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Abstract—This paper presents a model for optimal asset main-
tenance inspection services. The model is designed to support
through-life service in the form of multiple nested inspections
and maintenance to meet defined asset availability and capability
requirements, as well as achieving successful through-life tech-
nology insertions. The inspections and maintenance activities are
assumed to be performed at more than one level, but nested and
aimed at different types of defects or subsystems over a fixed
period of time (the designed asset life). This practice is common
in many industries, particularly in the defense industry. The
impact of technological insertions is reflected through changes in
the failure behavior of the asset. We use the delay time concept
to model the failure mechanism of the asset, and the arrivals of
defects are assumed to follow Poisson processes. The decision
variables are the inspection intervals, while the objective function
can be expressed in terms of cost, downtime, or reliability. The
model is demonstrated through a numerical example. The model
can be used for optimizing two-level inspection intervals with
technological insertions.

Index Terms—Delay time, inspection, maintenance, technolog-
ical insertions.

ACRONYM

DP Dynamic Programming

HPP Homogenous Poisson process

NOTATION

Planned service life

Defect type

The rate of type defect arrival

The delay time of a defect
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The type defect delay time distribution

The average loss measure for a type failure,
where could be downtime or cost

The average loss measure for a type inspection

The average loss measure for a type defect
removal at a type inspection

The expected number of type failures over an
interval

The expected number of type defect removals
at a type inspection after an interval of
duration

Expected loss over with as the decision
variables

Expected loss per unit time with as the
decision variables

The term loss can refer to any penalty of a measurable nature
that is related to the performance of the asset, such as cost or
downtime. The sub-script is omitted in the above notation
when a single type of defect and inspection is considered.

I. INTRODUCTION

T IME-BASED inspection and maintenance is still one of
the dominant maintenance policies used in industry for

certain types of assets that cannot be condition-monitored or
maintained on a predictive basis [1]. For complex engineering
assets such as aircraft, commercial and military vehicles, and
infrastructures such as 1rail tracks and utility networks, time-
based inspection and maintenance policies can improve perfor-
mance, and increase the reliability and capability of the assets
concerned, [2], [3]. It can also provide the benefit of easy plan-
ning. On the other hand, due to advances in technology and
production, longer product life cycles and increased asset avail-
ability are increasingly common requirements within the cap-
ital-intensive industries (such as offshore applications, defense,
and aviation), and represent important considerations for the de-
velopment of maintenance service plans, and technological up-
grading activities. Improving the provision of maintenance to in-
corporate optimal inspection intervals throughout the proposed
life of an asset should theoretically result in a reduction in the
cost of running the asset, and ultimately a contribution to the
bottom line business of the asset owners and users [4].

For complex asset systems with many subsystems and com-
ponents, the planned inspection and maintenance will normally
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be undertaken at different intervals, levels, and depths. Typ-
ical practice involves a routine inspection on a more frequent
basis for some subsystems or components that may be subject
to more frequent failures, followed by a longer interval applied
to the system as a whole. An example of such maintenance ser-
vice practice can be seen in aircraft maintenance where up to
four different maintenance intervals may be in place [2]. These
different intervals are usually nested, as up-level maintenance
with a longer interval will include the content of lower levels of
maintenance with shorter intervals [5], [6]. We show later that
a multiple inspection scheme at different intervals is better than
a single inspection for the whole system if failures can be cap-
tured separately.

Capital assets normally have longer lifecycles, and longer
lifecycles mean that the likelihood of technological obsoles-
cence is substantially increased. This effect results in the neces-
sity for improved maintenance, repairs, and spare parts planning
to achieve the goal of system capability enhancement. To pro-
vide a competitive edge within the market, satisfying the avail-
ability demands of customers is a necessity. Doing such requires
a cohesive, cost-effective maintenance framework with the pro-
vision for technological insertion planning. Technological inser-
tions are considered in many managerial papers in a qualitative
manner [7]–[9]. These studies mainly address the framework,
concepts, components, and dimensions of such insertions. How-
ever, regardless of the particular application, justification for the
technological insertions is required in the form of a cost benefit
analysis that should demonstrate the expected contribution with
regard to the minimization of associated risks and costs.

Technological insertions must have an impact upon the failure
behavior of the asset, and therefore on the associated inspec-
tion policy as well [10]. There is currently very little under-
lying academic theory and few methodological options avail-
able in the literature to assist in the consideration of time-based
multiple inspections with technological insertions over a finite
time horizon. Most of the literature on inspection modeling fo-
cuses on a single type of inspection interval [1], [11]. The diffi-
culty arises from the changing nature of the failure mechanisms
of the asset due to technological insertions, where a constant
failure rate assumption cannot be adopted, and the multiple in-
spection intervals over a finite time horizon are needed. Wang
[5] studied a similar problem of nested inspections using se-
quential optimization with final replacement, but did not con-
sider technological insertions. Hosseini et al. [12] studied two
types of repairs after an inspection using generalized stochastic
Petri Nets. Li and Pham [13] studied an inspection-maintenance
model in the context of multiple competing failure modes. Cui
et al. [14] presented a model for sequential inspection strategies,
but the focus was on the case when there are multiple systems
inspected at the same but discrete time points. Though the above
studies [12]–[14] have some relevance to this paper, none have
considered the problem of incorporating more than one type of
inspection or technological insertion activity. In a recent paper,
Wang [6] considered two types of inspections and repairs. It is
the work most closely related to this paper, but the model was es-
tablished under the assumption of an infinite horizon, and again
no changing behavior of the asset influenced by technological
insertions was considered. However, we have to point out that

obtaining an estimate of the impact of technological insertions
on the failure behavior of an asset is a challenging task that will
often be application-specific.

The model developed in this paper differs from the previous
models in two aspects. First, as discussed, the time horizon is
finite, and defined as the designed or anticipated asset life. Sec-
ondly, due to the provision for technological insertions, the in-
spection interval may not be constant, and therefore the consid-
eration of a dynamic inspection policy is required. The new con-
tributions of this paper are therefore as follows. 1) We prove that
there is a condition in which an optimal inspection interval ex-
ists. 2) We also show that a multiple inspection interval scheme
is better than a single inspection interval scheme if defect ar-
rivals and failures can be modeled differently. 3) We propose an
algorithm for the optimal dynamic determination of the sequen-
tial inspection intervals using dynamic programming, which is
superior to constant inspection interval policies. The developed
model can facilitate the through-life process of technological
insertions in the form of a cost-benefit analysis, and jointly op-
timize the inspection intervals associated with the asset over
a finite time horizon, defined as the asset life. The model can
also provide a sensitivity analysis of the impact of technolog-
ical insertions and inspection scheduling on asset performance
in terms of cost or any other criterion of interest. Though the
model developed is for an asset with two types of inspections,
the ideas and principles can be generalized for systems with
more types of inspections.

We consider a model of two-type inspection services and
maintenance where upgrading activities and technological
insertions are regarded as part of the maintenance planning
process, and capability enhancement trade-off decisions are
readily incorporated. Initially, we discuss the infinite horizon
modeling scenario as an introduction before moving on to dis-
cuss the finite horizon model. The model looks at how different
lines or levels of maintenance service can be optimized over
the lifecycle of an asset to provide through-life support while
balancing the competing objectives of capability and afford-
ability. The model can be easily tailored to a given application,
and can be trained using either observed failures or subjective
expert information within a Bayesian framework. This model
is targeted at answering the question of when to perform
the maintenance tasks while also investigating the impact of
technological insertions. Necessary proofs are given, and we
demonstrate the methodology using a numerical example at the
end of this paper. For practical applications, the models can be
easily implemented into a computerized maintenance planning
package as a module where the complicated optimization
process can be done automatically.

II. MODELING ASSUMPTIONS

1) A multi-component complex system.
2) All failures follow a two-stage failure process as defined

by the well-known delay time concept [15]: from new to
the initial point of a hidden defect, then from this initial
point to an eventual failure caused by the defect if it is not
attended to.
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3) If an inspection service is performed during the second
stage before the failure, then the defect may be rectified by
either a repair or replacement of the same or an upgraded
part.

4) There are two types of defects: minor, and major.
5) Minor defect arrivals follow a homogeneous Poisson

process (HPP) with a constant average rate.
6) Major defect arrivals follow a stepwise HPP with a con-

stant average rate during the major inspection interval, but
changing at the time of the major inspection. (This is due
to technological insertions; and if such insertions are not
there, then no change occurs.)

7) The downtimes caused by failures and inspections are ig-
nored when calculating the expected number of failures
and defect identifications because they are usually small
compared with the inspection intervals. The downtimes
are usually measured in minutes, but the inspection inter-
vals may be measured in weeks or months. However, these
downtimes will be included when formulating the down-
time model.

8) Once a defect has arisen, it follows a delay time with a
probability density function.

9) All inspections are perfect in that they can identify the in-
tended defect.

10) All defects identified at inspection are rectified, but may
require additional downtime and costs.

The delay time concept and associated techniques for inspec-
tion modeling have been reported in many papers over the last
25 years [10], [15]–[19]. The delay time, as defined in assump-
tion 2, provides a window for inspection and repair, and as such,
the relationship between failures and the inspection process can
be captured. Applications of the delay time concept and the as-
sociated modeling techniques can be seen for various industrial
assets [16], [17], [20]–[23].

Fig. 1 illustrates a typical defect arrival, failure, and planned
inspection process for an inspection interval , where defects
that are currently present in the system are identified and re-
moved. The circles represent the initiation of random defects,
and the dots represent failures caused by these defects if no
maintenance intervention takes place. The arc linking a circle
and a dot is the delay time of the defect. Obviously, because of
planned inspection interventions (assuming that identified de-
fects will be removed), some defects are identified at inspections
and rectified. This approach reduces the number of failures from
the original 7 to 3. Clearly, the intervals of such inspections are
important, because more frequent inspections will identify and
remove more defects, and consequently reduce the cost of fail-
ures, but will result in an increased cost for inspections. Mod-
eling is necessary to balance the trade-off between these two
costs.

III. DELAY TIME MODELING

The delay time concept itself is simple; the failure process of
a system is defined as a two-stage process. The first stage is the
usual operating stage from new until the initiation of a hidden
defect. The second stage is defined as the failure delay time from

Fig. 1. The defect arrival, failure, and inspection removal process.

the point of defect initiation until failure. It is the existence of
such a failure delay time that provides the opportunity for pre-
ventive maintenance to be carried out to remove or rectify the
identified defects before failures occur. With appropriate mod-
eling of the duration of these two stages, an inspection interval
can be identified that optimizes the criterion function of interest.

If there is only one type of defect, given the average de-
fect arrival rate and the delay time distribution , the re-
lationship between the inspection cycle length , and the ex-
pected loss per unit time, can be established directly using re-
newal reward theory [19]. Consider an interval for

, and . The expected number of defect
arrivals within is ; and, for a cycle of length
, the expected number of failures resulting from the defects is

, where is the cumulative delay time distribu-
tion. Integrating from 0 to , and after some manipulation, we
have the expected number of failures over interval [19] as

(1)

Differentiating with respect to gives the rate of
failure at time as

(2)

The failure process conforms to a non-homogenous Poisson
process

where

The expected number of defects detected and removed at an
inspection after an operational interval of duration is

(3)

A number of modifications to the basic formulation have been
considered in the literature including non-constant defect arrival
rates , and imperfect inspection processes [15].

IV. INFINITE HORIZON INSPECTION MODELS

Initially, we investigate infinite horizon planning scenarios
before moving to the case of a finite horizon. This infinite
horizon assumption will serve as an introduction because it is
relatively easy to model, and most past delay time modeling
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research used this assumption. In the first case, we explore
the scheduling of system wide inspections where the behavior
of the system is aggregated and modeled collectively. In the
second case, we explore the potential benefits of multiple
inspection intervals for different defect types, categorized here
as minor and major defects.

A. A Single Inspection Interval

Firstly, we explore the case where the aggregated behavior of
the system is analyzed and optimized. Defining as the loss
per unit time for an interval between inspections of duration ,
we have the expectation

(4)

where is the average loss associated with a failure, and
is the average loss associated with a scheduled inspection with

as the average loss associated with a preventive defect repair
during an inspection. Note that, in this case, the loss measures
are averaged out across the system as a whole. Using (1) and (3)
gives

(5)
where is the system-wide defect arrival rate, and is the
cumulative delay time distribution of all defects.

Lemma 1: The necessary and sufficient condition for an op-
timal inspection interval is

(6)

which is obtained via the differentiation of with respect
to , and setting it to 0. It is clear that we must have the condition

as the left hand side of (6) is always positive for any
probability density function (pdf), and corresponding cumula-
tive density function (cdf). Clearly, if , then there is no
need for inspections.

Lemma 2: The optimal solution is unique if

(7)

where is the expected delay time.
Proof: From (6), when , we have the LHS of (6) equal

to zero. When increases, the LHS of (6) increases monotoni-
cally to a constant . This result can be easily shown as

Then if (7) is satisfied, there must be a value of that opti-
mizes (5).

Example 1: A Single Inspection Interval: For this example,
we use an average system-wide defect arrival rate , and
an exponential delay time distribution;
with parameter . The average loss measures are taken

Fig. 2. Illustration of the expected loss per unit time against the inspection
interval.

to be for a failure of the system, =25 for an in-
spection of the system, and =10 for an inspection-based de-
fect repair.

From (1), (3), and (4), we have the expected number of
failures

and the expected number of defect repairs at inspection

giving the expected loss per unit time for an inspection interval
of duration :

(8)
Using (13), Fig. 2 illustrates the expected loss per unit time
against the inspection interval.

Minimizing the expected loss per unit time with respect to the
inspection interval , the optimal inspection interval for this case
is found to be . This optimal interval can be verified
using (6), as illustrated in Fig. 3 where the left hand side of 6)
is defined as .

Using (7), we can verify that the optimal inspection interval
is unique:

This concludes the example.

B. Multiple Inspection Intervals

In this section, we address infinite horizon scheduling prob-
lems when different defect and failure types are identifiable. We
consider the categorization of minor and major defects and fail-
ures, and the scheduling of corresponding minor and major in-
spection-based interventions with different loss measures. The
different defect arrival rates are estimated -independently as

, and for minor, and major defects, respectively. Similarly,
the individual delay time distributions are specified as and
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Fig. 3. Illustrating the evaluation of the optimal inspection interval
� � �����.

, and the average losses associated with failures , in-
spections , and preventive repairs are estimated -inde-
pendently for each defect type. We specify the following addi-
tional assumptions.

• There are two broad types of defects, and therefore failures:
minor, and major.

• Minor defects can be identified and rectified by a minor in-
spection service, while major defects can only be identified
and removed by a major inspection service. A major in-
spection service includes the content of a minor inspection
service, and occurs at one of the minor inspection service
interventions.

Common Inspection Model: Firstly, we consider the scenario
where minor and major defects and failures are identifiable, but
the minor and major inspections are undertaken on the same in-
terval. This case is different from the model presented in the
previous sub-section where the behavior of the system was ag-
gregated. This model serves as a comparison for the subsequent
model with different inspection intervals for the different defect
types.

For a common inspection, on interval , we have

which can be written as

(9)
As the two different failure processes evolve -independently,
using (1) and (3), the expectation can be expressed as

(10)

As such, the optimal inspection interval can be found as the
solution to

(11)

with respect to . However, unlike the single inspection case,
the condition is not strictly required for both
and 2. It can be shown in a manner similar to lemma 2 that a
unique solution exists if ,
where is the expected delay time for the th type of de-
fects. Equation (11) can be solved by any mathematical software
that can find the root of a function.

Multiple Inspection Model: Now we consider the multiple
inspection case where minor and major inspections are sched-
uled. As discussed in the introduction to this section, major in-
spections contain all the activities of minor inspections. As such,
major inspections are scheduled to occur at integer multiples of
the minor inspection interval. With minor and major inspection
intervals of duration , and , respectively, we have

(12)

Naturally, when , the model is the same as the common
inspection model with . This model is an optimiza-
tion problem with decision variables , and . Similar to
lemmas 1 and 2, we can show that for a given , and re-
spectively, unique solutions of , and

exist under certain conditions, so the
optimal solution of (12) also exists under the same conditions
in terms of and .

Example 2: Common vs. Multiple Inspection Intervals: For
this example, we assume minor, and major defect arrival rates of

, and , respectively; and exponential delay
time distributions and with parameters ,
and . The average loss values are taken to be

, , and for minor defects and inspections;
and , , and for major defects and
inspections.

The form of the expected number of failures, , and
the expected number of inspection repairs, , are given
by (1) and (3); and they are derived in the same manner as ex-
ample 1 for both defect types , and 2. Fig. 4 illustrates
the expected loss per unit time for integer values of the minor
inspection interval under the common and multiple inspec-
tion policies. Note that in Fig. 4, in the case of the common
interval model, the major interval is the same as the minor in-
terval, and in the multiple interval case, the major interval has
been determined by optimizing for each integer value of the
minor inspection interval. This work was done by enumerating

at each until an optimal was found.
In the case of the common inspection model, the optimal in-

terval is found to be 18.45, giving an expected loss per unit
time of 3.748. In the multiple inspection case, the optimal in-
tervals are found by enumerating the minor interval over
a finite range of values given that the optimal integer value of

was already found for each . For this example, we find
the optimal minor inspection interval to be , and

, giving an optimal major inspection interval of dura-
tion . Using the multiple inspection model,
the expected loss per unit time is 3.156. Clearly, the multiple
inspection policy is superior in this example.
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Fig. 4. Comparing the expected loss per unit time against the minor inspection
interval for the common and multiple inspection models.

Now, we turn our attention to the more realistic case with
multi-level maintenance and service processes over a finite
planned operational lifetime. We also present some ideas for in-
corporating and assessing the impact of technological insertion
and upgrading activities on inspection processes..

V. FINITE HORIZON INSPECTION MODELS WITHOUT

TECHNOLOGY INSERTIONS

In the following sections, we consider scheduling applica-
tions over a finite time frame, and define as the planned ser-
vice life of the asset. We formulate in this section two basic
models without technology insertions to be able to compare
them with the model we propose in the next section. As there
are no technology insertions, the arrival rates for both minor and
major defects are constant, and constant intervals are used be-
tween consecutive inspections of a given type.

A. A Single Inspection Interval

In this single inspection case, inspections are scheduled for
the system as a whole. The objective function is typically a cer-
tain loss or penalty measure. The total expected loss over the
service life of the asset includes the summation of the expected
numbers of (a) minor failures, (b) minor defects identified and
removed at minor inspections, (c) major failures, and (d) major
defects identified and rectified at major inspections. If a single
inspection on interval is scheduled for the whole system, where
the system has a single average fault arrival rate , and a single
delay time pdf for all defects , then the total number of in-
spection intervals is , where is the largest integer less
than or equal to . Also, there will be no inspection at the end of
the asset service life. It therefore follows that the total expected
loss over the planned service life is

(13)

Note that in the finite horizon case we are interested in the total
loss over the planned life rather than the loss per unit time used
in the infinite horizon case.

We are interested here in large values of , and comparatively
small values of . As such, the expected loss can be approxi-
mated as

(14)

which substantially eases the analytical process.
Lemma 3: The sufficient and necessary condition for an op-

timal to minimize (14) is

(15)

where the loss measures , , and are averaged across the
whole system.

The proof of Lemma 3 can be shown simply by differenti-
ating (14) with respect to , and then setting .
Lemma 3 shows that, for an optimal inspection interval to exist,
we must have because the left-hand side of (14) is
always positive due to the fact that, for all , we have

, and

This result is as expected because, if , then there would
be absolutely no need for planned inspections just for failure-
based maintenance.

Lemma 4: The solution of (15) with respect to is unique if

(16)

Proof: Let denote the left-hand side of (15). Then,
when , we have . When increases, the numer-
ator of decreases to as rapidly increases to 1, and

as shown in the proof of Lemma
2.

This result shows that is a decreasing function of
towards

As such, we must have (16) if a solution for (15) exists and is
unique because decreases monotonically.

B. Multiple Inspection Intervals

If the rates of the arrival of minor and major defects are avail-
able with different delay time pdfs and loss measures, the ob-
jective function becomes

(17)

There is still a condition to satisfy if an optimal exists to
minimize (17), and it is given by the following lemma.
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Lemma 5: The sufficient and necessary condition for an op-
timal to minimize (17) is

(18)

Equation (18) can be obtained in the same way as (15), although
the condition is not strictly required for all defects.

Theorem 1: To minimize the expected loss measure, if sep-
arate information about the different defect arrival rates, delay
time pdfs, and loss measures are all available, then a multiple in-
spection scheme at different intervals is at least superior when
compared with a common inspection policy, if such optimal in-
tervals exist.

See Appendix for the proof of this theorem.
One common inspection interval for all types of defects is just

a special case of the general case of a specific inspection interval
for each type of defects, and therefore it would be obvious that
the general one will always get at least an equal to or better
solution than the special case.

If technological insertions are incorporated, then there may be
a reduced rate of the major defect arrivals over time. This change
will results in a smaller expected loss than that of the case with
no insertions. This result can be used partially to justify the need
for technological insertions. However, if the major defect arrival
rate is reduced, then a variable inspection interval policy should
be employed. This fact is shown in the next section.

VI. DYNAMIC OPTIMIZATION UNDER THE INFLUENCE OF

TECHNOLOGICAL INSERTIONS

To incorporate the impact of technological insertions over
time for fixed horizon inspection models, we introduce the fol-
lowing additional assumptions.

• New technology that may lead to component upgrading
occurs during major inspections at discrete time epochs,
and is assumed to impact upon the arrival rate of major
defects.

• The arrival rate for major defects is defined as a function
of the time since the last major inspection.

• The interval between minor inspections is constant, but the
interval between major inspections, which is influenced by
aging and upgrading, varies.

• Major inspections can only occur at the time of a planned
minor inspection.

To model the impact of technological insertions over time,
is defined as the major defect arrival rate after the th

major inspection. The inspection process, and the different fault
arrival rates are illustrated in Fig. 5.

In fact, technology insertions may also have an impact on
minor failures, and the influence may not always be positive,
as shown in Fig. 5. These factors can be considered in theory,
but the model will be extremely complicated with a variable rate
of minor defect arrivals. We leave them to a future study.

Fig. 5. The inspection process, and the different defect arrival rates over time.

If the major defect arrival rate is influenced by technological
insertions over time, we must have a variable inspection scheme
for the major inspections. Assuming that there are major in-
spections, where is a decision variable, we have the total ex-
pected loss associated with maintenance as

(19)

where the expected number of minor failures over a minor in-
spection interval, , is given by (1). The expected
number of minor defects removed at a planned minor inspec-
tion is given by (3). The expected number of major
failures over an interval between major inspections is
defined as , from (1), but with replaced by

as

(20)

is the cumulative delay time distribution for major defects.
The expected number of major defects identified and removed
at a major inspection at is defined as , as
given by (3), with replaced by :

(21)
If the loss incurred is measured in terms of cost, then the total
expected cost can be compared with the budgetary constraint on
the maintenance and service activities. This measure can also
be used for contract negotiation if the maintenance service is
outsourced.

If the intervals for minor and major inspections are -inde-
pendent, then the two parts of the right-hand side of (19) can
be optimized separately. The optimization of the first part of the
right-hand side of (19) is straightforward using Lemma 3. The
optimization of the second part is not easy because we have as-
sumed that technological insertions occur at the time of major
inspections. As a result, the major inspection interval, and the
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impact of technological insertions are correlated. For reasons
of simplicity, we have assumed that major inspections can only
occur at the time of a planned minor inspection. This assump-
tion has the managerial advantages of easy planning and opti-
mization, though it may not be globally optimal. The objective
function is then

(22)

where we have

(23)

and

(24)
Major defects typically have a longer mean time between fail-

ures than minor defects. As such, a longer major inspection in-
terval relative to a shorter minor inspection interval is not an un-
reasonable assumption, which implies . Because a given
major inspection is to be scheduled to coincide with a minor in-
spection, as we have assumed, then must be an integer. This
integer constraint is again for managerial consideration; other-
wise, can be fractional. Due to the fact that the second part
of the right-hand side of (22) is a multiple of , the two parts
cannot be optimized separately. In the following, we propose an
algorithm to jointly optimize (22) with respect to both and

, where .

Optimization Algorithm

1. For a given , we have .

2. Calculate

(Note that the last term is an approximation because the last
minor interval is usually less than .)

3. Define as the optimal total expected loss due to
major failures and inspections given , and up to the previous
major inspection time .

Considering the fact that when there will
be no major inspection at , the first step in scheduling the
th major inspection is to determine the next step [see (25) at

the bottom of the page].

4.

where, .

Dynamic programming (DP) is then used to obtain the
recursive equation

(26)

where , , , and
.

The three elements of the above DP formulation are as follows.
• Stage: ;
• State: ; , except .
• Decision: ; .

Note that the number of stages in this DP formulation is
unknown, but has an upper bound, . As a consequence,
there must be a stopping criteria that terminates the recursive
computing. The stopping criteria is: If at stage we have

, then stop. Otherwise, proceed to stage
.

5.Calculate the total expected loss:

(27)

6.The optimal decisions are given as

(28)

The proposed dynamic programming algorithm is globally op-
timal because, for a given , the space of is searched to
optimize (26). The downside is the lengthy computation time.
The above algorithm is under the condition that is given.
However, is also a decision variable to be optimized. In the
example below, is optimized by enumeration by treating it
as a discrete variable. It cannot be optimized analytically in the
case of no technology insertions because of the variable number

(25)
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of within a major inspection interval, and the use of DP.
This condition may lead to a suboptimal solution, but it can be
close to the true optimal solution depending on the step size used
in the enumeration. We admit that this work can be time-con-
suming if the option for is large. However, in practice, even
if a non-integer optimal solution is obtained, it has to be rounded
to a nearby integer for an actual planning purpose, so our pro-
cedure to make an integer is justified.

VII. NUMERICAL EXAMPLE

The two-level maintenance process described for a fixed op-
erational lifetime with the provision for technological upgrading
is now demonstrated using some assumed distributional forms,
and specified parameters. We illustrate the major inspection de-
cisions as a function of a proposed fixed minor inspection in-
terval, and then demonstrate the process of selection used to as-
certain the optimal fixed minor inspection interval, and subse-
quently the optimal major maintenance inspection sequence.

The constant arrival rate for minor defects is taken
to be per month, and the delay time pdf is

with parameter .
The delay time pdf for major defects is
with .

Now we turn our attention to the modeling of the impact of
technological upgrading over time. We assume that asset im-
provements are manifested in the form of a reducing major de-
fect arrival rate over time. As such, the major defect arrival
rate after the th major inspection is modeled as

per month (which is a reducing function of time).
For this particular example, we assume that the parameters are

, , and . If , and , then we
have the starting rate , which
is smaller than , as modeled in Sections IV and V. Also, note
that, if given , then the technology inser-
tions have no impact on the defect arrival rate.

The functional form of demonstrates a situation where
the baseline rate is , which cannot be reduced by technolog-
ical insertions, but , , and control the impact of techno-
logical insertions. As increases, more and better technolog-
ical insertions will be performed because of an increased rate of
new technology emerging. Therefore, the rate at which
approaches the asymptotic value increases. For actual case
applications, the specification of will require a substan-
tial amount of data from other assets relating to the impact past
modifications had in improving the capability of the asset. Al-
ternatively, technological insertions could also be modeled as
affecting (reducing) the expected delay time of a major defect
from conception to failure.

The expected numbers of failures and defects removed at an
inspection for each defect type are obtained using (1), (3), (25),
and (26). In this case, the analytical forms are

(29)

(30)

(31)

Fig. 6. The total expected downtimes for Case 1, a single inspection interval
scheme; and Case 2, a multiple inspection interval scheme when� � �.

and

(32)

We use downtime values as the loss measures in this ex-
ample. The assumed downtime information is as follows. For
minor defects, the average downtime associated with a minor
failure is taken to be , the downtime for a
planned minor inspection is , and the down-
time for individual defect identification and removal at inspec-
tion is . For major defects, the downtime for a
failure is , the downtime for a planned major
inspection is , and the downtime for indi-
vidual defect identification and removal is .

We first use the above information to illustrate that a mul-
tiple inspection scheme is superior when compared with a single
common inspection interval in the case of no technological in-
sertions, which implies that . Because
both defect arrival rates are constant, the constant inspection in-
tervals are the best option. The optimization process for the mul-
tiple inspection is undertaken using enumeration on both and

. Using Lemma 3 (15), we have , and the
total expected downtime is 10249.3 minutes. Jointly optimizing
under a multiple inspection interval scheme, we have ,
and . This result gives the total expected downtime
a value of 10069.1 minutes, which is smaller than the single
common inspection scheme of 10249.3 minutes, and also con-
firms Lemma 4 for this case. Fig. 6 illustrates the total expected
downtime in terms of inspection intervals for these two cases.
We can also see from Fig. 6 that the optimal result is unique if
it exists.

To further illustrate Lemmas 1 and 2, we plot (the left-
hand side of equation (6)) against , which is shown in Fig. 7.

Fig. 7 shows that is monotone, and decreases against ,
so a unique solution may exist. From ,
we have , which gives

Because , we can confirm that a unique
solution exists. Enumerating against for the case of minor in-
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Fig. 7. ���� against �, and the dashed line is � �� � �� (using the data
from minor inspections only).

TABLE I
SELECTION OF THE OPTIMAL MINOR INSPECTION INTERVAL, AND THE

ASSOCIATED SEQUENCE OF MAJOR INSPECTION INTERVALS

WHERE � INDICATES THE OPTIMAL SOLUTION

spections only, we find that the optimal solution is between 7
and 8. Solving with respect to , we finally have ,
which is also confirmed in Figs. 6 and 7.

Now we turn to the case with technological insertions. The
results of the optimization algorithm presented earlier are given
in Table I and Fig. 8 for a required service life of duration

.
Table I illustrates the selection of the optimal minor inspec-

tion interval and the associated sequence of major inspection
intervals. It shows that the optimal minor inspection interval is
7 months, and the optimal sequence is for all
of the major inspections but the last one, which is . This
result implies that one should carry out major inspections at an
interval of 14 months until the 9th inspection. The final interval
before should be 21 months.

Fig. 8 illustrates the total expected downtime over the life of
the asset for a selection of minor inspection intervals when
is optimized by the dynamic programming algorithm. For con-
tinuous , the optimal minor inspection interval is calculated

Fig. 8. Total expected downtime for a selection of proposed minor inspection
intervals.

as (obtained by using the optimized in Table I
with , and then re-optimizing ). However, practical
limitations mean that it is more likely that the optimal will
be evaluated as a discrete variable. The optimal discrete interval
is found to be , as shown in Table I. Compared with
the result in Fig. 3, we can see that technological insertions re-
duced the expected downtime to 9188 minutes from 10069. The
optimal solutions of minor and major inspections are almost the
same for both cases of multiple inspection interval schemes with
and without technological insertions, apart from the last major
inspection interval. This result is due to the small value for ,
which models the effect in the reduction of the rate of arrivals
of defects due to technological insertions. The slight un-smooth-
ness of the curve in Fig. 8 is due to the use of integer values for

, and the DP algorithm.
As illustrated in Table I, the interval between major inspec-

tions is observed to increase over time as a consequence of
the assumption of technological upgrading activities. This ob-
servation is consistent with expectations. And for a practical
case application the expected maintenance cost reduction must
be weighed against the expected costs associated with the up-
grading process. If the cost per unit time is constant and valued
at � per unit time, then the total expected cost using the
optimal inspection intervals is � from
Table I. This value can then be compared with the budget to see
whether the budget is feasible or not.

The cost of technological insertions has not been taken into
account explicitly, but can be modeled implicitly by manipu-
lating the values of and in . Sup-
posing that the total budget for technological insertions is ,
then would be negatively, and c positively, proportional to .
Therefore, when is large, then
rapidly reduces to , which is the baseline rate (not influenced
by ). This result will enable us to evaluate the benefit of such
technological insertions. Assuming that , ,
and is increased to � by 10% from the current level
of � , then we have the new parameters , and

. Using an algorithm similar to the one introduced in
Section VI, we have , and the total downtime is 8996.7
minutes. Still assuming that the downtime cost is constant and
valued at � per unit time, then the saved downtime cost is
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� , which is larger than the ad-
ditional investment in the technological insertions.

The other potential benefits of technological insertions have
not been considered yet, such as increased productivity or capa-
bility. Although it will be difficult to model them directly, both
can be modeled indirectly by altering the cost per unit time. The
rationale is that, when productivity or capability increases, then
the cost of downtime may increase because more valued outputs
are required. For example, a machine that produced 100 items
per unit time before its capacity was increased to 200 items per
unit time by inserting new technology would have double the
cost of downtime due to the loss of production. This result will
be validated using a case study in the future.

VIII. CONCLUSION

Using the delay time concept, we modeled a two-level inspec-
tion problem subject to technological insertions. This model can
be used for optimizing both inspection intervals and evaluating
the impact of technological insertions upon the asset perfor-
mance in terms of cost or downtime. It can also be used as a
tool for the relationship analysis between technology insertions
and inspection schedules, and for negotiation when the mainte-
nance is outsourced. The impact of technological insertions has
been modeled by changing the rate of arrival of major defects,
but the rate of arrival of minor defects is assumed to be constant.
We have given several lemmas that relate to the properties of
the model developed. We showed that a multiple inspection in-
terval scheme is always better than a single common inspection
scheme if the failures mechanisms and utilities can be modeled
differently. We also show that a variable inspection interval is
best for major inspections if the rate of arrival of major defects
is a function of the time since the last major inspection, and is
influenced by technological insertions.

The numerical example confirmed our findings in the theo-
retical development, and demonstrated that the optimal major
inspection intervals are in order of an increasing pattern, which
is due to the increased impact of technological insertions in re-
ducing the rate of arrival of major defects. Many extensions can
be made such that the technology insertions can also alter the
delay time of both minor and major defects. The arrival rate of
minor defects can also be influenced by technology insertions.
Although only two levels of inspection are considered in this
paper, the modeling principle can be extended to more than two
levels. However, this work will require substantial effort in op-
timization. We also briefly discussed the cost of technology in-
sertions upon the rate of the arrival of major defects, and the
influence on productivity and capability. Many other possible
ways of manipulating the impact of technology insertions can
be explored, and these ways require further research and case
validation.

APPENDIX A

A. Proof of Theorem 1

The objective function of the expected loss function is the
sum of two separate functions. Each is in the form of (14), but
with different decision variables, say and . We also use

to represent the common inspection interval if (14) is used. The
objective functions become as follows.

1) With different inspection intervals:

(A1)

2) With one common interval:

(A2)

Suppose , , and are optimized intervals. If they exist,
then we may reasonably assume that . Because
both and by
definition, then we have
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