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Abstract Dealing with high-dimensional data has always

been a major problem with the research of pattern recog-

nition and machine learning, and linear discriminant anal-

ysis (LDA) is one of the most popular methods for

dimensionality reduction. However, it suffers from the

problem of being too sensitive to outliers. Hence to solve

this problem, fuzzy membership can be introduced to

enhance the performance of algorithms by reducing the

effects of outliers. In this paper, we analyze the existing

fuzzy strategies and propose a new effective one based on

Markov random walks. The new fuzzy strategy can main-

tain high consistency of local and global discriminative

information and preserve statistical properties of dataset. In

addition, based on the proposed fuzzy strategy, we then

derive an efficient fuzzy LDA algorithm by incorporating

the fuzzy membership into learning. Theoretical analysis

and extensive simulations show the effectiveness of our

algorithm. The presented results demonstrate that our

proposed algorithm can achieve significantly improved

results compared with other existing algorithms.

Keywords Discriminative Learning � Dimensionality

reduction � Fuzzy strategy � Markov random walks

1 Introduction

Dealing with high-dimensional data has always been a

major problem with the research of pattern recognition and

machine learning. Typical applications of these include

face recognition, document categorization, and image

retrieval. Finding a low-dimensional representation of

high-dimensional space, namely dimensionality reduction

is thus of great practical importance. The goal of dimen-

sionality reduction is to reduce the complexity of input

space and embed high-dimensional space into a low-

dimensional space while keeping most of the desired

intrinsic information (Tenenbaum et al. 2000; Roweis and

Saul 2000). Among all the dimensionality reduction tech-

niques, Linear Discriminant Analysis (Belhumeur et al.

1997) is the most popular method and has been widely used

in many classification applications. In LDA, it uses the

within-class scatter matrix Swto evaluate the aggregation

within each class and between-class scatter matrix Sb to

evaluate the separability between different classes. The

objective of LDA is then to find the optimal projection that

maximizes the between-class scatter matrix while mini-

mizes the within-class scatter matrix. Given that the

within-class scatter matrix is nonsingular, the optimization

problem of LDA can be solved by generalized eigen-

value decomposition (GEVD), i.e. to find the d largest

eigenvectors corresponding to the eigenvalues of Sw
-1Sb

(Fukunaga 1990). However, for many applications where

the number of dimensionality is much larger than that of

samples, the within-class scatter matrix tends to be singu-

lar. Hence, the optimal projection matrix may be found

correctly. This is the so-called small sample problem

(Fukunaga 1990). To solve this problem, many variants of

LDA have been proposed which include null space LDA

(Chen et al. 2000), direct LDA (Yu and Yang 2001),
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LDA/GSVD (Howland and Park 2004), LDA/QR (Ye and

Li 2005). Another drawback of LDA is that it is sensitive to

the outlier samples as these samples may have adverse

influences on the calculation of scatter matrixes hence

causes the classification performance degraded (Song et al.

2009). Most existing LDA algorithms suffer from this

drawback as they are based on a binary (0–1) class mem-

bership which cannot estimate the outlierness of a sample

in each class (Kwak and Pedrycz 2005). Thus, to solve this

problem, it is reasonable to take advantages of fuzzy

memberships to enhance the performance as the fuzzy

membership can evaluate the importance or representa-

tiveness of a sample in each class. In this paper, we will

focus on the second issue.

One of the most important issues is how to develop a

reasonable fuzzy strategy and how to redefine the sub-

sequent scatter matrixes based on the fuzzy membership.

To date, there are many algorithms that combine different

fuzzy strategy with conventional LDA algorithm (Kwak

and Pedrycz 2005; Song et al. 2009). These algorithms

choose a fuzzy strategy based on the notion of fuzzy

k neighborhood classifier (Kwak and Pedrycz 2005). Song

et al. (2009) proposed another fuzzy strategy based on a

relaxed normalized condition which is an extension of the

former one. However, both of these two fuzzy strategies

can only keep the local discriminative information but

overlook the global discriminative information. In this

paper, we further analyze the drawbacks of the above two

fuzzy strategies and propose a new efficient algorithm

based on Markov random walks (Moonesignhe and Tan

2006; Wang and Davidson 2009; Liu et al. 2010). The new

fuzzy strategy starts with the construction of a neighbor-

hood graph that represents the local structure of dataset. It

then performs random walk along the graph to seek the

global discriminative information. As a result, high con-

sistency of local and global discriminative information can

be preserved.

Another drawback of the recently proposed fuzzy LDA

is that the scatter matrixes cannot satisfy the relationship of

St = Sb ? Sw, as these reformulated scatter matrixes do not

exactly follow the definitions (Kwak and Pedrycz 2005;

Song et al. 2009). To solve this problem, we propose a new

formulation of scatter matrixes which can satisfy the above

equation and can be viewed as an extension to the con-

ventional LDA algorithm. In addition, it is worth noting

that based on the notion of graph Laplacian matrix, the

fuzzy scatter matrixes can be reformulated using a pairwise

form of matrix (He et al. 2005). We also analyze our

proposed algorithm under a least square framework

(Howland and Park 2004; Ye and Li 2005). It can be

concluded that given a certain class scatter indicator, the

optimization problem of our algorithm can be equivalent to

a weighted least square problem under a mild condition.

The main contribution of this paper is summarized as

follows:

1. A new fuzzy strategy, which is based on Markov

random walks, is proposed in this paper. Compared

with the previous work (Keller et al. 1985; Kwak

and Pedrycz 2005; Song et al. 2009; Sun and Chen

2007), our proposed fuzzy strategy can maintain high

consistency between local and global discriminative

information. The stationary distribution obtained by

performing random walk can preserve the statistical

properties of dataset, making the outlier detection

possible.

2. We propose new definitions of scatter matrixes based

on fuzzy membership. The new definitions of scatter

matrixes satisfy the equality of St = Sb ? Sw and

can be reformulated under the notion of graph

Laplacian. In addition, given a certain class indica-

tor, our proposed fuzzy LDA can be solved under a

least square framework (Ye 2007; Zhang et al.

2009).

3. As an extended LDA algorithm, our proposed method

can keep the statistical properties of dataset and

eliminate the effects of outliers by incorporating fuzzy

membership into learning. This is beneficial to the

performance of classification. The proposed algorithm

can also be extended to solving a nonlinear problem

using kernel tricks (Muller et al. 2001; Yang et al.

2005).

This paper is organized as follows: in Sect. 2, we firstly

review the basic idea of LDA and propose our extended

method based on fuzzy membership. In Sect. 3, we further

analyze the optimization problem of our algorithm under a

graph Laplacian view and least square view. In Sect. 4, we

review some previous work for determining the fuzzy

strategies and propose our strategy based on Markov ran-

dom walks. In Sect. 5, we extended our algorithm to

solving a nonlinear problem using kernel tricks. Simulation

results are shown in Sect. 6 and the final conclusions are

drawn in Sect. 7.

2 A complete fuzzy linear discriminant analysis

2.1 Review of linear discriminant analysis

The goal of LDA is to seek the optimal projection that

maximize between-class scatter matrix while minimize

with-class scatter matrix. Let X = {x1, x2, …, xl} [ RD9l

be the matrix of training set, each sample xi is associated

with a class label ci from {1, 2, …, c}, the within-class,

between-class and total-class scatter matrix St, Sw, Sb can

be defined as
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St ¼
Xc

i¼1

X

x2ci

ðx� lÞðx� lÞT

Sw ¼
Xc

i¼1

X

x2ci

ðx� liÞðx� liÞ
T

Sb ¼
Xc

i¼1

liðli � lÞðli � lÞT

ð1Þ

where li is the number of labeled set in ith class, li ¼P
x2ci

x=li is the mean of labeled set in ith class, c is the

number of classes, and l ¼
Pc

i¼1

P
x2ci

x=li is the mean of

all labeled set. The goal of LDA is to find the optimal

projection matrix W* by solving the following optimization

problem:

V� ¼ arg
V2RD�d

max jVTSbV j=jVTSwVj or

V� ¼ arg
V2RD�d

max jVTSbV j=jVTStVj
ð2Þ

where W is a linear transformation satisfying V:RD ? Rd.

The optimal projection V* in Eq. (2) is then formed by

eigenvectors corresponding to the d largest eigenvalues of

Sw
-1Sb or St

-1Sb. Since the rank of Sb has a critical limitation

of c - 1, there are at most c - 1 eigenvectors corre-

sponding to non-zero eigenvalues (Fukunaga 1990). The

output set in the reduced space can be obtained by

Z = V*TX.

2.2 Official definition of fuzzy linear discriminant

analysis

In this subsection, we propose a new fuzzy LDA algorithm

by incorporating fuzzy membership into learning. This

approach can be viewed as an extension to the classical

LDA algorithm. Let W [ Rc9l be the matrix with each

element wij [ R? representing the fuzzy membership of jth

sample in ith class, we then define the fuzzy within-class,

between-class and total-class scatter matrix fSw ; eSb and eSt

as

eSt ¼
Xc

i¼1

Xl

j¼1

wijðxj � elÞðxj � elÞT

fSw ¼
Xc

i¼1

Xl

j¼1

wijðxj � eliÞðx� eliÞT

eSb ¼
Xc

i¼1

Xl

j¼1

wijð eli � elÞð eli � elÞ
T

ð3Þ

where eli ¼
Pl

j¼1 wijxj=
Pl

j¼1 wij and el ¼
Pc

i¼1

Pl
j¼1

wijxj=
Pc

i¼1

Pl
j¼1 wij: Let e = {1, 1…, 1} [ R19l be the

unit vector, F [ Ri9i be the diagonal matrix satisfying

Fii =
P

j=1
l wij, we then have

eSt ¼
Xc

i¼1

Xl

j¼1

wijðxj � elÞðxj � elÞT

¼
Xc

i¼1

Xl

j¼1

wijxjx
T
j �

Xc

i¼1

Xl

j¼1

wijelelT

¼
Xl

j¼1

xjx
T
j �

1

l

Xl

j¼1

Xl

k¼1

xjx
T
k

¼ XXT � 1

l
XeTeXT ð4Þ

fSw ¼
Xc

i¼1

Xl

j¼1

wijðxj � eliÞðxj � eliÞT

¼
Xc

i¼1

Xl

j¼1

wijxjx
T
j �

Xc

i¼1

Xl

j¼1

wij eli eli
T

¼
Xl

j¼1

xjx
T
j �

Xl

j¼1

Xl

k¼1

Xc

i¼1

wijwik

Fii

 !
xjx

T
k

¼ XXT � XWTF�1WXT ð5Þ

eSb ¼
Xc

i¼1

Xl

j¼1

wijð eli � elÞð eli � elÞT

¼
Xc

i¼1

Xl

j¼1

wij eli eli
T �

Xc

i¼1

Xl

j¼1

wijelelT

¼
Xl

j¼1

Xl

k¼1

Xc

i¼1

wijwik

Fii

 !
xjxk �

1

l

Xl

j¼1

Xl

k¼1

xjx
T
k

¼ XWTF�1WXT � 1

l
XeTeXT ð6Þ

It can be easily confirmed that eSt ¼ fSw þ eSb : In

addition, for wij [ {0, 1}, the fuzzy scatter matrixes

defined in Eqs. (4, 5, 6) can become conventional scatter

matrixes as in Eq. (3). The objective function and solution

of the proposed fuzzy LDA are

JðVÞ ¼ max
V2RD�d

jVT eSbV j=jVTfSwV j or

JðVÞ ¼ max
V2RD�d

jVT eSbV j=jVT eStV j

V�F ¼ fSw
�1 eSb or V�F ¼ eSt

�1 eSb

ð7Þ

3 Analysis of fuzzy LDA

3.1 Graph Laplacian view of fuzzy LDA

Based on the notion of graph Laplacian, the conventional

scatter matrixes can be reformulate in a pairwise form (He et al.

2005; Chung 1997). Here, we extend this idea and analyze the

fuzzy scatter matrixes using a graph Laplacian view. Let

fAw ;fAb ; eAt be the adjacent matrix of fSw ; eSb ; eSt satisfying
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ð eAtÞij ¼
1

l

ðfAwÞij ¼
Xc

k¼1

wkiwkj

Fkk

ðfAbÞij ¼
1

l
�
Xc

k¼1

wkiwkj

Fkk

ð8Þ

we then have:

eSt ¼ X eLtX
T

fSw ¼ XfLwXT

eSb ¼ XfLbXT

ð9Þ

where fLw ¼ fDw � fAw ;fLb ¼ fDb �fAb ; eLt ¼ fDt � eAt are

the graph Laplacian matrix of fSw ; eSb ; eSt ; and fDw ;fDb ;fDt

are the diagonal matrix satisfying ðfDwÞii ¼
Pl

j¼1 ðfAwÞij;
ðfDbÞii ¼

Pl
j¼1 ðfAbÞij; ðfDtÞii ¼

Pl
j¼1 ð eAtÞij: Therefore, the

objective function and solution of Fuzzy LDA can be

rewritten as

JðVÞ ¼ max
V2RD�d

jVTXfLbXTVj=jVTXfLwXTV j or

JðVÞ ¼ max
V2RD�d

jVTXfLbXTVj=jVTX eLtX
TV j

V�F ¼ ðXfLwXTÞ�1XfLbXT or V�F ¼ ðX eLtX
TÞ�1XfLbXT

ð10Þ

3.2 Least square view of fuzzy LDA

Least square is another popular technique which has

been widely used for regression and classification (Hastie

et al. 2001). Let T [ Rc9l be a class indicator matrix, the

goal of LS is then to fix a linear model TT = XTV ? b,

where b [ Rl9c is the bias term. Assuming that both data

matrix X and class indicator are centered, the bias term

then becomes zero and can be ignored. Hence, the

objective function and solution of LS is given by

min
V
kTT � XTVk2

F

V�LS ¼ ðXXTÞ�1XTT:
ð11Þ

Actually, given a certain class indicator matrix T, the

conventional LDA can be equivalent to LS under a mild

condition (Ye 2007; Zhang et al. 2009). In the section, we

further extend this relationship and analyze our proposed

fuzzy LDA under a least square framework. Assuming the

samples in dataset are centered by el; i.e. exj ¼ xj � el
satisfying

Pc
i¼1

Pl
j¼1 wij exj ¼ 0; we then have eX eXT ¼ eSt : In

addition, since the class indicator matrix is of great

importance for multi-class classification, we choose a

class indicator matrix as

Tij ¼
wijffiffiffiffiffiffi
Fii

p �
ffiffiffiffiffiffi
Fii

p

l
: ð12Þ

It can be easily proved that TTT ¼ fLb (Corollary 1, see

proof in Appendix A). Thus given fHb ¼ eXTT; we then

have fHb
fHb

T ¼ eSb : Therefore, the optimal solution in Eq.

(11) can be rewritten as V�LS ¼ eSt
�1fHb : Next we show VF

*

and VLS
* can be equivalent given the following condition

Condition 1 C1ð Þ : RankðeStÞ ¼ RankðfSwÞ þ Rankð eSbÞ:
ð13Þ

We thus have the theorem as

Theorem 1: Assuming C1 holds, then VLS
* = VF

*.

The proof of Theorem 1 is given in Appendix C. But in

most cases we cannot guarantee that the condition of C1 is

satisfied. Hence in these cases, the original optimization

problem of the proposed fuzzy LDA can be solved by

employing a two-stage approach (Sun et al. 2010). The

proof is also given in Appendix D.

4 Strategy for determining the fuzzy membership

4.1 Previous work

The conventional LDA algorithm is based on 0–1 class

membership which cannot reflect the statistical properties

of samples in each class. Hence, fuzzy membership can be

used instead to enhance the performance of conventional

algorithm. To design a fuzzy strategy, the sum-to-one

constraint should be satisfied as

0\wij\1

0\
Xl

j¼1

wij\l

Xl

j¼1

wij ¼ 1

Xc

i¼1

Xl

j¼1

wij ¼ l:

ð14Þ

In addition, since the class information of one sample is

likely to be hidden in its neighborhoods, especially when

the sample is close to the boundary of different classes, one

can describe this information of one sample by observing

the class memberships of its neighborhoods. Actually, this

idea has been around for a long time and can be dated back

to the work of Keller et al. (1985) which is based on the

notion of a fuzzy k nearest neighbor classifier (FKNN). The

algorithm of FKNN can estimate the statistical properties

of a sample in each class hence can calculate the fuzzy

1396 M. Zhao et al.

123



membership and incorporate them into learning (Kwak and

Pedrycz 2005; Song et al. 2009; Sun and Chen 2007). The

fuzzy membership of FKNN is defined as

wij ¼
0:51þ 0:49ðnij=kÞ xj belong to the ith class

0:49ðnij=kÞ otherwise

�
;

ð15Þ

where nij represents the number of neighborhoods of xj

belonging to the ith class. k is the selected number of

neighborhoods. It can be easily verified that
Pc

i¼1 wij ¼ 1:

But since misclassification often occurs due to the

existence of outliers, it is unwise to achieve imprecise

fuzzy membership. To solve this problem, Song et al.

(2009) has proposed another fuzzy strategy (RFKNN) by

reformulate FKNN under the restriction of condition. The

fuzzy membership of RFKNN is defined as

wij ¼
ð1� aÞ þ aðnij=kÞ xj belong to the ith class

aðnij=kÞ otherwise

�
;

ð16Þ

where a (0 \ a\ 1) are the parameter controlling the

value of wij. It can also be verified that
Pl

j¼1 wij ¼ 1: The

fuzzy membership of RFKNN is empirically effective than

that of FKNN (Kwak and Pedrycz 2005). Given a sample is

an outlier, a fuzzy membership close to 0.5 means that the

outlier exhibits influentially to several classes. By carefully

adjusting the parameter a in RFKNN, the relative large

fuzzy membership can be achieved, which results in

eliminating the effects of the outliers. But in FKNN, the

parameter is fixed 0.49 which is not flexible and adaptive

when handling datasets of different distribution. Therefore,

RFKNN can be viewed as an extension of FKNN.

4.2 Our proposed fuzzy strategy

The above two fuzzy strategies are proved to be able to

enhance the conventional LDA algorithms (Kwak and

Pedrycz 2005; Song et al. 2009), but they have their own

drawbacks. First, they cannot keep the consistency of local

and global discriminative information. In FKNN and

RFKNN, the determination of fuzzy membership only

considers the label information of neighborhoods of each

sample while neglecting the other samples. This means

FKNN and RFKNN can only preserve the local discrimi-

native information, but neglect the global discriminative

information. Second, both of the above two fuzzy strategies

cannot preserve the density distribution of samples in each

class. However in some circumstances, the density distri-

bution can directly reflect the importance or representa-

tiveness of each sample in class. The outliers can also be

detected using density distribution. To solve these prob-

lems, Markov random walks, a method that has been

widely used in a variety of pattern recognition and machine

learning applications (Moonesignhe and Tan 2006; Wang

and Davidson 2009; Liu et al. 2010), can fulfill this goal.

This method represents the training samples as a stochastic

graph matrix and performs random walk along the path on

graph to assess the importance or representativeness of

each sample. Given the stochastic graph matrix, i.e. the

matrix with each element denoting the one-step transition

probability form xi to xj, stationary distribution can repre-

sent the density distribution of each sample in class.

Therefore, the importance of each sample can be evaluated

and outliers can be detected. We next show our proposed

fuzzy strategy and in this paper, we denote it as MFKNN.

Let we define a Markov random walks based on an

adjacent matrix. The adjacent matrix can be approximated

by a neighborhood graph associated with weights on the

edges. Officially, let bG ¼ ð bV ; bEÞ denote this graph, where

bV is the vertex set of bG representing the training samples,

bE is the edge set of bG associated with a weight matrix

containing the local information between two nearby

samples. A natural method to define the weight matrix

using Gaussian function as

Akj ¼ expð�kxk � xjk2=rÞ xk 2 NkðxjÞ
0 otherwise

�
; ð17Þ

where Nk(xj) is the neighborhood set of xj. Let S be the

transition matrix, it can then be easily formed by

normalizing the adjacent matrix as S = AD-1, D is a

diagonal matrix satisfying Djj ¼
Pl

k¼1 Akj: We next

consider an iterative process to calculate wij. In each

iteration, the label information of xj is partially received

from its neighborhoods and the rest is received from its

initial label. Hence, it is reasonable to let wij be

wijðt þ 1Þ ¼ ð1� aÞ
X

xk2NkðxjÞ
wikðtÞskj þ ayij; ð18Þ

where Y [ Rc9l is the matrix with each element yij [ (0, 1)

representing the exact membership of xj belonging to ith

class, a(0 \ a\ 1) is a parameter balancing the tradeoff of

label information received from xj and its neighborhoods.

We then reformulate Eq. (18) as

Wðt þ 1Þ ¼ ð1� aÞWðtÞSþ aY ð19Þ

Based on Eq. (19) and let W(0) = Y, we then have

Wðt þ 1Þ ¼ Yðð1� aÞSÞtþ1 þ aY
Xt

i¼0

ðð1� aÞSÞi: ð20Þ

According to the properties of matrix, i.e.

lim t??((1 - a)S)t?1 = 0, lim t??
P

i=0
t ((1- a)S)i =

(I - (1 - a)S)-1, the iteration process converges to

W ¼ lim
t!1

WðtÞ ¼ aYðI � ð1� aÞSÞ�1; ð21Þ
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where I is an identity matrix having the same size of S.

Therefore, we can either iteratively calculate the fuzzy

membership based on Eq. (20) or obtain it directly from Eq.

(21). In addition, it can be easily proved that the sum of each

column of W is equal to 1 (Corollary 2, see proof in Appendix

B). This indicates that the elements in W are probability

values, and wij can be seen as the posterior probability of xj

belonging to the ith class. Therefore, our proposed fuzzy

strategy can reflect the importance or representativeness of

each sample and the outliers can be detected.

4.3 Relation to FKNN and RFKNN

We next prove that MFKNN can be viewed as an extension

to FKNN and RFKNN given a certain weight matrix.

Recalling the iteration process in Eq. (18), if we simply

define the weight of graph as Akj = 1, xk [ Nk(xj) and

Akj = 0, otherwise, the transition matrix S can then be

formed as Skj = 1/k, xk [ Nk(xj) and Akj = 0, otherwise.

Let W(0) = Y and we only consider the one-step results of

MFKNN, we then have

wijð1Þ¼
ð1�aÞþa

P
x2NkðxjÞ ð1=kÞyij¼ð1�aÞþanij=k

xj belong to the ith class

a
P

x2NkðxjÞ ð1=kÞyij¼anij=k otherwise

8
<

: ;

ð22Þ

which is exactly the fuzzy strategies defined in RFKNN

and FKNN (a = 0.49). Therefore, FKNN and RFKNN can

be viewed as one-step results of MFKNN.

Until here, we have reviewed some previous work for

determining the fuzzy membership and have proposed a new

effective strategy. By incorporating the fuzzy membership

learned by MFKNN into Eqs. (4, 5, 6), we can then form our

proposed fuzzy LDA algorithms (we denote it as MF-LDA).

The basic steps of algorithms are shown in Table 1.

5 Kernelization

The proposed fuzzy LDA is a linear algorithm. In this

section, we extend it to solve nonlinear problem using

kernel trick (Muller et al. 2001; Yang et al. 2005). For

convenience, we denote the kernel version of MF-LDA as

MF-KDA.

The basic idea of kernel trick is to map the original data

space to a high-dimensional Hilbert space as / : X ! F;

then perform linear dimensionality reduction on the new

space. Denote /ðXÞ ¼ f/ðx1Þ;/ðx2Þ; . . ./ðxlÞg be such

high-dimensionality space, we assume the new space can

be implicitly implemented in a kernel function as

Kðxi; xjÞ ¼ /ðxiÞT/ðxiÞ: The goal of MF-KDA is then to

find an optimal projection V/* [ Rl9d satisfying

JðV/Þ ¼ max
V/2Rl�d

jVT/ðXÞfLb/ðXÞTVj=jVT/ðXÞfLw/ðXÞTVj or

JðV/Þ ¼ max
V/2Rl�d

jVT/ðXÞfLb/ðXÞTVj=jVT/ðXÞ eLt/ðXÞTVj:

ð23Þ

Note /ðXÞ is not available as it is only implicit. Hence,

we cannot directly solve the problem in Eq. (23). To

compute the optimal projection V/; we need to add some

restrict to V/ making the solution in Eq. (23) available.

According to Representer theorem (Fukunaga 1990), we

assume the projection lies in the span of /ðXÞ
V/ ¼ /ðXÞb; ð24Þ

where b [ Rl9d is the matrix representing the contribution

of kernel-reduced space to the columns of V/; the objective

function and optimal projection of MF-KDA can then be

given as

JðbÞ ¼ max
b
jbTKfLbKbj=jbTKfLw Kbj or

JðbÞ ¼ max
b
jbTKfLbKbj=jbTK eLtKbj

b�KS�LDA ¼ ðKfLwKÞ�1KfLbK or

b�KS�LDA ¼ ðK eLt KÞ�1KfLbK

ð25Þ

Thus, the output in the reduced space can be given by

V/T/ðXÞ ¼ b�TKS�LDAK: The basic steps of MF-LDA are in

Table 2.

6 Simulations

In this section, we evaluate our algorithms with one syn-

thetic dataset and several real-world datasets. For the

Table 1 Algorithms of MF-LDA

1. Calculate the fuzzy membership by MFKNN

2. Formulate fSb ;fSw ; eSt according to Eqs. (4, 5, 6) or Eqs. (8, 9)

3. Obtain the optimal projection matrix V* by solving generalized

eigen-value decomposition (GEVD) of fSw
�1fSb or eSt

�1fSb

4. Output V*

Table 2 Algorithms of MF-KDA

1. Calculate the fuzzy membership by MFKNN

2. Calculate kernel induced scatter matrixes K eLtK or KfLw K and

KfLbK

3. Obtain the optimal projection matrix b* by solving generalized

eigen-value decomposition (GEVD) of ðKfLw KÞ�1KfLbK or

ðK eLt KÞ�1KfLbK

4. Output b*
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synthetic dataset, we evaluate our algorithm using a two-

moon dataset. For real-world datasets, we focus on solving

three pattern recognition problems (face recognition, object

recognition and handwritten digit recognition) based on

UMIST dataset (Graham and Allinson 1998), COIL-20

dataset (Nene et al. 1996) and USPS dataset (Hull 1994).

Furthermore, we compare our algorithm with other state-

of-art algorithms such as PCA (Turk and Pentland 1991),

LPP (He et al. 2005), LDA (Belhumeur et al. 1997),

F-LDA (Kwak and Pedrycz 2005) and RF-LDA (Song

et al. 2009).

6.1 Toy example for synthetic dataset

6.1.1 Two-moon dataset

In this toy example, we generate a dataset with two classes,

each of which follows a half-moon distribution. Since the

distribution of two-moon dataset is non-Gaussian, we only

perform kernel version of our algorithm for evaluation.

Figure 1 shows the gray images of decision surfaces

learned by MF-KDA with different values of parameter a.

The gray value of each pixel represents the distance dif-

ference from the pixel to its nearest samples in different

classes after dimensionality reduction by MF-KDA. In this

example, we set the dimensionality of projection as 1. The

values of parameter a are set as 0.8, 0.5, 0.2 in Fig. 1b–d,

respectively. From Fig. 1, we can see that for two-moon

dataset, the decision surface learned by MF-KDA appro-

priately adjusts as the parameter a decreases from 0.8 to

0.2, and the best decision surface can be achieved when a is

set 0.2. It can also be shown from Fig. 1a and d that MF-

KDA is better than KDA as the dark area belonging to blue

class learned by MF-KDA (a = 0.2) is more distinctive

than that learned by KDA. This indicates that the our

proposed fuzzy KDA algorithm is more effective than

KDA because the fuzzy membership can directly preserve

the density distribution embedded in the dataset.
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Fig. 1 Gray images of decision

surfaces learned by MF-KDA

with different values of

parameter a: two-moon dataset.

a a = 1 (KDA), b a = 0.8,

c a = 0.5, d a = 0.2
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Furthermore, to evaluate the effectiveness of our algo-

rithm, we generate a sparse half-moon dataset, in which

each class follows a sparse half-moon distribution and the

boundary between two classes are more confused and

overlapped. We then investigate the effectiveness of dif-

ferent algorithms based on such dataset. Figure 2 shows the

gray images of decision surfaces learned by KDA, F-KDA,

RF-KDA and MF-KDA. The parameter a in RF-KDA and

MF-KDA is set to 0.2 in both. From the results, we can see

that the performances of F-KDA, RF-KDA and MF-KDA

are more effective than that of conventional KDA as the

decision area belonging to different classes are more dis-

tinctive and accurate. The reason for it is that the fuzzy

KDA can incorporate the discriminative information

embedded in neighborhoods into learning, hence improve

the classification performance. In addition, from Fig. 2b–d

we can see that the result of MF-KDA is better than those

of F-KDA and RF-KDA. The dark area belonging to blue

class in MF-KDA is much more distinguished than that in

F-KDA and RF-KDA. This is because F-KDA and RF-

KDA only consider the local discriminative information of

dataset, while MF-KDA can keep both local and global

discriminative information by performing Markov random

walks. Thus, the accuracy of classification can be signifi-

cantly improved.

6.1.2 Two-line dataset

Finally, in the third toy example, we generate a two-line

dataset, in which each class follows a line Gaussian dis-

tribution. We then add some outliers in the original dataset

(seen in Fig. 3a) and investigate how our proposed algo-

rithms can reduce the effects of outliers. Figure 3b shows

the boundaries learned by PCA, LPP, LDA, F-LDA, RF-

LDA and our proposed MF-LDA. In this simulation, the

dimensionality of projections is set 1. From the simulation

results, we can see that all supervised algorithms such as

LDA, F-LDA, RF-LDA, MF-LDA are superior to the
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Fig. 2 Gray images of decision

surfaces learned by KDA,

F-KDA, RF-KDA and MF-

KDA: sparse two-moon dataset.

a KDA, b F-KDA, c RF-KDA

(a = 0.2), d MF-KDA

(a = 0.2)
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unsupervised algorithm such as PCA and LPP, as the

boundaries learned by the supervised algorithms can better

divide the samples into two classes, while for PCA and

LPP, these samples may be seriously miss-classed. In

addition, the proposed MF-LDA performs much better than

other supervised algorithm. It can be seen in Fig. 3b that

some of samples may be divided into false class for LDA,

F-LDA, RF-LDA, but for the proposed MF-LDA it can

precisely divide the samples into two classes. This indi-

cates that our proposed algorithm can be more robust to

outliers.

6.2 Classification

In this section, we used three datasets to evaluate the

effectiveness of our algorithm and other algorithms such as

PCA, LDA. The three datasets include the UMIST face

dataset, COIL-20 dataset and USPS handwritten digit

dataset. The details of data information and samples are

listed in Table 3 and Fig. 4.

In this comparative study, we randomly split each

dataset into training set and test set. The training set in all

datasets are preliminarily processed with a PCA operator to

eliminate the null space before performing dimensionality

reduction. All algorithms used the training set in the out-

put-reduced space to train a nearest neighborhood (1NN)

classifier with Euclidean distance for evaluating the accu-

racies of test set (Demsar 2006; Garcia and Herrera 2008).

6.2.1 Face recognition

For face recognition, we use the UMIST dataset to evaluate

the performance of algorithms. The simulation settings are

as follows: We randomly select 4, 7, 10 samples per class

as training set and the remaining as test set. The regularized

parameter a is set 0.1 in RF-LDA and the same as MF-

LDA. For F-LDA, RF-LDA and MF-LDA the number of

neighborhoods is set 8. We then explore the Gaussian

function to construct the similarity matrix in MF-LDA. The

parameter r in the Gaussian function is determined as

follows: we first calculated all the pairwise distances

among data points of the whole training set. We then set r
equivalent to half the median of those distances. As a

result, a reasonable estimation for the value of rcan be

obtained.
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Fig. 3 Boundaries learned by

PCA, LPP, LDA, F-LDA,

RF-LDA and MF-LDA: two-

line datasets with outliers.

a Original dataset, b different

boundaries learned by the

algorithms

Table 3 Data information and simulation settings

Dataset # Class (c) # Images # Feature # Training # Test

UMIST 20 564 32 9 32 10 9 c Remains

COIL-20 20 1,440 32 9 32 10 9 c 40 9 c

USPS 10 9,298 16 9 16 80 9 c 100 9 c

Fig. 4 Some samples of dataset
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The average accuracies over 20 random splits with the

above parameters under different dimensionality are shown

in Fig. 5. Table 4 shows the average accuracy with the best

dimensionality for the UMIST dataset. The number of

training set is fixed to 4, 7 and 10. From the results dis-

played in Fig. 5 and Table 4, we can observe that the fuzzy

LDA outperforms conventional algorithm, such as PCA,

LPP and LDA by about 2–3 %. This indicates that by

incorporating the fuzzy membership into learning, the

classification accuracies can be markedly improved as the

fuzzy membership preserves the local discriminative

information in each class. In addition, MF-LDA can deliver

slightly better result than F-LDA and RF-LDA by about 1

and 2 %, respectively. This is mainly due to the fact that

MF-LDA can maintain the consistency of local and global

discriminative information by performing Markov random

walks while F-LDA and RF-LDA only consider the local

discriminative information of the training samples. In

Table 3, it is noticed that the classification accuracy of all

algorithms change when the number of training set

increases. For instance, the accuracy of MF-LDA increased

from about 83–91 % when the number of training samples

increased from 4 to 10. We can also observe from Fig. 4

that the accuracy of all algorithms varies when the number

of reduced dimensionality increased. For LDA, F-LDA,

RF-LDA and MF-LDA, their accuracy remained unchan-

ged beyond the bound of c - 1.

6.2.2 Object recognition

For object recognition, we use the COIL-20 dataset to

evaluate the performance of algorithms. The simulation

settings are the same as the UMIST dataset. In the simu-

lation, we randomly selected 4, 7, 10 samples per class as

training set and 20 samples as test set. The average accu-

racies over 20 random split under different dimensionality

are shown in Fig. 6 and the best results with optimal

dimensionality are listed in Table 5. From Fig. 6 and

Table 5, the following observation can be obtained: (1) the

fuzzy LDA algorithms outperform conventional algorithms

such as PCA, LPP and LDA by about 3–4 %. (2) MF-LDA

can deliver about 2 and 3 % improvements compared with

F-LDA and RF-LDA. (3) The accuracies of all algorithms

change significantly when the labeled number increased,

i.e. the accuracy of MF-LDA increases from 83 to 93 %

when the number of labeled samples increased from 4 to

10. (4) The accuracies of all algorithms vary when the

reduced dimensionality increases. For example, the best

results can be achieved at the dimensionality of 19, 13, 11

for F-LDA, RF-LDA and MF-LDA, respectively. When the

dimensionality increases beyond these bounds, the accu-

racies of above algorithms degrade gradually. (5) MF-LDA

can reach the highest accuracy using fewest number of

dimensionality. This shows a great superiority of MF-LDA

over other algorithms.
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Fig. 5 Average accuracy (20 random splits) under different dimensionality: UMIST dataset a 4 labels, b 7 labels, c 10 labels

Table 4 Average accuracy (20 random splits) on the test set: UMIST dataset

Dataset Method 4 labeled 7 labeled 10 labeled

Mean Var Dim Mean Var Dim Mean Var Dim

UMIST 1NN 82.95 2.87 – 89.25 1.38 – 91.22 0.91 –

PCA 82.95 2.87 79 89.18 1.27 45 91.32 0.80 23

LPP 83.52 2.59 65 89.73 1.25 79 91.60 1.10 19

LDA 84.16 2.39 19 89.68 1.26 19 91.88 0.85 19

F-LDA 84.50 2.26 19 89.89 1.75 19 92.01 1.30 19

RF-LDA 84.80 2.66 19 90.61 1.66 19 92.38 1.06 19

MF-LDA 85.38 2.67 19 90.94 1.45 19 92.53 1.08 19
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6.2.3 Handwritten digit recognition

For handwritten digit recognition, we used the USPS

dataset to evaluate the performance of algorithms. The

simulation settings are as follows: We randomly selected

100 samples per class as training set and 100 samples as

test set. The regularized parameter a is set to 0.1 in RF-

LDA and MF-LDA. For F-LDA, RF-LDA and MF-LDA

the number of neighborhoods is set to 16. The Gaussian

function is used to construct the similarity matrix in MF-

LDA and the parameter r in Gaussian function is deter-

mined using the same strategy as UMIST and COIL dataset.

We first fixed the number of training samples to 20, 50

and 80 to train the learner. The average accuracies over 20

random splits with the above parameters under different

dimensionality are shown in Fig. 7 and the best results with

optimal dimensionality are listed in Table 6. From the

results in Fig. 7 and Table 6, we can observe that for the

USPS dataset, RF-LDA and MF-LDA outperform other

algorithms by about 2–3 %. F-LDA does not seem to be
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Fig. 6 Average accuracy (20 random splits) under different dimensionality: COIL-20 dataset a 4 labels, b 7 labels, c 10 labels

Table 5 Average accuracy (20 random splits) on the test set: COIL-20 dataset

Dataset Method 4 labeled 7 labeled 10 labeled

Mean Var Dim Mean Var Dim Mean Var Dim

COIL20 1NN 78.80 2.76 – 86.51 1.52 – 88.49 1.48 –

PCA 80.51 2.84 14 87.82 1.60 22 89.66 1.39 30

LPP 81.03 2.68 13 88.19 2.05 22 89.87 1.68 18

LDA 81.06 3.39 9 88.14 2.14 14 90.90 1.24 11

F-LDA 81.14 2.81 19 89.19 2.18 19 90.15 1.92 19

RF-LDA 81.79 3.08 8 89.38 1.97 12 91.51 1.76 13

MF-LDA 82.76 3.17 8 90.00 1.82 12 92.30 1.40 11

5 10 15 20 25 30 35 40

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

#Dimensionality

A
cc

u
ra

cy

5 10 15 20 25 30 35 40

0.92

0.93

0.94

0.95

0.96

0.97

0.98

#Dimensionality

A
cc

u
ra

cy

PCA
LPP
LDA
F-LDA

RF-LDA
MF-LDA
1NN

5 10 15 20 25 30 35 40

0.91

0.92

0.93

0.94

0.95

0.96

0.97

#Dimensionality

A
cc

u
ra

cy

(a)  (b)  (c)

PCA
LPP
LDA
F-LDA

RF-LDA
MF-LDA
1NN

PCA
LPP
LDA

F-LDA
RF-LDA
MF-LDA

1NN

Fig. 7 Average accuracy (20 random splits) under different dimensionality: USPS dataset a 20 labels, b 50 labels, c 80 labels
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able to deliver better performance compared to LDA. The

reason for it is that the regularized parameter a is fixed to

0.51 for F-LDA. But in most case, the handwritten digit

dataset is usually sparse with lots of outliers, the fuzzy

membership close to 0.5 such as in F-LDA means that the

outliers exhibit influentially to several classes. Hence, the

accuracy of classification may be degraded. On the other

hand, by adjusting regularized parameter a in RF-LDA and

MF-LDA, the relative large fuzzy membership can be

achieved which results in eliminating the negative effects

of the outliers to several classes. In addition, it can also be

observed from Fig. 7 and Table 6 that the classification

Table 6 Average accuracy (20 random splits) on the test set: USPS dataset

Dataset Method 20 labeled 50 labeled 80 labeled

Mean Var Dim Mean Var Dim Mean Var Dim

USPS 1NN 85.72 0.92 – 94.90 0.32 – 96.39 0.37 –

PCA 85.83 0.87 31 94.98 0.31 27 96.41 0.35 39

LPP 85.54 2.12 39 95.35 0.65 39 96.39 0.52 39

LDA 86.73 1.63 9 95.61 0.71 9 96.55 0.50 9

F-LDA 86.82 2.09 9 95.55 0.78 9 96.98 0.59 9

RF-LDA 87.50 1.75 9 95.77 0.66 9 97.09 0.58 9

MF-LDA 87.95 1.83 9 96.06 0.87 9 97.56 0.51 9

Fig. 8 2D visualization

performed by PCA, LPP, LDA

and MF-LDA: five individuals

of UMIST dataset a PCA,

b LPP, c LDA d MF-LDA (each

color represents the faces of one

person)
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accuracies of all algorithms change when the number of

training set increases. For instance the accuracy of MF-

LDA increased from about 88–98 % when the number of

training samples increased from 20 to 80. Another phe-

nomenon shown in Fig. 7 is that the accuracies of all

algorithms vary when the reduced dimensionality increases

and MF-LDA can reach the highest accuracy using the

fewest number of dimensionality compared with other

algorithms.

6.3 Visualization

We demonstrate the visualization of our proposed MF-

LDA and compare it with PCA, LPP and LDA. In this

study, two real-world datasets including the UNIST and

USPS dataset are used.

In the UMIST face dataset, we selected five individuals

to illustrate the visualization of dataset. In each individual,

we selected four samples as labeled set and the remaining

as test set. Fig. 8 shows the 2D visualization of test set

performed by PCA, LPP, LDA and MF-LDA. From the

results in Fig. 8a and b, we can see that in the unsupervised

methods such as PCA and LPP, the ordering of face poses

from profile to frontal views can be well preserved. LPP

can deliver better visualization performance than PCA as

the ordering lines of face poses are much smoother. This

improved performance is mainly due to the characteristics

of LPP that local information of dataset is embedded. But

we can also observe from Fig. 8a and b that the decision

boundaries between different classes are heavily over-

lapped and confused, which indicate that both PCA and

LPP cannot preserve the discriminative information. On the

other hand, from Fig. 8c and d, we can see that in super-

vised methods such as LDA and MF-LDA, such informa-

tion can be well preserved because the boundaries learned

by LDA and MF-LDA are more accurate and distinctive. It

is clear that our proposed MF-LDA is able to deliver better

performance compared to LDA. It can be observed from

Fig. 9 2D visualization

performed by PCA, LPP, LDA

and MF-LDA: handwritten

digits 0-4 of USPS dataset

a PCA, b LPP, c LDA,

d MF-LDA (blue digit 0; red
digit 1; green digit 2; magenta
digit 3; cyan digit 4) (color

figure online)
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Fig. 8d that samples in the upper left corner and upper right

corner can be well separated in MF-LDA. But in Fig. 8c,

these samples are heavily overlapped and conglomerated in

the upper right corner.

In the USPS handwritten digit dataset, we selected five

digits 0–4 to illustrate the visualization of dataset. For each

digit, we randomly selected 50 samples as labeled set and

another 100 samples as test set. Figure 9 shows the 2D

visualization of test set performed by PCA, LPP, LDA and

MF-LDA. From the results in Fig. 9 we can see that all

algorithms can achieve satisfactory visualization perfor-

mance and the boundaries learned by different algorithm

can separate the test set nicely. The supervised algorithms

(LDA and MF-LDA) are better than the unsupervised

algorithms (PCA and LPP). For instance in Fig. 9a and b,

we can notice that the boundaries between samples of

number ‘2’ and number ‘3’ are not clear and seriously

confused. But in Fig. 9c and d, these samples of two

classes can be separated as there are distinctive boundaries

across the two classes. In Fig. 9c and d, it demonstrates that

our proposed MF-LDA can outperform LDA in a way that

samples in each class are closely conglomerated, while

those belonging to different classes are separated far apart.

The reason for it is that by incorporating the fuzzy mem-

bership into the learning, the visualization performance of

our proposed MF-LDA can be markedly enhanced as the

fuzzy membership preserves the statistical properties of

dataset and eliminates the effects of outliers.

6.4 UCI datasets

In this section, we choose seven UCI datasets to evaluate

our algorithms and compare them with other algorithms.

The datasets include Heart-Statlog, Ionosphere, Iris, Wine,

Balance, Waveform and Synthetic Control Chart Times

Seires (SCCTS) dataset. The detailed data information is

listed in Table 7.

For comparative study, we randomly chose 30 % sam-

ples from each dataset as training set and the rest 70 % as

test set. All algorithms used training set in the output-

reduced space to train a nearest neighborhood classifier for

evaluating the accuracies of test set. In these simulations,

we simply set the reduced dimensionality as c - 1. The

average accuracies over 20 random splits are shown in

Table 8 for different UCI datasets. From the results in

Table 8, we can observe that (1) supervised algorithms

such as LDA, F-LDA, RF-LDA and the proposed MF-LDA

are superior to the unsupervised algorithms such as PCA

and LPP, e.g. MF-LDA can achieve 24, 14, 4, 20, 20 and

10 % improvements in the above datasets compared with

PCA and LPP. (2) The fuzzy LDA algorithms outperform

the conventional algorithms such as PCA, LPP and LDA

by about 3–4 % in different datasets. (3) Our proposed

algorithm can deliver about 2–3 % improvements com-

pared with F-LDA and RF-LDA.

7 Conclusions

To reduce the effects of outliers, we propose a new effi-

cient variant of LDA algorithm by incorporating the fuzzy

membership into the learning. The fuzzy membership can

be used to enhance the conventional LDA algorithm by

detecting the outliers in each class. In this paper, we further

analyze the existing fuzzy strategies and propose a new

effective one based on Markov random walks. Our results

Table 8 Average accuracy (20 random splits) on the test set for 30 % labeled UCI datasets

Datasets Methods

1NN PCA LPP LDA F-LDA RF-LDA MF-LDA

Heart-Statlog 59.78 59.78 60.43 78.30 79.54 80.36 82.30

Ionosphere 69.63 69.63 70.73 80.82 81.45 81.89 82.82

Iris 91.23 91.23 91.23 94.19 94.64 95.19 95.19

Wine 64.80 64.80 71.20 83.60 83.80 84.40 84.60

Balance 65.06 65.06 66.55 81.44 82.27 83.36 84.21

Waveform 80.94 80.94 82.85 84.45 84.85 85.40 85.45

SCCTS 81.90 81.90 84.76 90.95 91.19 91.66 92.95

Table 7 UCI datasets descriptions (‘‘Balance’’ is defined as the ratio

between the number of samples in the smallest class to the number of

samples in the largest class)

Datasets #Class #Data #Feature ‘‘Balance’’

Heart-Statlog 2 270 13 0.8

Ionosphere 2 351 34 0.56

Iris 3 150 4 1

Wine 3 178 13 0.1455

Balance 3 625 4 0.1701

Waveform 3 5,000 40 0.9770

SCCTS 6 600 60 1
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show that the proposed fuzzy strategy can provide a

remarkable effect on maintaining the consistency of local

and global discriminative information embedded in data-

sets. It can also reflect the statistical properties of dataset

by performing random walk along the neighborhood graph,

which results in detecting the outliers. Finally, theoretical

analysis and extensive simulations show the effectiveness

of our algorithm. The results in simulations demonstrate

that our proposed algorithm can achieve great superiority

compared with other existing algorithms.

Appendix

Proof of Corollary 1

According to Eq. (12), we have

ðTTTÞij ¼
Xc

k¼1

wkiffiffiffiffiffiffiffi
Fkk

p �
ffiffiffiffiffiffiffi
Fkk

p

l

� �
wkjffiffiffiffiffiffiffi
Fkk

p �
ffiffiffiffiffiffiffi
Fkk

p

l

� �

¼
Xc

k¼1

wkiwkj

Fkk
�
Xc

k¼1

wki

l
�
Xc

k¼1

wkj

l
þ
Xc

k¼1

Fkk

l2

¼
Xc

k¼1

wkiwkj

Fkk
� 1

l
¼ �ðfAbÞij: ð26Þ

According to Eq. (8), we have

ðfDbÞii ¼
Xl

j¼1

ðfAbÞij ¼
Xl

j¼1

1

l
�
Xc

k¼1

wkiwkj

Fkk

 !

¼ 1�
Xc

k¼1

1

Fkk

Xl

j¼1

wkiwkj

¼ 1�
Xc

k¼1

wki ¼ 1� 1 ¼ 0 ð27Þ

The second equality holds as
Pl

j¼1 wkj ¼ Fkk and the third

equality holds as
Pc

k¼1 wki ¼ 1: We then have ðfLbÞij ¼
ðfDbÞii � ðfAbÞij ¼ �ðfAbÞij; hence we prove TTT ¼ fLb :

Proof of Corollary 2

We prove Corollary 2 using a recursive algorithm.

According to Eq. (18) and W(0) = Y, have

Xc

i¼1

wijð1Þ ¼ a
Xc

i¼1

X

xk2NkðxjÞ
yikskj þ ð1� aÞ

Xc

i¼1

yij

¼ a
X

xk2NkðxiÞ
skj

Xc

i¼1

yik þ ð1� aÞ
Xc

i¼1

yij

¼ a
X

xk2NkðxiÞ
skj þ ð1� aÞ ¼ aþ ð1� aÞ ¼ 1

ð28Þ

The third equality holds as
Pc

i¼1 yik ¼ 1
P

i=1
c yik = 1

and the fourth equality holds as
P

xk2Nk xið Þ skj ¼ 1. Hence,

Eq. (28) indicates that the sum of each column of W(1) is

equivalent to 1. We next assume that the sum of each

column of W(t) is equivalent to 1, i.e.
Pc

i¼1 wijðtÞ ¼ 1 for

any iteration t, we then have

Xc

i¼1

wijðt þ 1Þ ¼ a
Xc

i¼1

X

xk2NkðxiÞ
wikðtÞskj þ ð1� aÞ

Xc

i¼1

yij

¼ a
X

xk2NkðxiÞ
skj

Xc

i¼1

wikðtÞ þ ð1� aÞ
Xc

i¼1

yij

¼ a
X

xk2NkðxiÞ
skj þ ð1� aÞ ¼ aþ ð1� aÞ ¼ 1

ð29Þ

This indicates that the sum of each column of W(t ? 1)

is also equivalent to 1. Thus, we prove thatPc
i¼1 wij ¼

Pc
i¼1 lim

t!1
wijðtÞ ¼ 1:

Proof of Theorem 1

1. Computing VF
* via eigen-decomposition (Ye 2005)

Let t be the rank of eSt ; by performing SVD to eSt ; we have

eSt ¼ U
R2

t 0

0 0

� �
UT; ð30Þ

where U is an orthogonal matrix, Rt
2 is a diagonal matrix

with rank t: Let U = [U1, U2] be a partition of U such that

U1 2 R
d�t and U2 2 R

d�ðd�tÞ; where U2 lies in the null

space of eSt satisfying UT
2

eStU2 ¼ 0; we then have St ¼
U1

P2
t UT

1 : Since eSt ¼ eSb þ fSw ; we have

UT eSbU ¼ UT
1
eSbU1 0

0 0

� �
;UTfSw U ¼ UT

1
fSwU1 0

0 0

� �

ð31Þ

From Eqs. (30, 31), it follows

It ¼
X�1

t

UT
1
eStU1

X�1

t

¼
X�1

t

UT
1
eSbU1

X�1

t

þ
X�1

t

UT
1
fSwU1

X�1

t

; ð32Þ

where It 2 R
t�t is an identity matrix. Recall that eSb ¼

fHb
fHb

T; if we let G ¼
P�1

t UT
1
fHb and its SVD be G ¼

P
P

b Q; where P 2 R
t�t and Q 2 R

t�c are two orthogonal

matrixes and
P

b 2 R
t�t is a diagonal matrix, we then have

X�1

t

UT
1
eSbU1

X�1

t

¼ GGT ¼ P
X2

b

PT: ð33Þ
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Therefore, according to Eqs. (30, 31, 33), we rewrite

V�F ¼ eSt
�1 eSb as

eSt
�1 eSb ¼U1

P�1
t

P�1
t 0

0 0

 !
UT eSbU

P�1
t

P
t 0

0 0

 !
UT

¼U

P�1
t 0

0 0

 !
P
X2

b

PT

P
t 0

0 0

� �
UT

¼U

P�1
t P 0

0 ID�t

 ! P2
b 0

0 0

 !
PT
P

t 0

0 ID�t

� �
UT

ð34Þ

The first equality holds as Eq. (30), the second equality

holds as Eq. (33). From Eq. (34), if we let V�F ¼U1

P�1
t P;

we have eSt
�1 eSbV�F ¼

P2
b V�F ; which indicate the column

vectors of V�F are eigenvectors of eSt
�1 eSb :

2. Equivalence relationship to least square

Recall V�LS in Eq. (11), it can be rewritten as

eSt
�1fHb ¼ U

P�1
t

P�1
t 0

0 0

 !
UTfHb

¼ U1

X�1

t

X�1

t

UT
1
fHb

 !
¼ U1

X�1

t

G

¼ U1

X�1

t

P
X

b

QT ¼ V�F
X

b

QT ð35Þ

From Eq. (35), we can neglect Q as it is orthogonal.

Thus, the main difference between V�F and V�LS is the

diagonal matrix
P

b : We next show that given the

condition in Eq. (13),
P

b is an identity matrix hence

resulting in V�LS ¼ V�F: Let H 2 R
D�D be a non-degenerate

matrix defined as:

H ¼ U

P�1
t P 0

0 ID�t

� �
ð36Þ

According to Eq. (31) (32) and fSw ¼ eSt � eSb ; we have

HT eStH ¼
It 0

0 0

� �
;HTfSwH ¼

P2
w 0

0 0

 !
;

HT eSbH ¼
P2

b 0

0 0

 !
ð37Þ

where
P

b
2 = diag(r1

2, r2
2, …, rt

2, 0, …, 0) and
P

w
2 = diag

(s1
2, s2

2, …, st
2, 0, …, 0) are two diagonal matrixes

satisfying ri
2 ? si

2 = 1, Vi. This indicates that there is at

least one of ri and si to be nonzero, Vi. Since

rank(A) ? rank(B) C rank(A ? B) (Hull 1994), we

have rankð eSbÞ þ rankðfSwÞ� rankðeStÞ According to the

Sylvester’s law of interia (Hull 1994), it follows

rank(
P

b
2) ? rank(

P
w
2 ) C rank(It). Let b be the rank ofP

b
2 and assume rank(

P
b
2) ? rank(

P
w
2 ) = rank(It) ? s, to

satisfy this rank equality, we have

1 ¼ r2
1 ¼ r2

2 ¼ � � � ¼ r2
b�s [ r2

b�sþ1 [ � � � r2
b [ r2

bþ1

¼ � � � r2
t ¼ 0

0 ¼ s2
1 ¼ s2

2 ¼ � � � s2
b�s\s2

b�sþ1\ � � � s2
b\s2

bþ1 ¼ � � � s2
t ¼ 1

ð38Þ

Since C1 holds, we have s = 0 and 1 = r1
2 =

r2
2 = ��� = rb

2 [ rb?1
2 = ��� = rt

2 = 0, which indicates

that
P

b is an identity matrix.

Appendix D

1. Computing VF
* via two-stage approach

In the two-stage approach, we first solve a least square

problem by regressing X on T, i.e. projecting the original

high-dimensional dataset into a low-dimensional subspace,

we then calculate a auxiliary matrix M [ Rd9d and its SVD.

Finally, the optimal projection matrix can be obtained from

the SVD of M. Since the size of M is very small, the cost for

calculating the SVD of M is relatively low. The basic steps

of two-stage approach are listed as follows:

1. Solve the least square problem min
V
kTT � XT Vk2

F and

obtain the optimal solution VLS
* .

2. Let eX ¼ V�TLSX and calculate the auxiliary matrix as

M ¼ V�TLSXTT:

3. Perform SVD to M as M = UMRMUM
T and obtain

V�M ¼ UMR�1=2
M :

4. The optimal solution can be given by V�T ¼ V�LSV�M :

2. Equivalent relationship

We next prove the optimal solution VT
* obtained by two-

stage approach is equivalent to that in Eq. (34). By solving

least square problem in Eq. (11), we have VLS
* =

(XXT)-1XTT. Hence, eX ¼ V�TLS X ¼ TXTðXXTÞ�1X The

auxiliary matrix M can then be given by

M ¼ eXYT ¼ TXTðXXTÞ�1XTT ¼ fHb
TU1

X�1

t

X�1

t

UT
1
fHb :

ð39Þ

The third equation holds as fHb ¼ XTT and XXT =

St = U1

P
t
2U1

T. Since G ¼
P�1

t UT
1
fHb and its SVD is

G = P
P

bQT, we have M = GTG = Q
P

b
2QT. This

indicates that Q
P

b
2QT is a SVD of M, we thus have

VM
* = Q

P
b
-1 and the optimal solution of two-stage

approach can be given by:
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V�T ¼ V�LSV�M ¼ ðXXTÞ�1XYTQ
X�1

b

¼ U1

X�1

1

X�1

1

UT
1
fHb

 !
Q
X�1

b

¼ U1

X�1

1

P
X

b

QTQ
X�1

b

¼ U1

X�1

1

P; ð40Þ

which is equivalent to V�F in Eq. (34).
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