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Abstract—Isomap is a well-known nonlinear dimensionality
reduction (DR) method, aiming at preserving geodesic distances
of all similarity pairs for delivering highly nonlinear manifolds.
Isomap is efficient in visualizing synthetic data sets, but it usually
delivers unsatisfactory results in benchmark cases. This paper
incorporates the pairwise constraints into Isomap and proposes a
marginal Isomap (M-Isomap) for manifold learning. The pairwise
Cannot-Link and Must-Link constraints are used to specify the
types of neighborhoods. M-Isomap computes the shortest path
distances over constrained neighborhood graphs and guides the
nonlinear DR through separating the interclass neighbors. As a
result, large margins between both inter- and intraclass clusters
are delivered and enhanced compactness of intracluster points is
achieved at the same time. The validity of M-Isomap is examined
by extensive simulations over synthetic, University of California,
Irvine, and benchmark real Olivetti Research Library, YALE,
and CMU Pose, Illumination, and Expression databases. The data
visualization and clustering power of M-Isomap are compared
with those of six related DR methods. The visualization results
show that M-Isomap is able to deliver more separate clusters.
Clustering evaluations also demonstrate that M-Isomap delivers
comparable or even better results than some state-of-the-art DR
algorithms.

Index Terms—Isomap, manifold learning, nonlinear dimension-
ality reduction (DR), pairwise constraints (PCs), visualization.

I. INTRODUCTION

H IGH-DIMENSIONAL data analysis has been attracting
considerable attention, as most of emerging applications

are related with the high-dimensional attributes, such as gene
expressions and face recognition. However, high-dimensional
attributes usually contain redundant information. Therefore,
extracting the informative attributes that hold the required
information is important. Note that human eyes are impossible
to visually perceive the high-dimensional representations of
samples, so reducing the dimensionality of data to two or
three and visualizing embedded data have become increasingly
useful for multivariate analysis. Also, visualization via dimen-
sionality reduction (DR) plays an important role in revealing
the intrinsic characteristics, e.g., local or nonlinear structures,
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of high-dimensional data. DR aims to compute a set of optimal
or close-optimal projections for mining the low-dimensional
structures of high-dimensional observations [1], [2].

In the last decades, many unsupervised and discriminant DR
algorithms have been proposed, such as principal component
analysis (PCA) [4], multidimensional scaling (MDS) [5], and
linear discriminant analysis (LDA) [4]. PCA, LDA, and MDS
are linear methods widely applied in data visualization and
classification, making them appealing in revealing the linear
relations between two sets of features. However, nonlinear
structures are rather common in real data. Obviously, it is ad-
vantageous to apply the nonlinear DR or data visualization tech-
niques to real data [6]. Laplacian eigenmaps [2], locally linear
embedding (LLE) [1], and Isomap [7] are three representative
manifold learning algorithms proposed for nonlinear DR and
data visualization. These methods are efficient at visualizing
artificial data sets and are powerful to handle nonlinear data.
However, they are unsupervised methods, so they cannot make
use of any supervised prior information for discrimination.
Also, they fail to identity the types (inter- or intraclass) of
neighborhoods. To address these issues, supervised Isomap
(S-Isomap) [11] and supervised LLE (SLLE) [21] have been
recently proposed by enabling the inclusion of class labels
directly. SLLE guides the discriminant learning by increasing
the preobtained distances artificially between interclass points
and leaving the distances unchanged for those intraclass points.
S-Isomap drives the discriminant learning through defining a
new distance metric to enhance interclass dissimilarity over
intraclass similarity. The same idea of SLLE and S-Isomap is to
pick the neighbors of each point from the same class and then
separate interclass points through improving intraclass com-
pactness. Satisfactory results are reported if data sets are well
sampled with relatively convex intrinsic geometry. However, as
can be observed from the benchmark simulations of this paper,
SLLE and S-Isomap are not so powerful for handing multiple-
class real cases.

In this work, we incorporate the pairwise Cannot-Link (CL)
and Must-Link (ML) constraints [13]–[15] induced from the
neighborhood graph into the Isomap to guide the discriminant
manifold learning. We then propose a pairwise-constrained
marginal Isomap (M-Isomap) for visualization and nonlinear
DR. M-Isomap considers both discriminant information and
geometrical information of data. Note that pairwise constraints
(PCs) can sometimes be achieved with minimal human effort
and can provide more supervision information compared with
the class labels. More importantly, PC sets are flexible in
regulating the supervised information. In other words, we can
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employ all available constraints or partial constraints for the
simulations. Apparently, it is a great advantage to apply PC
for discriminant manifold learning. Different from the ideas of
S-Isomap and SLLE, M-Isomap handles the inter- and intra-
class neighbors independently. Also, M-Isomap approximates
the geodesic distances by the shortest path distances based on
the constrained neighborhood graphs. Specifically, M-Isomap
aims to preserve the pairwise geodesic distances between intra-
class similarity pairs and aims to separate the interclass neigh-
bors in the reduced embedding space. Based on the extracted
informative features, large margins between inter- and
intraclass clusters are organized, delivering a strong interclass
discrimination power. A related PC-guided DR method is the
constraint margin maximization (CMM) criterion [14], [15].
CMM maximizes the constraint margin of data sets, but it only
focuses on interclass discrimination without considering the
data geometry. Another related algorithm is called average
neighborhood margin maximization (ANMM) [3] which
also considers the types of neighborhoods, but the ANMM
framework is inherently different from ours in two aspects.
First, ANMM directly drives the discrimination by class labels,
so it will be rigid in regulating supervised information. Second,
our algorithm is formulated on the classical Isomap learning
framework, so their objectives are different. By visualizing
synthetic and benchmark data sets, the results demonstrate that
our M-Isomap method is powerful for handling multiple-class
real problems.

This paper is outlined as follows. Section II briefly reviews
Isomap and S-Isomap. Section III details M-Isomap. Section IV
describes the simulations and evaluates the M-Isomap using
synthetic, UCI, and real ORL, YALE, and CMU PIE face
databases. Finally, this paper is concluded in Section V.

II. PRELIMINARIES

A. Classical Isomap Algorithm

For a given set of data points x1, x2, . . . , xN in n-
dimensional input space �n, Isomap aims at seeking an optimal
subspace that best preserves the geodesic distances between
points, i.e., the geodesic distance between paired points xi

and xj is as close to the Euclidean distance between their
low-dimensional representations yi and yj as possible. Isomap
proceeds DR in three steps. First, Isomap finds the neighbors
of points on the manifold M. The ε-neighborhood [2] and
k-neighborhood [2] can be used here. Then, a weighted undi-
rected neighborhood graph G = (V,E), where node vi ∈ V
corresponds to point xi, is constructed based on the Euclidean
distances. An edge e(xi, xj) ∈ E with weight dX(xi, xj) is
put between vi and vj if xi and xj are mutually neighbors,
where dX(xi, xj) is the Euclidean distance between points
xi and xj . Second, Isomap estimates the geodesic distances
dM (xi, xj) between all pairs of points on the manifold through
computing all the shortest path distances dG(xi, xj) in G. To
find the shortest paths, Dijkstra’s algorithm [16] and Floyd’s
algorithm [17] can be applied. After computing the shortest
path distances, Isomap initializes dG(xi, xj) = dX(xi, xj) if xi

and xj are connected by an edge and dG(xi, xj) = ∞ if other-
wise. Then, for each value of p = 1, 2, . . . , N , in turn, replace

all the entries dG(xi, xj) by min{dG(xi, xj), dG(xi, xp) +
dG(xp, xj)}. The matrix of final values DG = {dG(xi, xj)}
contains the shortest path distances between all pairs of points
on the manifold. At last, MDS is used to the matrix of distances
DG = {dG(xi, xj)} to construct the low-dimensional coordi-
nates yi of Y in a d-dimensional space �d (d ≤ n). The Isomap
criterion is defined as

J(Y ) = min
Y

‖τ(DG)− τ(DY )‖F (1)

where DY denotes the matrix of Euclidean distances
{dY (yi, yj) = ‖yi − yj‖} in �d, τ(DY ) is the corresponding
Euclidean inner product matrix, τ(DG) is the shortest path
inner product matrix, ‖�‖ is the l2-norm, and ‖�‖F is the
Frobenius matrix norm. In a least square sense, Isomap ex-
pects Y TY to be close to τ(DG) [10], where T denotes the
transpose of a matrix. According to Tenenbaum et al. [7] and
Mardia et al. [8], the global minimum of (1) can be obtained
by setting the coordinates yi to the top d eigenvectors of
τ(DG). Let Si,j = (DG)

2
i,j and the centering matrix H = I −

(1/N)eeT [9], where I is an identity matrix and e is a vector
of all ones; then, τ(DG) = −HSH/2. Finally, the embedding
Y is obtained as [

√
λ1τ1,

√
λ2τ2, . . . ,

√
λdτd]

T, where {τi}di=1

denotes the eigenvectors according to the first d leading eigen-
values of the matrix τ(DG).

B. S-Isomap Algorithm

By considering the class label information of data, a super-
vised version of Isomap, namely, S-Isomap, has been recently
proposed. Let l(xi) ∈ {1, 2, . . . , c}, with i = 1, 2, . . . , N , be
the class labels of points {xi}Ni=1; S-Isomap proceeds the
supervised nonlinear DR using similar steps as Isomap.
S-Isomap optimizes the same problem as Isomap, i.e.,
S-Isomap also seeks Y TY to be as close to τ(DG) as possible.
The major difference between Isomap and S-Isomap lies in the
step of constructing the neighborhood graph and setting the
weights. To improve the compactness of intraclass points and
pull interclass points away, S-Isomap defines the following
dissimilarity between samples xi and xj according to their
associated class labels l(xi) and l(xj):

d̂X(xi, xj)=

⎧⎪⎪⎨
⎪⎪⎩

√
1−exp

(
−d2

X
(xi,xj)

β

)
, if l(xi)= l(xj)√

exp
(

d2
X
(xi,xj)

β

)
− α, if l(xi) �= l(xj)

(2)

where parameter β is added to prevent d̂X(xi, xj) from increas-

ing too fast when d̂X(xi, xj) is relatively large. The parameter
α is added to ensure that a smaller value of dissimilarity is im-
posed for interclass points than for intraclass points [11]. Differ-
ent from the first step of Isomap, the neighborhood relationships
of sample points and the neighborhood graph G̃ of input data in
S-Isomap are determined based on the dissimilarity d̂X(xi, xj)
between the points. The neighborhood of xi is defined as the
k most close points or the points whose dissimilarity is less
than ε. When defining the weights, d̂X(xi, xj) is set to the



ZHANG et al.: M-ISOMAP: ORTHOGONAL CONSTRAINED MARGINAL ISOMAP FOR DR 3

Fig. 1. Geometrical interpretation of our proposed pairwise-constrained M-Isomap criterion.

edges linking vi and vj on graph G̃ if xi and xj are neighbors.
The latter two steps of S-Isomap are similar in spirit to those
of Isomap except that S-Isomap computes the shortest path
between each pair of points according to the edge weights rather
than the Euclidean distances. Based on the weights d̂X(xi, xj),
the interclass dissimilarity is larger than intraclass dissimilar-
ity, delivering a high discriminative power on S-Isomap. It is
noted that, except the k number in the neighborhood definition,
another two key parameters α and β, which may significantly
influence the neighborhoods of samples and final embeddings,
are involved. However, one must notice that estimating such
tuning parameters will never be easy and straightforward.

III. ORTHOGONAL M-ISOMAP

A. Pairwise-Constrained Neighborhood Graphs

This work models the M-Isomap algorithm from a pairwise-
constrained perspective. For data set X = [x1, x2, . . . , xN ]
with the class labels l(xi) ∈ {1, 2, . . . , c}, with
i = 1, 2, . . . , N , we conduct the k-nearest neighbor search
(NNS) to find the neighbors of each point based on the
Euclidean distances between the points and then construct
a neighborhood graph G = (V,E). Denote by N

(xi)
+ the

k neighbor set of vi ∈ V . We put weight ∈ {0, 1,−1} to
the edge e(xi, xj) ∈ E linking xi and xj to distinguish the
types (inter- or intraclass) of the neighboring pairs. More
specifically, e(xi, xj) = 1, when xj ∈ N

(xi)
+ or xi ∈ N

(xj)
+ ,

if l(xj) = l(xi); e(xi, xj) = −1, when xj ∈ N
(xi)
+ or

xi ∈ N
(xj)
+ , if l(xj) �= l(xi); and e(xi, xj) = 0, if xj �∈ N

(xi)
+

and xi �∈ N
(xj)
+ . Based on the aforementioned definitions, the

ML and CL constraint sets for M-Isomap are defined as

SML= {(xi, xj)|e(xi, xj)=1, vi∈V, vj ∈V, l(xj)= l(xi)}
(3)

SCL= {(xi, xj)|e(xi, xj)=−1, vi∈V, vj ∈V, l(xj) �= l(xi)} .
(4)

By removing edges e(xi, xj) with negative weights from the
graph G, we obtain an ML-constrained neighborhood graph
GML = (V,EML) that has the same vertices as G. Similarly,
by removing edges e(xi, xj) with positive weights from G,
we can obtain a CL-constrained neighborhood graph GCL =
(V,ECL) with the same vertices as graph G.

Here, we consider a binary-class case in the left of Fig. 1,
in which each class has two separate clusters, i.e., multimodal.
Based on our definitions, we divide the similarity neighboring
pairs to inter- and intraclass. Note that we show some typical
examples of the ML and CL constraints by arrows. For
efficient DR and feature extraction, it is desired that the
compactness of neighboring pairs constrained by ML can be
enhanced, while high separation between neighboring pairs
constrained by CL is achieved, because we want to separate
them in the reduced space. This paper will focus on addressing
this issue. After performing our M-Isomap for nonlinear DR,
the embeddings can be geometrically illustrated in the right of
Fig. 1, from which we find that large margins between inter-
and intraclass clusters are delivered. More importantly, natural
clusters within each class, i.e., multimodal structure, can be
preserved, since intraclusters will not be projected into a single
cluster.

Since our technique integrates the PCs and exhibits large
margins between different clusters, this method is referred to
as constrained M-Isomap. We elaborate in the next section the
definition and objective function of the presented M-Isomap
algorithm.

B. Objective Function

The main objective of M-Isomap is to compute the em-
beddings from the pairwise-constrained geodesic space of the
nonlinear data manifold. Like Isomap and S-Isomap, M-Isomap
proceeds the nonlinear DR in three steps. The first step is
performed by determining the k neighbors or by choosing all
points within a fixed radius ε on the manifold. Accordingly,
the ML and CL constraint sets can be computed. Based
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on the constrained neighborhood graphs GML and GCL,
d
(ML)
X (xi, xj) = ‖xi − xj‖ is reset on the edges e(xi, xj) ∈

EML linking pair (xi, xj) ∈ SML over graph GML. Similarly,

a weight d(CL)
X (xi, xj)=‖xi−xj‖ will be reset on edges e(xi,

xj) ∈ ECL connecting pair (xi, xj) ∈ SCL over the graph
GCL. The geodesic distances dML

M (xi, xj) and dCL
M (xi, xj)

between all pairs of constrained points on the manifold are esti-
mated in the second step, where dML

M (xi, xj) and dCL
M (xi, xj)

denote the geodesic distances between pairs (xi, xj) ∈ SML

and SCL, respectively. To estimate dML
M (xi, xj) and dCL

M (xi,
xj), M-Isomap approximates dML

M (xi, xj) and dCL
M (xi, xj)

with the shortest path distances dML
G (xi, xj) and dCL

G (xi, xj)
between all vertex pairs over graphs GML and GCL,
respectively. To improve the compactness of intraclass
similarity pairs, we normalize the edge weights d

(ML)
X (xi, xj)

to d̃
(ML)
X (xi, xj) = d

(ML)
X (xi, xj)/max(d

(ML)
X ), where

max(d
(ML)
X ) is the biggest edge weight in d

(ML)
X (xi, xj). It

is worth noting that, based on the normalized edge weights
d̃
(ML)
X (xi, xj) over GML, the shortest paths keep consistent

with those over d(ML)
X (xi, xj), but the shortest path distances

dML
G (xi, xj) are shortened by computing from d̃

(ML)
X (xi, xj).

The procedures of computing the shortest path distances
are similar to those of Isomap. Finally, M-Isomap uses
the trace ratio (TR) optimization [18]–[20] to the matrices
DML

G = {d̃ML
G (xi, xj)} and DCL

G = {dCL
G (xi, xj)} for

computing the embeddings of the original samples in a reduced
d-dimensional Euclidean space.

Recall that S-Isomap and Isomap seek the matrix τ(DY )
over all points to be as close to τ(DG) as possible. As a
result, for some complex distributed real data sets, the interclass
neighbors are likely to be congregated in the reduced output
space. Note that S-Isomap optimizes the same problem as
Isomap and achieves interclass discrimination via enhancing
the interclass dissimilarity over the intraclass dissimilarity, so
S-Isomap is incapable of delivering large margins between
inter- and intraclass clusters, although a new distance metric
has been defined to replace the original Euclidean distances.
Unlike S-Isomap and Isomap, to deliver large margins for
interclass discrimination, M-Isomap handles the ML- and
CL-constrained points independently. For the ML constraint
set, M-Isomap optimizes the following criterion:

JML(Y )=min
Y

∑
(xi,xj)∈ML

∥∥dML
G (xi, xj)−dML

Y (yi, yj)
∥∥2 (5)

where yi is the low-dimensional representation of xi and
dML
Y (yi, yj) = ‖yi − yj‖ is the Euclidean distance between

yi and yj in the reduced space. That is, M-Isomap preserves
the neighborhood relationship via seeking the distance met-
ric dML

Y (yi, yj) to be as close to the shortest path distance
dML
G (xi, xj) as possible when data pair (xi, xj) ∈ SML. As

a result, the compactness of data pairs (xi, xj) ∈ SML can be
effectively enhanced. By extending (5) to all data points of the
data set, we have the following matrix form:

JML(Y ) = min
Y

∥∥τ (DML
G

)
− τ(DY )

∥∥2
F

(6)

where τ(DML
G ) denotes the shortest path inner product matrix

constrained by ML. Similarly, M-Isomap aims at optimizing
the following criterion for points in the CL set:

JCL(Y )=max
Y

∑
(xi,xj)∈CL

∥∥dCL
Y (yi, yj)−dCL

G (xi, xj)
∥∥2 (7)

where dCL
Y (yi, yj) = ‖yi − yj‖ denotes the Euclidean distance

between the low-dimensional representations of the corre-
sponding pair (xi, xj) ∈ SCL. That is, M-Isomap aims at sepa-
rating xi from point xj by seeking the distance dCL

Y (yi, yj) to
be as far to the shortest path distance dCL

G (xi, xj) as possible.
As a result, more separated embeddings of pairs (xi, xj) ∈ SCL

are obtained, delivering large inter- and intracluster margins.
With all the points considered, the aforementioned criterion can
be written as

JCL(Y ) = max
Y

∥∥τ(DY )− τ
(
DCL

G

)∥∥2
F

(8)

where τ(DCL
G ) denotes the shortest path inner product matrix

based on the CL constraint set.
Fig. 2 shows the geometric interpretation of the M-Isomap

criteria in (5) and (7). We take the neighbors (xa, xb) as an ex-
ample to show the effect of the PCs on the embeddings, where
dY (xa, xb) is the Euclidean distance between xa and xb and
dML
G (ya, yb), dCL

G (ya, yb), and dG(xa, xb) are the shortest path
distances. The paths directed by arrows are the shortest paths.
After minimizing the criterion in (5), the difference between the
distances dML

G (ya, yb) and dML
Y (ya, yb) is as small as possible,

since enhanced compactness of the data pairs (xi, xj) ∈ SML

can be gotten. Resembling Isomap, minimizing ‖τ(DML
G )−

τ(DY )‖2F is equivalent to maximizing Y τ(DML
G )Y T. In con-

trast, if neighboring pair (xa, xb) ∈ SCL, i.e., interclass neigh-
bors, after maximizing the criterion in (7), dCL

Y (ya, yb) will
be as large as possible by comparing with the shortest path
distance dCL

G (ya, yb), since we aim at separating xa from xb

under this case. We similarly minimize Y τ(DCL
G )Y T instead of

maximizing ‖τ(DY )− τ(DCL
G )‖2F . As a result, the embedded

Euclidean distance dCL
Y (ya, yb) is far larger than dML

Y (ya, yb)
in the reduced space. Resembling [7] and [9], let QML

i,j =

(DML
G )

2

i,j , QCL
i,j = (DCL

G )
2

i,j , and matrix H = I − (1/N)eeT;
we similarly have τ(DML

G ) = −HQMLH/2 and τ(DCL
G ) =

−HQCLH/2.
By combining (6) and (8), we equivalently optimize the

following TR problem [18]–[20]:

Y ∗ = arg max
Y Y T=I

tr
(
Y τ

(
DML

G

)
Y T

)
tr
(
Y τ

(
DCL

G

)
Y T

) . (9)

From (9), the low-dimensional embedding coordinates in Y
can be achieved subject to the orthogonal constraint Y Y T =
I . The detailed implementation procedures of M-Isomap are
summarized in Table I.
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Fig. 2. Geometric interpretation of the maximization and minimization criteria of M-Isomap.

TABLE I
M-ISOMAP ALGORITHM

C. Effective Solution With TR Optimization

In this section, we will show how to compute the TR
problem maxY Y T=I tr(Y τ(DML

G )Y T)/tr(Y τ(DCL
G )Y T) of

M-Isomap. For given two symmetric matrices τ(DML
G ) =

−HQMLH/2 and τ(DCL
G ) = −HQCLH/2, the iterative trace

ratio (ITR) algorithm [19], [20] can be applied to solve this
TR problem. The ITR algorithm tackles the TR problem
by directly optimizing the objective tr(Y vτ(DML

G )(Y v)T)/

tr(Y vτ(DCL
G )(Y v)T) if the row vectors of Y v are orthogo-

nal together. Given λv at each iteration v, the optimum ma-
trix Y v can be obtained from the following trace difference
problem [19]:

Y v=arg max
Y Y T=I

tr
(
Y τ

(
DML

G

)
Y T−λvY τ

(
DCL

G

)
Y T

)
. (10)

Then, the ITR method renews λv+1 as the TR value given
by Y v: λv+1 = tr(Y vτ(DML

G )(Y v)T)/tr(Y vτ(DCL
G )(Y v)T)

until convergence of the algorithm. Theoretical analysis shows
that the ITR algorithm delivers specific solutions and converges
to the global optimum [19], [20]. Note that ITR initializes
Y 0 to be an arbitrary orthogonal matrix; thus, ITR may be
unstable because of the randomness. Most importantly, the

TABLE II
TR OPTIMIZATION FOR SOLVING M-ISOMAP

orthogonal initialized Y 0 is difficult to be constructed, and a
bad initialization may greatly increase the number of iterations
in the optimizations. In this work, we initialize λ0 = 0 instead
of initializing Y 0 to be the rowly orthogonal matrix. The
algorithmic procedures of using ITR to solve our M-Isomap
problem are described in Table II. Note that, under TR criterion,
the low-dimensional coordinate vectors are orthogonal together,
so in the linearized cases, the similarity can be effectively
preserved if it is based on the Euclidian distance [20].

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we examine the proposed M-Isomap al-
gorithm by visualizing synthetic, UCI, and real data sets.
The visual and clustering performances are compared with
those of the unsupervised Isomap, LLE, Hessian LLE (HLLE)
[12], and discriminant approaches including S-Isomap,
SLLE, CMM [14], [15], and ANMM [3]. For each method,
k-neighborhood is used for finding the neighbors. For
S-Isomap, parameters α and β are defined the same as in
[11]. The parameter in the objective function of CMM is
set to 0.5. In this study, three benchmark real face databases
are tested. The first one is the ORL database (available at
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http://www.uk.research.att.com/facedatabase.html), the second
one is the YALE database (available at http://cvc.yale.edu/
projects/yalefaces/yalefaces.html), and the third one is the
CMU PIE database [23]. In the simulations, original images
were resized to 32 × 32 pixels due to computational consid-
eration. Therefore, each face is denoted by a 1024-dimensional
vector in the image space. In our study, we aim at visualizing
the whole data sets, i.e., PC sets are created based on the class
labels of all points. To numerically evaluate the results, the
following evaluation metric is applied. All the simulations were
performed on a personal computer with Intel(R) Core i5-650
CPU at 3.20 GHz (3.19 GHz 4G).

A. Similarity Evaluation Metric

Clustering performance is evaluated by comparing the ob-
tained cluster label of each datum with that provided by the data
corpus. The accuracy rates and normalized mutual information
(MI) metric [22], [24] are used to measure the clustering. Given
a point xi, let ri and fi be the obtained cluster label and the
provided class label. The clustering accuracy is defined as

AC =

N∑
i=1

δ (fi,Map(ri))

N
(11)

where N is the total amount of data, δ(p, q) is the delta function
which equals one if p = q and equals zero if otherwise, and
Map(ri) is the permutation mapping function, mapping each
ri to the equivalent label from the data corpus. Let C denote
the set of clusters obtained from the ground truth and C ′ denote
the set of clusters obtained from our method. Their MI metric
MI(C,C ′) is defined by

MI(C,C ′)=
∑

ci∈C,c′
j
∈C′

Pr
(
ci, c

′
j

)
·log2

Pr
(
ci, c

′
j

)
Pr(ci)·Pr

(
c′j
) (12)

where Pr(ci) and Pr(c′j) are the probabilities that a point
randomly selected from the data corpus belongs to the clusters
ci and c′j , respectively, and Pr(ci, c

′
j) is the joint probability

that the arbitrarily selected point belongs to clusters ci and c′j .
MI(C,C ′) takes values between zero and max(H(C), H(C ′))
as inputs, where H(C) and H(C ′) are the entropies of C and
C ′, respectively. To simplify comparisons between different
pairs of cluster sets, the following normalized MI is commonly
used:

MI(C,C ′) =
MI(C,C ′)

max (H(C), H(C ′))
. (13)

It is easy to check that MI(C,C ′) ranges from zero to one,
i.e., MI is equal to one if the two sets of clusters are identical
and zero if the two sets are completely independent.

B. Visualizing Synthetic Data Set

This section evaluates M-Isomap using a challenging syn-
thetic 3-D “four moons” data set. This data set has four clusters.
Each cluster denoted as a single class has 150 points and looks
like a moon. The original distribution is shown in Fig. 3(a), in

Fig. 3. Original distribution and typical images of the data sets. (a) Synthetic.
(b) ORL. (c) YALE. (d) CMU PIE.

which each symbol plus a color denotes a class. We see clearly
that interclass points of the data set are linearly inseparable,
so it is a challenging problem for DR. This data set is mainly
used to evaluate the intraclass compactness and interclass sepa-
ration. The between-class separation is directly reflected by the
produced margins between interclusters.

We show the 2-D embeddings of the “four moons” data set
in Fig. 4. For each method, the k value in k-neighborhood is
set to 45. For CMM and M-Isomap, 60% ML constraints plus
60% CL constraints, which are randomly selected from the
constraint sets, are used in all simulations if without special
remarks. Note that CMM is a semisupervised method. In our
simulations, we apply all points to construct both the supervised
and unsupervised parts. Observing the results, we find the
following.

1) The embeddings of the clusters are still overlapped in
the results of unsupervised Isomap, LLE, HLLE, and
discriminant ANMM, CMM, S-Isomap, and SLLE, al-
though they can reveal the intrinsic structures of the set.
Thus, these methods are likely to produce relatively high
clustering errors.

2) Compared with other methods, our M-Isomap provides a
clear separation on the embeddings of the clusters. It is
interesting to note that the clusters are linearly separable
in the M-Isomap embedding space. We also observe
that large inter- and intraclass margins are produced by
M-Isomap and enhanced intraclass compactness is deliv-
ered. At the same time, our M-Isomap method clearly
keeps the neighborhood relations between the intraclass
and intracluster points.

We then apply the clustering evaluation measure induced by
the k-means algorithm to numerically compare the clustering
performances of each method. In our simulations, the clustering
measurement process is performed as follows. First, points are
embedded into a low-dimensional output space; then, k-means
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Fig. 4. Two-dimensional embedding result of the “four moons” data set by each method.

Fig. 5. Clustering evaluation result of each method on the “four moons” data set.

clustering is performed. For each k value used in the k-means
algorithm, the k-means clustering is applied 200 times with
different initializations. The averaged clustering accuracy and
normalized MI over different k values are recorded in Fig. 5.
We have the following observations.

1) The clustering results of Isomap, LLE, HLLE, S-Isomap,
and SLLE are comparable in most cases. ANMM and
CMM are slightly better than Isomap, LLE, HLLE,
S-Isomap, and SLLE in terms of clustering.

2) The clustering performance is greatly improved with our
M-Isomap, compared with the other methods.

C. Visualizing UCI Data Set

In this study, we test M-Isomap by visualizing the Synthetic
Control Chart Time Series data set or simply Control-Chart
(available at http://archive.ics.uci.edu/ml/datasets/Synthetic+
Control+Chart+Time+Series) from the UCI ML repository.
This data set contains 600 examples of synthetically generated
control charts and 60 attributes for each example. This data
set has six different classes of control charts, so each class
has 100 data points. We show the 2-D embeddings of the
data set in Fig. 6. For each method, the k number used in
k-neighborhood is set to 65. Observing Fig. 6, we see that
ANMM, CMM, Isomap, LLE, HLLE, S-Isomap, and SLLE
deliver unsatisfactory results in achieving enhanced interclass

separation and intraclass compactness. Compared with the
other evaluated methods, our M-Isomap algorithm is able to
deliver more separated manifolds and can organize enhanced
compactness within each natural cluster.

We record the numerical clustering results in Fig. 7. The
setting for the k-means clustering process is the same as above.
The clustering accuracy and normalized MI are also averaged
over 200 initializations. From Fig. 7, we find the following.

1) For each algorithm, the normalized MI is slightly higher
than the corresponding clustering accuracy.

2) The clustering results of ANMM, CMM, Isomap, LLE,
HLLE, S-Isomap, and SLLE are comparable together.
More specifically, their clustering accuracies and normal-
ized MI are around 0.6.

3) We once again observe that M-Isomap gains the best
results in each case, implying that applying M-Isomap to
extract the features and visualize the embedded data is
promising.

D. Face Manifold Visualization on ORL Database

In this study, the ORL face database is tested. The database
contains 40 distinct persons with ten images per person. These
images are taken at different time instances, with varying
lighting conditions, facial expressions, and details. There are
certain typical images with different expressions, and the details
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Fig. 6. Two-dimensional embedding result of the Control-Chart data set by each method.

Fig. 7. Clustering evaluation result of each method on the Control-Chart data set.

Fig. 8. Two-dimensional embedding result of the ORL face data set by each method.

of the database are shown in Fig. 3(b). In this simulation, we
visualize the face images of the first 30 persons. That is, a 30-
class problem is created. We show the 2-D embeddings of the
faces in Fig. 8. The k number in k-neighborhood is set to 15

for each method. From Fig. 8, the following observations can
be obtained.

1) Although the intrinsic manifolds can be preserved by
CMM, Isomap, LLE, HLLE, S-Isomap, and SLLE to
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Fig. 9. Clustering evaluation result of each method on the ORL face data set.

Fig. 10. Two-dimensional embedding result of the YALE face data set by each method.

some extent, however, these methods are unable to or-
ganize more separate embeddings of the face manifolds.
Isomap, LLE, HLLE, and SLLE embed the faces of
several persons well, but most faces of different persons
are still congregated in their embedding spaces.

2) From the face visualization results, ANMM and our
M-Isomap implicitly emphasize the natural clusters of
the faces and exhibit separate clusters between dissimilar
faces. They make similar face of the same individual lie in
the vicinity of the face image space and make dissimilar
faces from different individuals appear far away in their
reduced embedding spaces.

To numerically evaluate the visualization results, we apply
the same k-means clustering setting for evaluations. We show
the averaged clustering results in Fig. 9. We can similarly
observe the following.

1) For each method, the delivered normalized MI is higher
than the clustering accuracy in each case.

2) For this data set, the results of the S-Isomap are the
worst compared with the other methods in each case.
It is interesting to find that Isomap performs slightly
better than S-Isomap in this case. CMM, LLE, HLLE, and
SLLE deliver comparable results, and they are better than
S-Isomap and Isomap.

3) The numerical results of ANMM and M-Isomap keep
consistent with the visual results in Fig. 8. Specifi-
cally, the clustering results obtained by ANMM and our
M-Isomap are higher than those by the other methods in
this data set.

E. Face Manifold Visualization on YALE Database

In this experiment, we address a face manifold visualization
by using the YALE database. This database is collected at
the Yale Center for Computational Vision and Control, which
consists of 165 grayscale images in graphics interchange format
of 15 individuals. The images demonstrate variations in light-
ing conditions (left light, center light, and right light), facial
expressions (normal, happy, sad, sleepy, surprised, and wink),
and with/without glasses. Some typical face images under are
shown in Fig. 3(c). In this simulation, we aim at visualizing
images of all individuals. The k number in k-neighborhood
is set to 15 for each NNS-type method. The 2-D embeddings
are shown in Fig. 10. We have the following: 1) Due to the
complex distributions and relations between features, ANMM,
CMM, Isomap, S-Isomap, LLE, HLLE, and SLLE work poorly
in interface separation, because they cannot embed the related
low-dimensional face manifolds respectably, and 2) compared
with the other methods, M-Isomap can construct the opti-
mal face image subspace in which higher separation between
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Fig. 11. Clustering evaluation result of each method on the YALE face data set.

Fig. 12. Two-dimensional embedding result of the CMU PIE face data set by each method.

interface images and enhanced intraface compactness are pro-
duced at the same time.

We show the averaged clustering accuracy and normalized
MI computed by the k-means algorithm in Fig. 11. We observe
from Fig. 11 the following.

1) The clustering performance of each method is also stable
with the increasing k number in the k-means clustering.
We once again experimentally observe that the normal-
ized MI obtained by each method is higher than the
corresponding clustering accuracy.

2) Because ANMM, CMM, Isomap, LLE, HLLE, S-Isomap,
and SLLE cannot separate faces of different persons
visually, their clustering results, which are comparable,
are worse in this data set.

3) Recalling that M-Isomap embeds the faces appropriately,
thus, it exhibits promising clustering accuracy and nor-
malized MI in this case.

F. Face Visualization on CMU PIE Database

In this section, we test our method by visualizing the CMU
PIE database which contains 68 individuals with 41 368 face
images as a whole. The images were captured under varying
poses, illuminations, and expressions. Some typical face images
are shown in Fig. 3(d). In our simulation, we employ a sampled

subset tested in [24] from the CMU PIE database. In this subset,
the poses and expressions are fixed. Thus, finally, 21 images per
person (a total of 1428 images for the 68 individuals) under dif-
ferent lighting conditions are sampled. In order to make the re-
sults clear, we only visualize the first 30 individuals. Before DR,
we preprocess the data set through applying PCA to reduce the
dimensionality of the data to 200. For each NNS-type method,
the k value in k-neighborhood is set to 15. We show the 2-D em-
bedding result of each method in Fig. 12. We see the following.

1) Due to the complex distributions of the data set, Isomap
and S-Isomap perform particularly poor in revealing the
intrinsic characteristics of the faces and separating the
faces from different individuals. Through comparing with
Isomap and S-Isomap, LLE, HLLE, and SLLE implicitly
emphasize the natural clusters of some similar faces,
but most dissimilar faces of different persons are still
overlapped in their embedding spaces.

2) Clearly, the marginal ANMM and CMM algorithms and
our M-Isomap algorithm work well in revealing the
intrinsic structures of the data set and delivering en-
hanced interface separation. However, by comparing with
ANMM and CMM, our M-Isomap approach is able to
organize compact clusters of faces belonging to the same
individual by delivering larger margins between interface
clusters.
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Fig. 13. Clustering evaluation result of each method on the CMU PIE face data set.

We apply the k-means clustering to the embedded data
for evaluating the clustering performance. Similarly, we aver-
age the results over 200 initializations for each k number in
the k-means clustering. The corresponding clustering results
are shown in Fig. 13. Similar observations can be found as
follows.

1) The normalized MI delivered by each method is higher
than the corresponding clustering accuracy.

2) Our M-Isomap method achieves the highest clustering
accuracy and normalized MI in each case. The ANMM
and CMM algorithms deliver the highest clustering re-
sults among the remaining methods. The results of the
LLE, Isomap, HLLE, S-Isomap, and SLLE algorithms are
comparative with each other in virtually all the cases.

V. CONCLUDING REMARKS

In this paper, we have discussed the pairwise-constrained
discriminant nonlinear DR problem. By incorporating the
pairwise-constrained neighborhood graphs into the Isomap
framework, an effective marginal Isomap algorithm named
M-Isomap has been proposed for nonlinear DR and data visu-
alization. M-Isomap uses the PCs derived from the given data
to guide the discriminant manifold learning. As a result, M-
Isomap will be flexible in regulating supervised information.
In extracting the informative features, M-Isomap aims at sep-
arating interclass neighboring points in addition to preserving
the neighborhood relations of intraclass points. Thus, large
margins between inter- and intraclass clusters are delivered. To
compute the embeddings, a TR optimization approach has been
employed delivering more specific solutions and orthogonal
basis vectors.

The validity of M-Isomap has been examined by a synthetic,
a UCI, and three real data sets. From all investigated cases, the
M-Isomap algorithm is capable of producing clear separation
on the manifold embedding of multiple classes or objects.
Because of the stronger constraints brought by the PCs, the
margins of both inter- and intraclass clusters are significantly
enlarged in the embedding space of M-Isomap. These margins
are significantly larger than those produced by the discriminant
ANMM, CMM, SLLE, and S-Isomap and the unsupervised
LLE, HLLE, and Isomap. The clustering evaluation has also
verified the efficiency of M-Isomap. We also observe from our
simulations that SLLE and S-Isomap cannot embed the real
data sets of multiple classes appropriately. Note that, for NNS-
type methods, the selection of the k number in k-neighborhood
is an open problem. Therefore, investigating the optimal de-

termination of k for manifold learning is required. Exploring
selecting an optimal constraint subset and extending M-Isomap
to the semisupervised settings are also worth studying.
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