classes into a single
class. Although this preprocessing approach can deliver respectable performance for many
multiclass problems, our further work will lie in the area of theoretically extending SSMDR
to multiclass case.
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APPENDIX A: MATRIX EXPRESSIONS OF Ã(lw c)†AND Ã(l bc)†

We similarly interpret the localized within-class scatter matrix Ã(lwc)† as the following
form:

Ã(lwc)† = 1

2

m∑
i, j=1

(yi − y j )(yi − y j )
T Ã(wc)†

i ,j = 1

2

m∑
i, j=1

(
yi yT

i + y j yT
j − yi yT

j − y j yT
i

)
Ã(wc)†

i ,j ,

then the localized within-class scatter matrix Ã(lwc)†can be expressed in a matrix form as
follows:

Ã(lwc)† =
m∑

i=1

F̃ (wc)†
ii

yi yT
i Y Ã(wc)†Y T = Y W̃ (wc)†Y T ,

where W̃ (wc)† = F̃ (wc)† − Ã(wc)† and F̃ (wc)† is the m-dimensional diagonal matrix with ith
input element being F̃ (wc)†

ii = ∑m
j=1 Ã(wc)†

i ,j , which yields equation (14). Next, we analogously

represent the between-class scatter or spread Ã(lbc)† in a localized manner as

Ã(lbc)† = 1

2

m∑
i, j=1

(xi − y j )(xi − y j )
T Ã(bc)†

i ,j

= 1

2

m∑
i=1

xi

⎛⎝∑
j

Ã(bc)†
i ,j

⎞⎠ xT
i + 1

2

m∑
j=1

y j

(∑
i

Ã(bc)†
i ,j

)
yT

j

− 1

2

m∑
i, j=1

xi Ã(bc)†
i ,j yT

j − 1

2

m∑
i, j=1

y j Ã(bc)†
j ,i xT

i ,

then the localized between-class scatter Ã(lbc)† can be expressed in a matrix interpretation as

Ã(lbc)† = 1

2
(X D̃(bc)†XT + Y M̃ (bc)†Y T) − 1

2
(X Ã(bc)†Y T + Y Ã(bc)†T XT),

where D̃(bc)†(M̃ (bc)†) is an m-dimensional diagonal matrix with the ith (or jth) element being
D̃(bc)†

ii = ∑m
j=1 Ã(bc)†

i ,j , M̃ (bc)†
j j = ∑m

i=1 Ã(bc)†
i ,j , which yields equation (24).

APPENDIX B: COMPUTATIONAL ANALYSIS OF T̂y

Here, we formulate the localized scatters Ã(rlbc)†
	 and Ã(rlwc)†

	 in the kernel space in a
similar manner as

Ã(rlbc)†
	 = (1 − μA)

2

[
	(X )D̃(bc)†	(X )T +	(Y )M̃ (bc)†	(Y )T − (	(X ) Ã(bc)†	(Y )T

+ 	(Y ) Ã(bc)†T	(X )T)
] + μA

l
	(Yu)L̃ (Y )

u 	(Yu)T,

By substituting Ã(rlbc)†
	 , Ã(rlwc)†

	 , and equation (31) into the generalized eigenvalue prob-
lem in equation (12), we obtain

Ã(rlbc)†
	 	 (Y ) T̂y = δ̃y Ã(rlwc)†

	 	 (Y ) T̂y. (39)
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Let Kyy = (	(Y ))T	(Y ) = K T
yy be the kernel matrix between labeled samples in Y

and Kyyu = 	(Y )T	(Yu) be the kernel matrix between labeled samples in Y and unlabeled
samples in Yu and Kyu y = K T

yyu
. By multiplying equation (39) by 	(Y )T from the left-hand

side, we can obtain[
(1 − μA)

2
(Kyx D̃(bc)†Kxy + Kyy M̃ (bc)†Kyy − K (bc)†) + μA

l
Kyyu L̃ (Y )

u Kyu y

]
T̂y

= δ̃y((1 − μA)Kyy W̃ (wc)†Kyy + μA Kyy)T̂y, (40)

where K (bc)† = Kyx Ã(bc)†Kyy + (Kyx Ã(bc)†Kyy)T. Here, we similarly set

ϒ
	

3 = (1 − μA)

2
[Kyx D̃(bc)†Kxy + Kyy M̃ (bc)†Kyy − Kyx Ã(bc)†Kyy − (Kyx Ã(bc)†Kyy)T]

+ μA

l
Kyyu L̃ (Y )

u Kyu y,

ϒ
	

4 = (1 − μA) Kyy W̃ (wc)†Kyy + μA Kyy.

Because the matrixϒ
	

4 is not always of full rank, we also need to regularize it to avoid the
singularity and ensure the stability of following generalized eigen-decomposition problem
by adding the generalized term μI I with a small positive scalar μI ; thus, equation (40) can
be replaced by

ϒ	
3 T̂y = δ̃y

(
ϒ	

4 + μI I
)
T̂y.

Let {T̂y[r ]}d
r=1 be the generalized eigenvectors associated with the first d largest gener-

alized eigenvalues δ̃y[r ], r = 1, 2, . . . , d, where eigenvalues and eigenvectors are sorted and

normalized as δ̃y[1] ≥ δ̃y[2] ≥ · · · ≥ δ̃y[d] and T̂y[r ]

T
(ϒ	

4 + μI I )T̂y[r ] = 1 for r = 1, 2, . . . , d,
which yields equation (38).


