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Abstract A new local search algorithm for multiobjective
optimization problems is proposed to find the global optima
accurately and diversely. This paper models the cooper-
atively local search as a potential field, which is called
neighborhood field model (NFM). Using NFM, a new Mul-
tiobjective Neighborhood Field Optimization (MONFO)
algorithm is proposed. In MONFO, the neighborhood field
can drive each individual moving towards the superior
neighbor and away from the inferior neighbor. MONFO
is compared with other popular multiobjective algorithms
under twelve test functions. Intensive simulations show
that MONFO is able to deliver promising results in the
respects of accuracy and diversity, especially for multimodal
problems.

Keywords Multiobjective optimization ·
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1 Introduction

Most real world problems need to optimize several incom-
mensurable objectives or competing objectives at the same
time, such as the design of combinational logic cir-
cuits, autonomous vehicles navigation, and DNA sequence
description (Coello and Lamont 2004; Jin 2006). These are
called multiobjective optimization problems (MOOPs), in
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which no single solution can be optimal satisfying all objec-
tives. For MOOPs, certain tradeoffs called Pareto optima
can be found to compromise different objectives. A number
of novel works on multiobjective evolutionary algorithms
(MOEAs) have then been proposed (Schaffer 1984; Horn
et al. 1994; Srinivas and Deb 1994; Zitzler and Thiele 1999;
Knowles and Corne 2000). Most MOEAs were largely moti-
vated by Goldberg’s paper on non-dominance sorting
(Goldberg 1989; Horn et al. 1994). For instance, the non-
dominated sorting GA-II (NSGA-II) (Deb et al. 2002a) and
strength Pareto EA-II (SPEA2) (Zitzler et al. 2001) were
proposed to improve the computation complexity, density
estimation and fitness assignment when solving MOOPs.
NSGA-II and SPEA2 have been empirically proven to
be two of the most efficient MOEAs and so become
the benchmark algorithms of evaluating other multiobjec-
tive algorithms. Other existed global search meta-heuristic
approaches, such as Particle Swarm Optimization (PSO)
(Eberhart and Shi 2001), Differential Evolution (DE) (Storn
and Price 1997), are also feasible for the multiobjective
optimization. Their extended algorithms are called multiob-
jective Particle Swarm Optimization algorithms (MOPSOs)
(Hu and Eberhart 2002; Parsopoulos and Vrahatis 2002;
Coello et al. 2004) and multiobjective Differential Evolu-
tion algorithms (MODEs) (Abbass and Sarker 2002; Xue
et al. 2003; Kukkonen and Lampinen 2005). The devel-
opment in the multiobjective optimization area has been
well reviewed in Veldhuizen and Lamont (2000), Zitzler
(1999), Veldhuizen and Lamont (1998), Durillo et al.
(2010). Despite these fruitful outputs, there are many open
issues in MOOPs, such as the fitness assignment method
and the design of effective search meta-heuristics.

Unlike the single objective optimization problem in
which the optimum is clearly defined as the global best
solution in the search space, MOOPs only have certain
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appropriate trade-offs with comprehensively good fitness in
each objective. These trade-off solutions are called Pareto
optima, which are non-dominated by all other solutions
in the search space. Generally, for a problem F(x) =[

f1(x), f2(x), . . . , fM (x)
]

of minimizing the M objectives,
we call a decision vector x1 dominates another decision
vector x2, if and only if each component of the objec-
tive vector F(x1) is not larger than that of the objective
vector F(x2) with at least j th component f j satisfying
f j (x1) < f j (x2). A solution is the global Pareto opti-
mum only if no other solutions in the whole search space can
dominate it. The Pareto set (PS) is the set of all global Pareto
optima in the decision space, and the Pareto front (PF) is
defined as the image of the Pareto set in the objective space
(Coello and Lamont 2004). The target of MULTIOBJEC-
TIVE algorithm is to obtain a well-dispersed set of solutions
close to the Pareto optima. In other words, a certain mul-
tiobjective algorithm is expected to converge towards the
Pareto set with two goals, namely accuracy and diversity.
To achieve the two goals at the same time, multiobjective
algorithms employ different search meta-heuristics, which
can be categorized in the following three types.

The first type of algorithms refers to local search strate-
gies, such as the gradient-based algorithms (Shukla 2007;
Fliege and Svaiter 2000; Brown and Smith 2003) and the
Pareto simulated annealing algorithm (PSA) (Czyzak and
Jaszkiewicz 1998). This type of algorithms can find certain
acceptable solutions efficiently with little computation time.
But since these algorithms only exploit the good solution in
the local region, their results are easily getting trapped in the
local optima. Another drawback is that these local search
algorithms are difficult to maintain the diversity, as they are
separately applied to solve MOOPs.

The second type is global search algorithms, such as
MOPSO, MODE and other MOEAs. They deal with a pop-
ulation of individuals and can obtain several Pareto optima
diversely in a single run. These algorithms employing global
search strategies can explore the whole search space. But
these algorithms tend to require a relatively large num-
ber of iterations for obtaining acceptable results, because
they cannot exploit the local area sufficiently compared
with the local search methods. Furthermore, these global
search algorithms often suffer from the drawback of stagna-
tion because of the excessive exploration. When they are
handling certain complicated multimodal functions, they
stop converging to any optimum at the beginning of search
process.

The existing conflicts between exploitation and explo-
ration make the above mentioned algorithms difficult to
achieve accuracy and diversity at the same time. To over-
come this drawback, the third type is derived to balance
between global exploration and local exploitation. This type
of algorithms, called memetic algorithms (MAs) (Molina

et al. 2010), is proposed to hybridize MOEAs with local
search strategies. During the optimization process, MAs
can do exploration at one time and exploitation at another
time. The rationale behind MAs is to provide an improved
method by compensating the deficiency of EA amid the
local exploitation and the inadequacy of local search amid
the global exploration. Many authors have reported success-
ful hybridization of local search techniques with MOEAs
(Lara et al. 2010; Wanner et al. 2008; Adra et al. 2005; Hu
et al. 2003). In Adra et al. (2005), three different local search
techniques, i.e. simulated annealing, hill climbing, and tabu
search, were hybridized with multiobjective genetic algo-
rithm. The obtained results can outperform the original mul-
tiobjective genetic algorithm. In Hu et al. (2003), a gradient
based local search algorithm (sequential quadratic program-
ming) was used in combination with NSGA-II and SPEA2
to solve some benchmark functions. The author concluded
that if there are no local Pareto fronts, the hybrid MOEA
has faster convergence speed than the original NSGA-II
and SPEA2. Apparently, the third type can deliver better
performances than the second type in terms of the accu-
racy and diversity. But the performance improvement is not
remarkable because of poor local search strategies.

People may prefer to use the evolutionary algorithms and
the MAs for real-world problems. The local search algo-
rithms may be applied as a part of MAs, but most local
search strategies are more easily getting trapped into local
optima than the global algorithms like GA, PSO and DE
(Molina et al. 2010). The poor performance of local search
strategies has also limited MAs’ overall performances. So
it is necessary to emphasize on improving the local search
strategies in the evolutionary computation area. Recently,
a new search algorithm based on self-organizing map for
single objective optimization was proposed to exploit the
search space based on the neighbors’ cooperative field.
The cooperative field is called the Neighborhood Field
Model (NFM), which can provide an efficient and effective
exploitation method for finding the global optimum (Xu
and Chow 2010). The scope of this paper is to discuss
whether the neighborhood field can be employed as local
search to deliver a global multiobjective algorithm with
better performance than certain MOEAs.

The contributions of this paper include three aspects.
First, MONFO is newly proposed with the concept of neigh-
borhood field model (NFM) in multiobjective optimiza-
tion. MONFO utilizes the non-dominance sorting scheme
to obtain several sets of solutions with decent fitness val-
ues. The field between the neighboring sets has a descent
direction towards the superior region. Second, the proposed
MONFO is a new local search algorithm. While most mul-
tiobjective algorithms comply with the principle of learning
from the best individuals (the non-dominated solutions),
MONFO complies with a different principle of “learning



A local multiobjective optimization algorithm using neighborhood field 855

from its neighbors”. Third, we propose an extensive dom-
inance (E-dominance) relationship for the selection of
offspring. This method provides a steady tournament eval-
uation, which has potential applications in other MOEAs.
Despite being a local search, it can be noticed in our studies
that MONFO is able to find the Pareto optima with accuracy
and diversity, especially for the multimodal functions with
high dimensional objective space. The results of MONFO
is better than or at least comparable with NSGA-II, SPEA2,
the multiobjective PSO (MOPSO) (Coello et al. 2004) and
the third version generalized DE (GDE3) (Kukkonen and
Lampinen 2005) in terms of accuracy and diversity.

The paper is organized as follows. Section 2 intro-
duces previous work about the algorithm based on neigh-
borhood field model (NFM), and describes four popu-
lar multiobjective algorithms NSGA-II, SPEA2, MOPSO
and GDE3. Section 3 illustrates the proposed MONFO
algorithm. Section 4 analyzes the property of MONFO.
Section 5 gives the computational comparisons of NSGA-II,
SPEA2, MOPSO, GDE3 and MONFO on the test functions.
Section 6 concludes this paper.

2 Previous work

This section introduces a single optimization algorithm
called Contour Gradient Optimization (CGO), which is
based the neighborhood field model. In NFM, each indi-
vidual is attracted by superior neighbors and is repulsed by
inferior neighbors (Xu and Chow 2010). In the following,
we present the neighborhood field model; then give the pro-
cedure of CGO; at last reviews some popular multiobjective
algorithms.

2.1 Neighborhood field model

Neighborhood field model (NFM) is proposed to emulate
the cooperation behavior in a local environment (Xu and
Chow 2010). It is worth noting that agents in the real-world
networks are likely to cooperate with their neighbors in
the local environment rather than the others in the global
environment (Shi and Eberhart 1998). This kind of coopera-
tion can be modeled to deliver the global optimization. It is
stated that in NFM an agent is influenced by superior neigh-
bors positively and by other inferior neighbors negatively.
Note that NFM is similar to the potential field model (PFM)
(Khatib 1986). In PFM, the overall force on the robot is
composed of the attractive force of the target and the repul-
sive force of the obstacle; the overall force drives the robot
to approach the targets without collision. In NFM, each indi-
vidual xi like a robot regards superior neighbors as targets to
follow, and regards inferior neighbors as obstacles to evade.

The neighbor field of the individual xi driven by one target
and one obstacle can be expressed as

NFi = �(xci − xi ) − �(xwi − xi ) , (1)

where NFi is the overall force driving on xi , xci is the
superior neighbor, xwi is the inferior neighbor, and �(·)
is the dynamical force function related with the position
difference. In the right hand side of (1), the first compo-
nent represents the attractive force of the superior neighbor
and the second component represents the repulsive force of
the inferior neighbor.

2.2 Contour gradient optimization algorithm

We introduce a Contour Gradient Optimization algorithm
(CGO) based on the neighborhood field (Xu and Chow
2010). CGO considers a single objective minimization prob-

lem y = f
([

xD,i , x2,i , . . . , xD,i
]T

)
(D is dimension of the

search space). A population of N individuals cooperatively
evolves in an attempt of searching the global optimum.
These individuals are ranked by their fitness values from
the best to the worst and are sorted into m levels evenly.

The individuals in the same level are assumed having the
same fitness. In CGO algorithm, the neighbors xci and xwi

are specified as the nearest individuals in the neighboring
levels as (2), which are called contour neighbors. Base on
NFM, CGO is proceeding as the follows:

1) Initialization: randomize the initial N individuals in the
search space.

2) Contouring: at the generation G, rank all individuals by
their function value in ascendant order, and sort them
into m levels. We denote the i th individual xi,G’s level
number as L(xi,G). For each individual xi,G , recog-
nize the superior contour neighbor xci,G in the level
L(xi,G) − 1 and the inferior contour neighbor xwi,G

in the level L(xi,G) + 1 as (2). Especially if xi,G is in
the first level, xci,G is defined as xi,G . If xi,G is in the
last level, xwi,G is defined as xi,G .

⎧
⎪⎨

⎪⎩

xci,G = arg min
L(xk,G)=L(xi,G)−1

∥
∥xk,G − xi,G

∥
∥

xwi,G = arg min
L(xk,G)=L(xi,G)+1

∥∥xk,G − xi,G
∥∥

,

(2)

3) Mutation: perturb each individual xi as (3).

vi,G = xi,G + α · r1 · (
xci,G − xi,G

)

− α · r2 · (
xwi,G − xi,G

)
, (3)

where xci,G is the superior neighbor, xwi,G is the infe-
rior neighbor at Gth generation; r1 and r2 are random
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vectors uniformly distributed in [0, 1], and α is the
learning rate. vi,G is the obtained mutant vector.

4) Crossover: recombine the mutation vector with the
target vector xi .

u j,i,G =
{

v j,i,G , if rand(0,1) ≤ Cr or j = jrand

x j,i,G, otherwise
,

(4)

where j = 1, 2, . . ., D is the dimension index; Cr is
the crossover probability; rand(0,1) is a uniformly dis-
tributed random number in the scale of [0, 1]; jrand is a
random component to accept the new mutant vector so
that the trial vector is different from the target vector.

5) Selection: in the next generation, the i th individual will
be updated as the better one between xi,G and ui,G as

xi,G+1 =
{

ui,G , if f
(
ui,G

) ≤ f
(
xi,G

)

xi,G , otherwise
. (5)

6) If the stopping criteria are not satisfied, go to step 2.

Based on the neighborhood field, CGO has placed equal
emphasis on each individual, which plays the same impor-
tant role in refining other neighbors. As a result, all individ-
uals will not move towards the single direction but towards
diverse directions instead, which is helpful to maintain the
population’s diversity. This paper shows how NFM can be
extended from a single objective problem to a multiobjec-
tive problem for finding several different Pareto optima at
the same time.

2.3 Four multiobjective algorithms

Four popular multiobjective algorithms are briefly described
as they have been considered in comparison studies. They
are non-dominated sorting genetic algorithm-II (NSGA-II)
(Deb et al. 2002a), strength Pareto evolutionary algorithm
2 (SPEA2) (Zitzler et al. 2001), multiobjective particle
swarm optimization (MOPSO) (Coello et al. 2004), and
generalized differential evolution 3 (GDE3) (Kukkonen and
Lampinen 2005).

The NSGA-II algorithm was proposed by Deb et al.
(2002a). It is a genetic algorithm based on obtaining a new
population from the original one by applying the typical
genetic operators (selection, crossover, and mutation). The
individuals in the two populations are then sorted according
to their Pareto dominance ranks. The best solutions are cho-
sen to create a new population. In case of selecting some
individuals with the same rank, a density estimation based
on measuring the crowding distance to the surrounding indi-
viduals in the same rank is used to choose the most sparse
solutions.

SPEA2 was proposed by Zitzler et al. (2001). In this
algorithm, each individual has a fitness value that is the sum
of its strength raw fitness plus an estimation of density. The
strength of a certain individual is proportional to the num-
ber of solutions that dominated by the individual. SPEA2
applies the selection, crossover, and mutation operators to
fill an archive of individuals; then the non-dominated indi-
viduals of both the original population and the archive are
copied into a new population. If the number of archive is
greater than the population size, a truncation operator based
on calculating the distances to the kth nearest neighbor is
used. In this way, the individuals with the minimum distance
to any other individual are truncated out of the archive.

In the evaluated multiobjective particle swarm optimiza-
tion (MOPSO) (Coello et al. 2004), an external repository
is used to store the non-dominated solutions found by the
population. Every particle has a position vector xi and a
velocity vector vi . Each particle is updated towards its own
best position xp and the best position xg chosen from the
repository. When a certain particle finds the best solution,
other particles are informed to move towards the best solu-
tion with an adaptive velocity. The new velocity of the i th
particle are updated by

vi = ω · vi + c1 · r1 · (
xp − xi

) + c2 · r2 · (
xg − xi

)
, (6)

where ω is called the inertia weight; c1, c2 are positive
learning rates; r1 and r2 are random vectors uniformly
distributed in the interval of [0, 1]. The non-dominated solu-
tions among the new positions are then inserted into the
repository. If the repository is full, truncation is preceded
according to the crowding distance of NSGA-II.

Among many multiobjective DE algorithms (MODEs),
the third version of generalized DE algorithm (GDE3) pro-
posed in Kukkonen and Lampinen (2005) is one of the most
successful MODEs. In GDE3, three random vectors cho-
sen from the population are mutated to generate a mutant
vector as

vi = xr0 + F (xr1 − xr2) , (7)

where r0, r1 and r2 are three distinct random indices; xr0,
xr1, xr2 are three random individuals in the population. The
mutant vector is then combined with the target vector to gen-
erate a trial vector. The trial vector is accepted as offspring if
it weakly constraint-dominates the target vector as follows.
In case of both infeasible vectors, the trial vector is selected
if it weakly dominated the target in the constraint violation
space; in case of the feasible and infeasible vectors, the fea-
sible vector is selected; in case of both feasible vectors, the
trail vector is selected if it weakly dominates the target vec-
tor. If both vectors cannot constraint-dominate each other,
they are saved in the population. In the next generation, the
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population is pruned based on the non-dominated sorting
and crowding distance as NSGA-II.

3 Multiobjective neighborhood field algorithm

This paper proposes a new local search multiobjective
algorithm—Multiobjective Neighborhood Field Optimiza-
tion algorithm (MONFO), which belongs to the Pareto
based algorithms. It is not in any other current frame-
works such as PSO, DE, and other EAs. Unlike other local
search algorithms based on individual refinement (Shukla
2007; Fliege and Svaiter 2000; Brown and Smith 2003),
MONFO deals with a population of individuals coopera-
tively, in which each individual is updated close to the
superior neighbor and away from the inferior neighbor. In
MONFO, the population can often be sorted into several lev-
els, which seems to classify the population into several sets
from the best to the worst. The individual in certain level
will learn from the nearest individuals in the neighboring
levels. Finally, the updating directions as the neighborhood
field can push each individual towards the non-dominated
sets. Unlike other local algorithms, MONFO is a novel local
algorithm that can balance the local exploitation and the
global exploration with fast convergence speed. In MONFO,
an extensive dominance relationship is newly defined to
select the offspring.

3.1 Multiobjective neighborhood field optimization
algorithm

Generally, a D dimensional multiobjective problem for min-
imization with M objectives can be expressed as F(x) =[

f1(x), f2(x), . . . , fM (x)
]
, where x is a D dimensional

solution, f j (x) is the objective function for the j th objective.
An external archive Ex is used to store the non-dominated
solutions in the past generations. MONFO handles the
problem as the following:

1) Initialization: randomize the initial N individuals in the
search space.

2) Contouring: in the Gth generation, sort the population
into several fronts based on the dominance, and rank
the within-front individuals based on a randomly cho-
sen objective. According to the overall rankings, divide
all individuals into m levels evenly. We denote the i th
individual xi,G’s level as L(xi,G). For each individual
xi,G , recognize the superior contour neighbor xci,G in
the level L(xi,G)− 1, and the inferior contour neighbor
xwi,G in the level L(xi,G)+ 1 as (2). Especially, if xi,G

is in the first level, xci,G is defined as xi,G ; if xi,G is in
the last level, xwi,G is defined as xi,G .

3) Mutation: perturb each individual xi,G as (3).

4) Crossover: recombine the mutation vector with the
target solution xi,G as (4).

5) Selection: in the next generation the i th individual will
be updated as the better one between xi,G and ui,G .
If ui,G can extensively dominate xi,G , ui,G will be
selected in the next generation. Otherwise the target
solution xi,G will be selected. The extensive dominance
relationship denoted as � will be defined later. The
selection can be express as

xi,G+1 =
{

ui,G , if F
(
ui,G

)
� F

(
xi,G

)

xi,G , otherwise
. (8)

6) Add the non-dominated solutions of the current popu-
lation into the external archive Ex. If the archive size
is large than N , prune the archive according to the
density estimation. The first N sparse solutions are
maintained in Ex. Go to step 2 until the stopping criteria
are satisfied.

In the contouring step, MONFO ranks the population by
the non-dominated sorting of NSGA-II. For the solutions in
the same front, individuals are ranked based on a randomly
chosen objective. They are ranked from the minimum to the
maximum on that objective. For example, for the solutions
in the first front, we randomly choose an objective f j , and
then all the solutions in the first front are ranked according
to their j th objective value. For x1 and x2 in the first front,
x1 is ranked before x2 if and only if f j (x1) < f j (x2).

After sorting the population, the population is evenly
divided into m levels. Each individual xi,G is perturbed
based on NFM. Each individual is repulsed by the con-
tour neighbor in its next level, and attracted by the contour
neighbor in the previous level. Especially, for the individ-
ual located at the first level, it can only be repulsed by
the contour neighbor in the second level. For the individ-
ual located in the mth level, it can only be attracted by the
contour neighbor in the (m − 1) th level. After mutation
and crossover, the new solution ui,G may have some com-
ponents out of the constrained search space, and then the
boundary action is needed. As the boundary action is not the
main focus of this paper, we simply utilize the reinitializing
method for the violent components.

In the last step, the external archive is pruned if its size
is larger than the predefined number. The density estima-
tion technique has been widely used for pruning the archive
in most MOEAs. A good density estimation method can
express the population’s distribution accurately. How to
calculate each individual’s density is still an open issue.
Currently there are mainly three methods for the density
estimation. First, an individual’s density can be calculated
as the inverse of the summation of distances to its first k-
nearest neighbors. Second, the inverse of the distance to the
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kth nearest individual is used for the density estimation in
SPEA2. Third, evaluate the density by the crowding dis-
tance, which is defined as the side-length of the cuboids
enclosing the evaluated individual, proposed in NSGA-II.
It must be noted that these different estimation methods can
be used in MONFO. Here we use the inverse of the crowd-
ing distance to estimate the density mentioned in Xue et al.
(2003).

3.2 Extensive dominance (E-dominance)

An extensive dominance (E-dominance) mentioned in the
selection procedure is newly introduced in this paper. In
general, tournament selection in multiobjective optimiza-
tion is much difficult compared to that in the single objec-
tion optimization. How to select an offspring between
two parent vectors is an interesting issue. Because two
parent vectors may be non-dominated with each other in
tournament selection, and then it is hard to say which
is better based on the Pareto dominance. Unlike certain
MOEAs using “one-to-one” Pareto dominance comparison,
MONFO employs “one-to-many” comparisons between the
trail vector and the parents, called extensive dominance
(E-dominance). E-dominance can be expressed as

F(ui ) � F(xi ) ,

if

⎧
⎨

⎩

∃xe, LF(xe)≤LF(xi ) , F(ui )≺ F(xe)

or
∃ j ∈ [1, . . . , M] , f j (ui ) < min f j

, (9)

where � is the notation of the E-dominance relation, ≺ is
the notation of the normal Pareto dominance relation, and
LF(xi ) means the front level of xi in non-dominated sort-
ing. For example, LF(xi ) = 1 means that xi is in the first
front. Definitely, ui can E-dominate xi if ui has at least one
objective function value less than the found minimum objec-
tive value, or it can dominate any individual in its current
and before fronts. In MONFO, the trial vector is selected
if it can E-dominate the target vector, otherwise the target
vector is selected into the next generation.

Figure 1 gives a simple illustration of E-dominance.
Although the individuals A1 and A8 are non-dominated with
each other by “one-to-one” Pareto dominance comparison,
A1 can E-dominate A8, because A1, A8 are in the different
fronts. In the figure, the shaded region is the set of solutions
that E-dominate A8. It can be noticed that the E-dominance
in fact includes “one-to-many” comparisons, which can
enlarge the search region (the shaded region). Therefore,
the selection in MONFO turns out to be less greedy than
the selection based on “one-to-one” comparison.

E-dominance is a general scheme for dominance evalua-
tion, which suits to be applied in the tournament selection of

Fig. 1 E-dominance in a minimization example. The dashed line is
the first front, and the shaded region is the set of solutions that can
E-dominate A8

other MOEAs. E-dominance is an extension of Pareto dom-
inance, which utilizes the whole population’s information to
compare the two peers’ fitness. We find that in MONFO the
E-dominance can deliver the final results more accurately
and diversely than the normal Pareto dominance.

4 Analysis of neighborhood field in MONFO

In MONFO, the neighbor field is desired to push the supe-
rior neighbors or pull the inferior neighbors towards better
regions in the local region efficiently. Although multiobjec-
tive optimization is more complex than the single objective
optimization, we will analyze the neighborhood field with
some local characteristics.

The neighborhood field in MONFO can approximate
a descent direction of MOOP. For a given minimization
function F(x) if xi is not a local Pareto optima, the mul-
tiobjective gradient of F(x) at xi can be given (Shukla
2007),

g (xi ) = J (xi ) λ∗, (10)

where g(xi ) is the multiobjective gradient of F(x) at xi ;
J = [∇ f1, ∇ f2, . . . , ∇ fM

]T is the Jacobian matrix of
F(x) at xi . In (10) λ* is the optimal solution of a quadratic
programming problem as follows

λ∗ = arg min 1
2 ‖J (xi ) λ‖2

st λ ≥ 0,
∑

j λ j = 1
. (11)

Lemma 1 Assume that xi is not a local Pareto optimum. In
its neighborhood we can f ind a superior individual xci that
dominate xi , and also f ind an inferior neighbor xwi that
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dominated by xi . The neighborhood f ield in MONFO can
approximate a descend direction satisfying
{ −g (xi )

T (xci − xi ) ≥ 0
g (xi )

T (xwi − xi ) ≥ 0
. (12)

Proof Since xci is the neighbor close to xi , using the linear
approximation we can obtain

f j (xci ) ≈ f j (xi ) + ∇ f j (xi ) (xci − xi ) , j = 1, . . . , M.

Then according to (10), we can obtain

g (xi )
T (xci − xi ) = λ∗T J (xi )

T (xci − xi )

= λ∗T [∇ f1, ∇ f2, . . . , ∇ fM
]
(xci − xi )

≈
∑

j
λ∗

j

(
f j (xci ) − f j (xi )

)

Since xc dominates xi , then

f j (xci ) − f j (xi ) ≤ 0 and
∑

j
f j (xci ) − f j (xi ) < 0.

Therefore, we can obtain
∑

j λ∗
j

(
f j (xc) − f j (xc)

) ≤
0 (λ∗ ≥ 0). The first conclusion is proven. The second
conclusion can be proven in the same way. In all, the neigh-
borhood field NFi will satisfy −g (xi )

T · N Fi = −g (xi )
T ·

[�(xci − xi ) − �(xwi − xi )] ≥ 0. �
According to Lemma 1, the neighborhood field is close to

the inverse multiobjective gradient based on the cosine sim-
ilarity. It is reasonable that the neighborhood field can be
used as a tool to approximate the MOP, especially for some
engineering applications with complicated functions. When
xci , xwi are the local best and worst individuals, the field
direction is precisely the inverse multiobjective gradient.
Since the neighborhood field can approximate a descend
direction of the MOOP, the search direction in MONFO is
efficient.

Figure 2 shows an instance of the neighborhood field
in the objective space and decision space. The neighbor-
hood field includes two differential vectors xci − xi and

xi − xwi . To recognize the neighbors xc and xwi , MONFO
needs to order a population of individuals from the best to
the worst and sort them into the different level sets. The
non-dominated sorting scheme appears to be a good choice
of this paper, in which a population of individuals can be
sorted into several levels based on the Pareto dominance.
MONFO utilizes the fast non-dominated sorting approach
in NSGA-II.

In Fig. 2, a series of level sets with descend fitness can
be obtained by non-dominated sorting. The set of solutions
in the same front have the same fitness value. It is noticed
that the individuals distribute in three fronts displayed in
the 2-D decision space in Fig. 2. For a solution xi in the
figure, choose xci and xwi as contour neighbors defined in
(2). These contour neighbors have the minimum Euclidian
distance in the neighboring two fronts. The neighbor xci

is superior to xi , and the neighbor xwi is inferior to xi

in the lower and higher fronts respectively. When we use
these contour neighbors for the mutation, Fig. 2 shows that
the two differential vectors of xci − xi and xi − xwi can
approximate a descend direction at xi , which is the same
with Lemma 1.

Due to the descent property, each individual is driven
towards global Pareto optima accurately and diversely when
searching in the neighborhood field direction. The final
results are accurate because each front iteratively moves
towards the neighboring superior level and away from the
neighboring inferior level. Furthermore, the MONFO can
also maintain the diversity of the population. For each indi-
vidual only one target in the neighboring superior layer has
an attractive force, and one target in the neighboring infe-
rior layer has a repulsive force. Each individual driven by
these two forces will approximately move on their specific
directions diversely.

In all, MONFO can efficiently solve the MOOPs prob-
lem based on the local cooperation. The neighborhood field
can provide an efficient search heuristic, which can find the
global optima accurately and diversely at the same time. The
running time of MONFO is obviously more than GDE3 due

Fig. 2 An illustration of the
neighborhood field when the
population is sorted into three
fronts. a The distribution of
fronts in the objective space,
and the global Pareto front
is denoted as the bottom
left dashed line. b The
corresponding distribution of
fronts in the decision space, in
which the global Pareto set is
denoted as the dashed line
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to the additional contouring. The contouring has the com-
putation complexity O(GN). The other parts of MONFO
have the same computation complexity with GDE3, i.e.,
O

(
G N logM−1 N

)
(Kukkonen and Lampinen 2005). So

MONFO’s computation complexity is the same with GDE3
as O

(
G N logM−1 N

)
, where G, N and M is the maxi-

mum generations, the population size and the number of
objectives.

5 Simulations

The proposed MONFO is a fundamental framework for
multiobjective optimization. MONFO is compared other
two widely used MOEA frameworks NSGA-II and SPEA2.
In addition, as MONFO exhibits similar with other vector
field optimization techniques, such as MOPSO and GDE3,
they are included in this comparison study.

Compared with MOPSO, MONFO is different in many
aspects. First, MOPSO has a blackboard recording the
memories of each agent, but MONFO does not need
the blackboard because it only utilizes the information in
the current iteration. Second, each particle in MOPSO is
updated towards the historical best positions and the local
best positions positively. In contrast each individual in
MONFO is influenced by the neighborhood field, including
positive attracting force and negative repulsing force. Third,
each particle in MOPSO is updated in fully dimensions, but
in MONFO the individual is updated in the random chosen
dimensions.

The differences between GDE3 and MONFO are their
differential mutation and the selection scheme. First,
GDE3 chooses the differential vectors randomly among
the whole population, but MONFO chooses two deter-
ministic differential vectors in a local environment. The
differential vector in MONFO can be clearly classified as
positive and negative dynamics. This ensures each individ-
ual’s refinement with a larger chance than GDE3. Second,
the selection in GDE3 is base on the weakly dominance, but
the selection in MONFO utilizes the E-dominance.

We compare MONFO with NSGA-II, SPEA2, MOPSO,
and GDE3 on the following twelve benchmark functions
in Table 1. They are ranging from two objectives to five
objectives. We implement these algorithms with the soft-
ware Matlab on the computer with Core-2 CPU Q9650 and
4G RAM.

5.1 Test functions and simulation settings

Many classical benchmark functions have been proposed
which can cover some essential features of MOOPS with
two objectives (Tan et al. 2005). However, they cannot sys-
tematically express overall features of the MOOPs, and

Table 1 A set of twelve test functions

Fi Name Dimension (D) Search space Objectives

1 ZDT3 30 [0,1]D 2

2 ZDT4 10 [0,1]×[−5,5] D−1 2

3 ZDT6 10 [0,1] D 2

4 LZ1 30 [0,1] D 2

5 LZ2 30 [0,1]×[−1,1] D−1 2

6 LZ3 30 [0,1]×[−1,1] D−1 2

7 DTLZ1 10 [0,1] D 3

8 DTLZ2 30 [0,1] D 3

9 DTLZ5 30 [0,1] D 3

10 DTLZ1-5D 10 [0,1] D 5

11 DTLZ2-5D 30 [0,1] D 5

12 DTLZ5-5D 30 [0,1] D 5

D is the dimension of the decision space; DTLZs-5D means the func-
tion DTLZs with 5-dimensional objective space. The unimodal functions
ZDT1, ZDT2 and the discrete function ZDT5 are omitted in the set,
because the evaluated algorithms are continuous and they have similarly
good performance on the unimodal functions

some of them cannot even formulate the definition of
Pareto optima mathematically. Deb (1999) pointed out sev-
eral features that pose challenges of accuracy and diversity
for multiobjective optimization, including multimodality,
deception, isolated optima, non-continuity and convexity
property. They also proposed a series of two-objective
benchmark functions ZDTs to cover these features system-
atically (Zitzler et al. 2000). Since two-objective functions
can be easily understood through visualization, the ZDTs
functions have been widely used as benchmarks in the eval-
uation of MOEAs. For more complex problems with three
and more objectives, Deb et al. (2002b) proposed a bottom-
up approach to generate a series of test functions DTLZs.
Their proposed method is generic and scalable to an arbi-
trary number of objectives. However, ZDTs and DTLZs
are often criticized for their simple and regular Pareto set
shapes that consist of either line segments or plane areas.
Additionally, some of ZDTs and DTLZs have their optima
laying on the boundary of the search space, which have
decreased their difficulty. The MOEAs can easily converge
towards the optima at the boundary due to the boundary
violation action. Li and Zhang (2009) thus introduced a gen-
eral framework to construct test instances with complicated
Pareto set shapes, and gave a series of test function LZs.
We construct a comprehensive test set chosen from ZDTs
(Zitzler et al. 2000), DTLZs (Deb et al. 2002b) and LZs (Li
and Zhang 2009). Table 1 lists these functions, their input
dimensions, their search spaces, and the objective spaces.

In order to allow a quantitative evaluation of the obtained
results, two issues have to be taken into consideration. The
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first issue is about accuracy, i.e., the distance of the non-
dominated results to global optima. The other issue is about
diversity, i.e., the spread of the final solutions in the Pareto
set. Based on these two considerations, three metrics are
adopted to evaluate the performance in this paper, genera-
tional distance metric (GD) (Bosman and Thierens 2003),
and inversed generational distance metric (IGD) (Veld-
huizen and Lamont 1998), and hypervolume (HV) (Durillo
et al. 2010) defined in the Appendix. Note that a small value
of GD and IGD, and a large value of HV are preferred,
which indicate the results are accurate and diverse.

We run all the five algorithms 30 times for each bench-
mark in our simulation. For each run, the number of max-
imum function evaluations (FEs) is set to 50,000, which
is large enough for the convergence of valid algorithms
(Chowdhury et al. 2009). The mean values and the standard
derivations of GD, IGD, and HV are computed for statistical
analysis. The parameters within the compared algorithms

are set the same with their original papers, which have
been verified with the best performance. For NSGA-II and
SPEA2, we use the real-valued representation of the deci-
sion variables, and the parameters are set as suggested in
Deb et al. (2002a) and Zitzler et al. (2001). The population
size N is set to 100, and the probability of crossover pc is set
to 0.8. The probability of mutation is pm = 1/D (D is the
number of decision variables). For crossover, the simulated
binary crossover (SBX) operator with μc = 20 is used. For
mutation, the polynomial mutation operator with μm = 20
is used. For MOPSO, the population size and the repository
size is set to 100. The inertia weigh is 0.4, and the learn rate
is 1.0 (Coello et al. 2004). For GDE3, the population size
is 100. The mutation factor is 0.9, and the crossover proba-
bility is 0.1 (Kukkonen and Lampinen 2005). For MONFO,
the population size N is set to be 100, the number of levels
m is set to 10, the learning rate α is 1.5, and the crossover
probability Cr is 0.1.

Table 2 The mean results of IGD with different parameters when m = 10(30 runs)

α Cr = 0.1 Cr = 0.3 Cr = 0.5 Cr = 0.7 Cr = 0.9 Cr = 0.1 Cr = 0.3 Cr = 0.5 Cr = 0.7 Cr = 0.9

F1 F2

0.5 1.90e−03 2.45e−02 1.48e−01 3.88e−01 6.25e−01 2.07e+00 1.65e+00 2.24e+00 2.79e+00 4.03e+00

0.7 1.21e−03 9.90e−03 2.24e−02 4.20e−02 1.46e−01 2.49e−05 1.04e−04 1.16e+00 2.58e+00 3.89e+00

0.9 1.21e−03 1.21e−03 1.21e−03 1.21e−03 7.89e−03 3.54e−06 3.54e−06 3.54e−06 3.03e−05 1.71e+00

1.1 1.21e−03 1.21e−03 1.21e−03 1.21e−03 1.21e−03 3.54e−06 3.54e−06 3.54e−06 7.11e−05 1.65e+00

1.3 1.21e−03 1.21e−03 1.21e−03 1.21e−03 1.21e−03 3.54e−06 3.54e−06 3.54e−06 2.15e−05 5.18e−05

1.5 1.21e−03 1.21e−03 1.21e−03 1.21e−03 1.21e−03 3.54e−06 3.54e−06 3.54e−06 3.54e−06 3.54e−06

1.7 1.21e−03 1.21e−03 1.21e−03 1.21e−03 1.21e−03 3.54e−06 3.54e−06 3.54e−06 3.54e−06 3.54e−06

1.9 1.21e−03 1.21e−03 1.21e−03 1.21e−03 1.21e−03 3.54e−06 3.54e−06 3.54e−06 3.54e−06 3.54e−06

F3 F4

0.5 1.08e−01 5.05e−01 1.07e+00 5.74e+00 1.77e+01 1.90e+00 1.78e+00 2.48e+00 6.39e+00 1.34e+00

0.7 3.69e−02 9.50e−02 2.20e−01 4.48e−01 2.49e−14 3.47e+00 1.08e+00 1.08e+00 3.03e+00 5.09e+00

0.9 2.57e−06 2.57e−06 9.95e−01 2.98e+00 9.95e+00 1.23e−01 1.23e−01 1.23e−01 3.68e−01 1.65e−01

1.1 4.06e−05 2.57e−06 9.86e−03 1.23e−02 3.20e−02 1.23e−01 1.23e−01 1.23e−01 3.03e−01 2.35e−01

1.3 2.57e−06 2.57e−06 2.57e−06 2.57e−06 2.98e+00 1.23e−01 1.23e−01 1.23e−01 6.46e−01 1.65e−01

1.5 2.57e−06 2.57e−06 2.57e−06 7.50e−03 4.18e−02 1.23e−01 1.23e−01 1.23e−01 1.23e−01 1.07e+00

1.7 4.18e−05 1.31e−05 1.06e−05 1.35e−02 3.94e−02 1.07e−02 1.23e−01 1.23e−01 1.23e−01 1.23e−01

1.9 2.57e−06 2.57e−06 2.57e−06 2.04e+00 1.11e+01 1.23e−01 1.23e−01 1.23e−01 2.22e−01 2.09e−01

F5 F6

0.5 1.32e+00 1.92e+00 2.41e+00 3.27e+00 4.06e+00 1.65e+00 1.65e+00 1.98e+00 1.91e+00 2.18e+00

0.7 9.97e−01 1.99e+00 6.99e+00 1.29e+00 2.13e+00 1.74e+00 8.15e+00 3.67e+00 4.13e+00 7.07e+00

0.9 3.55e−01 3.55e−01 1.49e+00 1.65e+00 2.58e+00 8.67e−01 9.86e−01 2.22e+00 4.67e+00 1.62e+00

1.1 2.64e−01 2.64e−01 9.95e−01 1.99e+00 8.96e+00 1.87e−01 1.87e−01 1.87e−01 1.87e−01 2.22e−01

1.3 3.55e−01 3.55e−01 2.64e−01 3.55e−01 3.55e−01 1.11e+00 1.99e−01 8.11e−01 9.86e+00 2.71e+00

1.5 2.64e−01 2.64e−01 2.64e−01 2.84e−01 7.83e+00 1.87e−01 1.87e−01 1.87e−01 1.87e−01 1.22e+00

1.7 7.83e+00 2.64e−01 2.64e−01 1.31e+00 1.15e+01 1.87e−01 1.87e−01 1.87e−01 1.87e−01 2.22e−01

1.9 3.55e−01 3.55e−01 3.55e−01 2.64e−01 3.55e−01 4.43e−01 7.40e−01 7.40e−01 3.45e+00 5.95e+00
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5.2 Parameter evaluation

There are two main parameters in MONFO, learning rate α

and the crossover probability Cr. The effect of α is to con-
trol the scale of search region, and Cr is used to control the
convergence speed. For users, the two parameters need to
be insensitive and problem independent. In this experiment,
we have evaluated how α and Cr affect the performance of
MONFO. Different settings of α and Cr are tested on the
functions F1, F2, F3, F4, F5, F6. And α is set to 0.5, .0.7,
0.9, 1.1, 1.3, 1.5, 1.7 and 1.9. For each learning rate, Cr is
set to 0.1, 0.3, 0.5, 0.7, and 0.9 for comparisons. With each
pair of parameters, the mean IGD values of final results are
listed in Table 2, in which the best mean value are high-
lighted as bold. It can be noticed that appropriate α lies in
the scale from 0.7 to 1.7. For α values smaller than 0.7,
MONFO is easily getting trapped in the local minimum due
to the insufficient search. Furthermore, Cr is robust enough
in the scale [0.1, 0.7]. If Cr is large than 0.7, NFO cannot
converge to the global optimum regardless to the learning
rate. In the above parameter evaluation, we set the contour
level m = 10.

In the following comparison studies, α and Cr are set to
1.5 and 0.1 in MONFO. We also find that the contour level is
less sensitive than Cr and α. In Table 3, we study the effect
of using different contour level number m. We test MONFO
in all functions with different M values when α = 1.5 and
Cr = 0.1. The contour level is set M = 2, 3, 4, 5, 10, 20,
25 respectively. The mean over 30 runs are listed in Table 3.
The best results are marked in bold for each function. It
can be notice that when the contour level m is larger than
5, MONFO can converge to the global optimum on most
functions. The optimal value of m is 10, which is used in
the following experiments.

5.3 Comparison studies

The mean values and the standard derivations of GD, IGD
and HV on each test function are listed in Tables 4, 5 and 6
respectively. The best results of GD, IGD and HV for each
function are highlighted in bold. The overall performance of
accuracy and diversity can be analyzed using GD, IGD and
HV metrics. To illustrate the results of MONFO, NSGA-II,
SPEA2, MOPSO and GDE3 more clearly, we plot the final
results of the best run with the largest HV value in Figs. 3,
4 and 5. They have shown the results on ZDTs, DTLZs and
LZs respectively.

For F1, the Pareto front of ZDT3 consists of several non-
contiguous convex parts. The first column of Fig. 3 shows
the results of MONFO, NSGA-II, SPEA2, MOPSO and
GDE3 on function F1. It is confirmed that all the evalu-
ated algorithms can solve this function with well-dispersed
distribution on the Pareto front.

For F2, ZDT4 is a multimodal function that contains 2110

local optimal fronts. The second column of Fig. 3 shows
the final results of each algorithm on F2. Only MONFO
and GDE3 can obtain some of the final results on the global
Pareto front, while NSGA-II, SPEA2 and MOPSO cannot
obtain any result on the front shown as Fig. 3e, h and k. It is
evident that MONFO can solve this multimodal function. In
Table 6, the HV metrics of NSGA-II, SPEA2 and MOPSO
are all zeros, while MONFO exhibits a comparably large
HV with GDE3.

For F3, ZDT6 has two difficulties caused by the non-
uniformity of the search space. First, its Pareto solutions
are non-uniformly distributed in the search space, sparsely
near the Pareto front and densely away from the Pareto front.
Second, the Pareto optimal solutions are also non-uniformly
distributed in the search space. The distribution is dense

Table 3 The mean results of IGD with different contour levels when Cr = 0.1 and α = 1.5(30 runs)

m 2 3 4 5 10 20 25

Fi

1 9.12e−03 7.89e−03 6.54e−03 2.36e−03 1.21e−03 1.21e−03 3.15e−03

2 7.86e−05 7.21e−05 5.18e−05 6.53e−06 3.54e−06 4.41e−06 5.17e−06

3 4.53e−04 9.13e−05 7.34e−05 3.12e−06 2.57e−06 2.51e−06 4.87e−06

4 2.33e+00 1.37e+00 6.35e−01 1.29e−01 1.23e−01 1.26e−01 1.64e−01

5 4.61e+00 1.65e+00 5.32e−01 4.19e−01 2.64e−01 2.87e−01 3.91e−01

6 3.87e+01 2.13e+00 3.45e−01 1.91e−01 1.87e−01 1.94e−01 2.53e−01

7 9.37e−01 5.82e−01 2.39e−01 1.54e−01 1.54e−01 1.65e−01 3.12e−01

8 2.33e−02 1.13e−02 1.07e−02 9.84e−03 1.46e−03 1.49e−03 1.75e−03

9 7.91e−02 3.52e−02 2.03e−02 1.47e−02 7.58e−03 7.67e−03 8.23e−03

10 1.79e−01 9.14e−01 3.83e−01 1.25e−01 1.25e−01 2.07e−01 6.64e−01

11 4.06e−01 3.76e−01 8.72e−02 6.55e−02 2.15e−02 2.15e−02 5.03e−02

12 9.87e−01 6.72e−01 5.63e−01 5.63e−01 3.09e−01 3.02e−01 4.67e−01
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Table 4 The mean and standard derivation of GD on the benchmarks (30 runs)

Fi NSGA-II SPEA2 MOPSO GDE3 MONFO

Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev.

1 3.60e−03 ± 5.42e−04 2.41e−03 ± 4.45e−19 9.03e−04 ± 1.17e−04 2.92e−03 ± 3.68e−03 1.42e−03 ± 2.92e−03

2 2.65e+01 ± 9.00e+00 7.54e−01 ± 1.14e−16 6.27e+00 ± 3.21e+00 1.21e−05 ± 4.90e−02 6.02e−05 ± 6.34e−05

3 4.28e−01 ± 6.15e−01 1.03e+00 ± 2.28e−16 7.92e−02 ± 1.40e−01 2.46e−03 ± 2.94e−03 1.71e−03 ± 2.54e−03

4 5.92e−02 ± 2.36e−03 5.79e−03 ± 1.78e−18 1.40e−02 ± 2.25e−03 1.17e−02 ± 9.95e−04 8.11e−03 ± 2.16e−03

5 1.50e−01 ± 5.34e−02 9.89e−03 ± 1.78e−18 8.37e−02 ± 5.05e−02 6.88e−02 ± 3.78e−03 1.71e−02 ± 3.25e−03

6 7.81e−02 ± 3.11e−02 7.75e−03 ± 2.67e−18 1.75e−02 ± 2.56e−03 1.073−02 ± 1.23e−03 9.91e−03 ± 3.29e−03

7 2.08e+01 ± 7.14e+00 2.11e+00 ± 7.31e−01 5.76e+01 ± 3.77e+00 2.40e−01 ± 2.90e−01 1.98+00 ± 4.20e−01

8 1.91e−01 ± 5.78e−02 3.42e−02 ± 1.42e−17 3.94e−01 ± 2.08e−01 1.79e−03 ± 8.97e−05 9.32e−03 ± 1.53e−02

9 7.80e−03 ± 6.98e−04 2.33e−02 ± 7.12e−18 6.78e−02 ± 7.88e−02 1.26e−02 ± 1.11e−04 3.43e−02 ± 2.91e−04

10 3.64e+01 ± 8.13e+00 3.64e+02 ± 1.17e−13 1.27e+02 ± 1.77e+01 7.63e+00 ± 7.45e−01 2.07e+00 ± 6.11e−01

11 1.06e+02 ± 4.03e+01 5.82e+00 ± 1.82e−15 5.61e+00 ± 2.61e+00 8.24e−01 ± 1.90e−01 1.42e−01 ± 2.18e−01

12 3.77e+02 ± 1.40e+01 2.87e+01 ± 3.65e−15 1.22e+02 ± 2.13e+01 4.55e+02 ± 3.74e+01 2.77e+01 ± 2.63e+00

when the first objective value near 1. Figure 3 plots the final
results of F3 in the third column. From these subfigures,
we can see that MONFO, NSGA-II and GDE3 are capable
of solving this function, whilst SPEA2 and MOPSO can-
not solve the function. The statistical results in Tables 4, 5
and 6 agree with the same conclusion. SPEA2 has the zero
HV, and MONFO has the smallest GD, IGD on F3. Overall,
it is clear that MONFO can deliver remarkable performance
on multimodal and non-uniformly functions.

For the three LZs functions F4, F5, F6 , the final results
of the evaluated algorithms are plotted in Fig. 4. For F4,
the simulation results show that all the five algorithms can
find certain results on the Pareto front with almost the same
performance shown in the first column of Fig. 4. SPEA2
exhibits the smallest GD metric; MONFO shows the small-
est IGD and the largest HV. It is worth noting that F5 is a

difficult function that can only be solved by using MONFO.
For F5, MONFO can find better-dispersed results than other
algorithms shown in Fig. 4b, e, h, k and n. For F6, all algo-
rithms have almost the same performance, but MONFO can
obtain the results with the smallest IGD on F6. Generally,
MONFO can consistently deliver well-dispersed results on
the series of LZs functions.

For the three-objective DTLZs functions F7, F8, F9,
Fig. 5 shows the results obtained by MONFO, NSGA-II,
SPEA2, MOPSO, and GDE3. It is clear that MONFO can
deliver a comparably performance among all the evaluated
algorithms on DTLZs. For F7, its front is a linear hyper-
plane. It is worth noting that the difficulty of this function
is that the search space contains (11D−2−1) local Pareto-
optimal fronts. The first column of Fig. 5 shows that the
results on F7. MONFO and GDE3 can find certain Pareto

Table 5 The mean and standard derivation of IGD on the benchmarks (30 runs)

Fi NSGA-II SPEA2 MOPSO GDE3 MONFO

Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev.

1 2.92e−02 ± 3.29e−03 1.70e−02 ± 7.12e−18 6.13e−03 ± 7.54e−04 1.76e−03 ± 2.00e−03 1.21e−03 ± 2.34e−03

2 5.36e+00 ± 8.95e−01 8.65e−01 ± 1.14e−16 2.70e−06 ± 6.28e−01 2.47e−06 ± 1.52e−07 3.54e−06 ± 2.46e−06

3 2.97e−04 ± 6.44e−04 9.57e−04 ± 1.11e−19 9.00e−06 ± 2.37e−05 2.60e−06 ± 1.38e−07 2.57e−06 ± 2.19e−07

4 4.90e−01 ± 6.54e−02 2.27e−01 ± 8.54e−17 3.51e−01 ± 2.54e−02 3.27e−01 ± 1.07e−02 1.23e−01 ± 1.35e−02

5 9.70e−01 ± 1.46e−01 2.30e−01 ± 2.85e−17 8.67e−01 ± 3.12e−01 2.18e−01 ± 4.50e−02 2.64e−01 ± 1.83e−02

6 6.75e−01 ± 9.41e−02 2.35e−01 ± 2.93e−02 3.53e−01 ± 1.90e−02 3.23e−01 ± 1.59e−02 1.87e−01 ± 1.56e−02

7 7.28e−01 ± 1.28e−01 2.45e−01 ± 2.85e−17 5.03e−01 ± 4.17e−02 5.48e−02 ± 5.62e−02 1.54e−01 ± 1.63e−02

8 4.25e−02 ± 6.89e−03 1.85e−02 ± 7.12e−18 6.06e−02 ± 1.69e−02 1.28e−03 ± 7.09e−05 1.46e−03 ± 9.85e−03

9 7.10e−03 ± 3.38e−03 1.44e−02 ± 1.78e−18 2.17e−02 ± 1.33e−02 1.26e−02 ± 8.48e−05 7.58e−03 ± 3.21e−03

10 9.50e−01 ± 1.15e−01 1.01e+00 ± 2.28e−16 5.13e−01 ± 5.55e−02 8.07e−02 ± 5.95e−02 1.25e−01 ± 1.19e−03

11 1.09e+00 ± 2.08e−01 2.40e−01 ± 5.70e−17 2.26e−01 ± 5.66e−02 9.22e−02 ± 8.97e−03 2.15e−02 ± 3.02e−03

12 2.16e+00 ± 6.83e−02 5.07e−01 ± 2.28e−16 1.03e+00 ± 8.61e−02 2.03e+00 ± 8.17e−02 3.09e−01 ± 3.08e−02
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Table 6 The mean and standard derivation of HV on the benchmarks (30 runs)

Fi NSGA-II SPEA2 MOPSO GDE3 MONFO

Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev. Mean±Std. Dev.

1 3.77−01 ± 6.47e−03 3.70e−01 ± 1.71e−16 2.51e−01 ± 3.95e−03 2.52e−01 ± 5.73e−03 3.90e−01 ± 1.01e−02

2 0 ± 0 0 ± 0 0 ± 0 2.57e−01 ± 4.28e−03 2.01e−01 ± 3.44e−02

3 3.49e−02 ± 2.79e−02 0 ± 0 0 ± 0 8.05e−02 ± 1.09e−03 6.91e−02 ± 3.50e−03

4 1.91e−01 ± 1.49e−02 2.40e−01 ± 0 2.57e−01 ± 6.56e−03 2.49e−01 ± 5.08e−03 2.85e−01 ± 9.87e−03

5 1.52e−01 ± 3.07e−02 2.59e−01 ± 1.05e−02 1.98e−01 ± 5.15e−02 2.54e−01 ± 2.51e−02 2.54e−01 ± 1.16e−02

6 1.86e−01 ± 2.02e−02 2.80e−01 ± 4.50e−03 2.66−01 ± 5.81e−03 2.66e−01 ± 1.21e−02 2.76e−01 ± 7.90e−03

7 0 ± 0 0 ± 0 0 ± 0 1.13e−02 ± 1.21e−03 1.73e−03 ± 1.30e−02

8 1.09e−02 ± 6.69e−03 4.08e−02 ± 2.14e−017 4.29e−03 ± 5.80e−03 5.45e−02 ± 1.01e−03 4.25e−02 ± 5.97e−03

9 7.22e−03 ± 6.43e−04 5.11e−03 ± 0 4.13e−03 ± 2.41e−03 7.91e−03 ± 2.89e−04 8.27e−03 ± 6.99e−04

10 0 ± 0 0 ± 0 0 ± 0 6.99e−04 ± 7.66e−04 1.21e−03 ± 4.59e−04

11 0 ± 0 0 ± 0 1.36e−06 ± 6.09e−06 1.54e−03 ± 7.10e−04 3.37e−02 ± 5.97e−03

12 0 ± 0 0 ± 0 0 ± 0 0 ± 0 9.37e−06 ± 9.59e−06

optima, while the other algorithms cannot solve the problem
completely as shown in the first column of Fig. 5. For F8,
its Pareto front is a unit sphere in the 3-D objective space.
For F9, its difficulty is different from the above two func-
tions that its Pareto front is not a plane but a continuous
curve. The results on F8, F9 are illustrated in the second
and third columns of Fig. 5. All the algorithms show they
can find well-dispersed results, but the results of GDE3 and
MONFO appear to be closer to the Pareto optima.

Although we cannot visualize the results on high dimen-
sional objective functions, it is clear that MONFO is the best
in Tables 4, 5 and 6. For the F10, F11 and F12, MONFO out-
performs others dominantly, with the best GD, IGD and HV
metrics. The HV values of NSGA-II and SPEA2 on these
functions are all zeros, which demonstrate that they can-
not find any result within the referred area (that dominates
the nadir point). MONFO can find some good results in the
referred area with the largest HV.

The two-side Wilcoxon’s rank-sum tests can be con-
ducted to clarify the statistical differences of GD, IGD
and HV between MONFO and other algorithms NSGA-II,
SPEA2, MOPSO, and GDE3. Table 7 shows the results
of Wilcoxon’s test at the significance level of 5% between
the performance of MONFO and other algorithms. The
notation “+” indicates that the performance of MONFO
is significantly better than the compared algorithms; the
notation “−” indicates that the MONFO’s result is sig-
nificantly worse than the compared algorithm; “≈” implies
that two compared algorithms are not statistically different
with (i.e., statistically insignificant) each other. For the GD
metric, the numbers of functions, on which MONFO is
significantly better than, worse than, and similar with
NSGA-II, are 11/1/0; the numbers of functions, on which

MONFO is significantly better than, worse than, and sim-
ilar with SPEA2, MOPSO and GDE3, are 8/3/1, 11/1/0
and 8/3/1, respectively. It can be noticed that MONFO is
significant better than the compared algorithms on most
functions. For the IGD and HV, the same conclusions can be
obtained according to Table 7. Generally, the performance
of MONFO statistically better than the other four algorithms
on most evaluated functions in the respects of GD, IGD and
HV. Besides the Wilcoxon’s tests, one-side t-tests at sig-
nificance level of 5% are also conducted between MONFO
and the compared algorithms. The results of t-tests are the
same as Table 7.

In all, MONFO delivers the minimum GD on four
different functions F3, F10, F11 and F12 in Table 4, while
SPEA2, GDE3, NSGA-II and MOPSO deliver the mini-
mal GD on three, three, one and one functions respectively.
From IGD results in Table 5, MONFO delivers the minimal
IGD on seven functions F1, F3, F4, F6, F10, F11 and F12,
while GDE3, NSGA-II, SPEA2 and MOPSO deliver the
minimal IGD on four, one ,zero and zero functions respec-
tively. From HV results in Table 6, MONFO exhibits its
superiority in both accuracy and diversity. SPEA2 delivers
the best HV on the functions F5 and F6; GDE3 delivers
the best HV on four different functions F2, F3, F8 and
F9; MONFO delivers the maximal HV on the other six
functions.

Under the overall evaluations of GD, IGD and HV, it
can be concluded that MONFO can obtain excellent per-
formances in terms of accuracy and diversity, compared
with NSGA-II SPEA2, MOPSO, and GDE3. MONFO can
obtain the significantly better results of GD, IGD and HV,
especially for multimodal functions with the high dimen-
sional objective space. For some real-world problems with
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Fig. 3 Final results of the run with the largest HV value on ZDTs. (a),
(d), (g), (j) and (m) in the first column are the results on ZDT3 func-
tion for MONFO, NSGA-II, SPEA2, MOPSO and GDE3, respectively;
(b), (e), (h), (k) and (n) in the second column are the results on ZDT4

function for MONFO, NSGA-II, SPEA2, MOPSO and GDE3, respec-
tively; (c), (f), (i), (l) and (o) in the third column are the results on
ZDT6 function for MONFO, NSGA-II, SPEA2, MOPSO and GDE3,
respectively. In each subfigure, the solid line denotes Pareto front of
each function
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Fig. 4 Final results of the run with the largest HV value on LZs. (a),
(d), (g), (j) and (m) in the first column are the results on LZ1 function
for MONFO, NSGA-II, SPEA2, MOPSO and GDE3, respectively; (b),
(e), (h), (k) and (n) in the second column are the results on LZ2 func-
tion for MONFO, NSGA-II, SPEA2, MOPSO and GDE3, respectively;

(c), (f), (i), (l) and (o) in the third column are the results on LZ3 func-
tion for MONFO, NSGA-II, SPEA2, MOPSO and GDE3, respectively.
In each subfigure, the solid line denotes Pareto front of each function
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Fig. 5 Final results of the run with the largest HV value on DTLZs.
(a), (d), (g), (j) and (m) in the first column are the results on DTLZ1
function for MONFO, NSGA-II, SPEA2, MOPSO and GDE3, respec-
tively; (b), (e), (h), (k) and (n) in the second column are the results on

DTLZ2 function for MONFO, NSGA-II, SPEA2, MOPSO and GDE3,
respectively; (c), (f), (i), (l) and (o) in the third column are the results on
DTLZ5 function for MONFO, NSGA-II, SPEA2, MOPSO and GDE3,
respectively
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Table 7 Results of statistical tests on the performance metrics

Fi GD IGD HV

NSGA-II SPEA2 MOPSO GDE3 NSGA-II SPEA2 MOPSO GDE3 NSGA-II SPEA2 MOPSO GDE3

1 + + − + + + + + + + + +
2 + + + ≈ + + − ≈ + + + −
3 + + + + + + + ≈ + + + −
4 + − + + + + + + + + + +
5 + − + + + − + − + − + +
6 + ≈ + + + + + + + − + +
7 + + + − + + + − + + + −
8 + + + − + + + − + + + −
9 − − + − − + + + + + + +
10 + + + + + + + + + + + +
11 + + + + + + + + + + + +
12 + + + + + + + + + + + +
Total(B/W/I) 11/1/0 8/3/1 11/1/0 8/3/1 11/1/0 11/1/0 11/1/0 7/3/2 12/0/0 10/2/0 12/0/0 8/4/0

Wilcoxon’s tests and t-tests at the significance level of 5% are conducted between the performance of MONFO and those of other algorithms. “+” means
that MONFO is significant better than the compared algorithms; “−” means that MONFO is significant worse than the compared algorithms; “≈” mean
that MONFO is statistically insignificant with the compared algorithms. In the last column, “B/W/I” means the number of functions that MONFO statistical
better than, worse than, and insignificant with each compared algorithm

constraints, MONFO can still handle them after defining
constraints-dominance relationships similarly with GDE3,
or using certain problem-based operations to repair the vio-
lating solutions feasibly, which is out of the discussion of
this paper.

6 Conclusion

A new local algorithm called MONFO is proposed to solve
MOOPs based on the neighborhood cooperation. This study
shows that the proposed local search algorithm can achieve
comparable performance with other global search algo-
rithms, such as NSGA-II, SPEA2, MOPSO and GDE3.
Especially for some multimodal functions with high dimen-
sional objectives, MONFO can outperform these evaluated
algorithms in terms of accuracy and diversity.

The focus of this paper is not discussing which kind of
search, locally or globally, should be employed. This paper
only emphasizes on the new basic algorithm framework and
the comparison study with some other major frameworks. It
has been demonstrated that the cooperative neighborhood
field can be used to generate an optimization algorithm
directly and independently. The neighborhood field model
(NFM) utilizes the dynamics from neighbors directly, which
can provide an efficient searching mechanism in MONFO.
The presented results have shown that the local coopera-
tion can directly enable the algorithm to converge with high
accuracy and diversity.

Appendix

(1) Generational distance (GD) (Chowdhury et al. 2009):
The concept of generational distance was introduced as
a way of estimating the distance between the obtained
non-dominated solutions and the global optima in the
objective space. GD is defined as

G D =

N∑

i=1
dmin (F (xi ) , F (Xr))

N
, (13)

where N is the size of non-dominated set, Xr is
the referred Pareto set. dmin(,) is the minimum of
Euclidean distances from the i th individual xi to all
points in the Pareto set Xr (in the objective space). It
is clear that when GD equals to zero all the solutions
are in the global Pareto set, and a large GD means the
solutions are far from the global Pareto optima. The
GD metric can evaluate the accuracy performance.

(2) Inverse Generational distance (IGD) (Veldhuizen and
Lamont 1998): The Inverse Generational distance
(IGD) is similar with GD to compare the solution’s
quality in the decision space. IGD inversely compares
each referred Pareto optima’s distance away from the
obtained non-dominated solutions. IGD is defined as

G D =

Nr∑

i=1
dmin (F (Xri ) , F (X) ,)

Nr
, (14)
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where Xr is referred Pareto set, Nr is the size of Xr, X
is the obtained set of non-dominated solutions. dmin(,)
is the minimum of Euclidean distances from the i th
referred solution Xri to all solutions in the obtained
set X (in the objective space). A low IGD is preferred
for the algorithms, which means they have the good
accuracy performance.

(3) Hypervolume (HV) (Durillo et al. 2010): The hyper-
volume (HV) computes the volume (in objective
space) covered by members in a non-dominated set
X . For the minimization multiobjective optimization
problems, HV measures the total dominated hypervol-
ume between each solution xi ∈ X and an inferior
reference point W , which should be dominated by all
Pareto-optimal solutions. The volume of hypercube
between xi and W is denoted as Vi . The hypervolume
is calculated as,

H V =
volume

(⋃N
i=1 Vi

)

N
. (15)

To evaluate algorithms with different population sizes,
the hypervolume metric is usually defined as an aver-
age of the total volume to the size. Hence, larger HV
values are more desirable, which indicates the better
performance of the convergence towards the Pareto
front, as well as the better performance of the diver-
sity. For calculating HV, the reference point is chosen
as the nadir point. Only the obtained results can dom-
inate the nadir point have positive volumes, otherwise
they have volumes with zero.
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