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a b s t r a c t

Dealing with high-dimensional data has always been a major problem in many pattern recognition and

machine learning applications. Trace ratio criterion is a criterion that can be applicable to many

dimensionality reduction methods as it directly reflects Euclidean distance between data points of

within or between classes. In this paper, we analyze the trace ratio problem and propose a new efficient

algorithm to find the optimal solution. Based on the proposed algorithm, we are able to derive an

orthogonal constrained semi-supervised learning framework. The new algorithm incorporates unla-

beled data into training procedure so that it is able to preserve the discriminative structure as well as

geometrical structure embedded in the original dataset. Under such a framework, many existing semi-

supervised dimensionality reduction methods such as SDA, Lap-LDA, SSDR, SSMMC, can be improved

using our proposed framework, which can also be used to formulate a corresponding kernel framework

for handling nonlinear problems. Theoretical analysis indicates that there are certain relationships

between linear and nonlinear methods. Finally, extensive simulations on synthetic dataset and real

world dataset are presented to show the effectiveness of our algorithms. The results demonstrate that

our proposed algorithm can achieve great superiority to other state-of-art algorithms.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Dealing with high-dimensional data has always been a major
problem for pattern recognition and machine learning. Typical
applications involving high-dimensional data include face recog-
nition, document categorization and image retrieval. Finding a
low-dimensional representation of high-dimensional space,
namely dimensionality reduction is thus of great practical impor-
tance. The goal of dimensionality reduction is to reduce the
complexity of the original space and embed high-dimensional
space into a low-dimensional space while keeping most of the
desired intrinsic information [1,2]. The desired information can be
discriminative [11,12,15–17], geometrical [1,2,13,14,46] or both
discriminative and geometrical [19–23]. Among all the dimen-
sionality reduction methods, Linear Discriminant Analysis (LDA)
[11,12] is the most popular method and has been widely used in
many classification applications. The goal of LDA is to find the
optimal low-dimensional presentation to the original dataset by
maximizing between-class scatter matrix Sb, while minimizing
within-class scatter matrix Sw. The original formulation of LDA,
known as Fisher LDA [11], can only deal with binary-class
ll rights reserved.

: þ852 27887791.
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classification. When solving multi-class classification problem,
the basic LDA has to be extended using two main criterions
including ratio trace criterion maxW Tr½ðWT SbWÞ�1

ðWT SwWÞ� and
trace ratio criterion maxWT W ¼ IððTrðWT SbWÞ=ðTrðWT SwWÞÞÞ.

In ratio trace or determinant ratio LDA, it is assumed that the
within-class scatter matrix is nonsingular. Finding the optimal
projection can be solved by generalized eigen-value decomposi-
tion (GEVD) [35]. However, trace ratio LDA may confront ill-posed
problem when the number of data points is smaller than that of
the features [34,44,45]. Several variants of ratio trace LDA are
proposed to solve this problem such as null-space LDA [25],
uncorrelated LDA [26], LDA/GSVD [27], Discriminative Common
Vectors [28]. Another widely used criterion of LDA is the trace
ratio criterion. Different from the former one, the trace ratio
criterion can directly reflect Euclidean distances between data
points of inter and intra classes. In addition, the optimal projec-
tion obtained by trace ratio LDA is orthogonal, while the one
obtained by ratio trace LDA is non-orthogonal. Recently, there has
been increasing interest in the issue of finding orthogonal
projection for dimensionality reduction methods [29–31]. As
described in [4], when evaluating the similarities between data
points based on Euclidean distance, the non-orthogonal projec-
tion may put different weights on different projection directions
thus changing the similarities, while for orthogonal projection,
such similarities can be preserved. Thus trace ratio LDA tends
to perform empirically better than ratio trace LDA in many
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classification problems. In this paper, we will focus on trace ratio
LDA. For convenience, in this paper we denote it as TR-LDA.

Solving trace ratio problem of LDA directly has always been a
problem, because there is no close-form solution [7]. Several
attempts have been proposed to find the optimal solution [3–8].
Guo et al. [3] has pointed out that the original TR problem can be
converted to an equivalent trace difference problem, which can be
solved by a heuristic bisection method. Recently, Wang et al. [4]
has proposed another efficient algorithm, called ITR algorithm to
find the optimal solution based on an iterative procedure, which
is faster than the former one. In this paper, we further analyze ITR

algorithm, and discuss the drawbacks of its training strategy. We
then propose a new efficient algorithm, called ITR-Score algo-
rithm, to improve the original ITR algorithm. The proposed
algorithm can be viewed as a greedy strategy to find the optimum
of TR problem. Hence it is more efficient than the previous ones.

In general, the TR-LDA is supervised, which means it requires
labeled information. Although TR-LDA works pretty well [3,4], it
needs considerable number of labeled data in order to be able to
deliver satisfactory results. But in many practical cases, obtaining
sufficient number of labeled data for training can be problematic
because labeling large number of data is time-consuming and costly.
On the other hand, unlabeled data may be abundant and can easily
be obtained in the real world. Thus, using semi-supervised learning
methods [19–24,47], which incorporate both labeled and unlabeled
data into learning procedure, has become an effective option instead
of only relying on supervised learning. In this paper, we will propose
an orthogonal constrained framework for semi-supervised learning.
Under such a framework, the TR-LDA can be extended to its
corresponding semi-supervised version called trace ratio based
semi-supervised discriminant analysis (TR-SDA). Furthermore,
through analyzing the relationship between supervised and semi-
supervised TR problems, we show that the proposed ITR-Score

algorithm can be extended to solve semi-supervised TR problem.
The main contributions of this paper are summarized as follows:
(1)
 As an extended algorithm of TR-LDA, the proposed TR-SDA can
find an optimal low-dimensional projection by preserving the
discriminative information embedded in the labeled set as
well as the geometric information embedded in both labeled
and unlabeled set. Also similar to TR-LDA, the optimal projec-
tion obtained by TR-SDA is orthogonal that can preserve the
similarity between data points without any change if it is
based on Euclidean distance.
(2)
 We propose a new method called ITR-Score algorithm to solve
supervised and semi-supervised TR problem. By improving
the original ITR algorithm both from the initialization and
training strategy, the proposed method can converge faster.
This indicates that ITR-Score algorithm is more efficient than
the ITR algorithm.
(3)
 We propose an orthogonal constrained framework for semi-
supervised learning. Under such a framework, the TR-SDA

algorithm can be related to several existing semi-supervised
algorithms such as SDA [19], Lap-LDA [21], SSMMC [22], SSDR

[20]. In short, our algorithm can be viewed as an improved or
extended method to these algorithms.
(4)
 The proposed TR-SDA can easily be extended to a nonlinear
version using kernel trick [32,33]. In this paper, we restrict
the nonlinear projection to be in an orthogonal basis of high-
dimensional Hilbert space. We then perform linear dimen-
sionality reduction based on such basis. Finally, we connect
TR-LDA, TR-SDA and their corresponding kernel versions in a
unified form.
The rest of this paper is organized as follows: In Section 2, we
briefly describe the basic idea of LDA and TR-LDA. We then review
the previews work for solving TR problem and propose our
improved method. In Section 3, we propose an orthogonal con-
strained framework for semi-supervised learning. We extend TR-

LDA to its corresponding semi-supervised version TR-SDA. In
Section 4, we extend our algorithm for solving nonlinear problem
using kernel trick. The simulation results are presented in Section
5 and the conclusions are drawn in Section 6.
2. Review of Linear Discriminant Analysis

2.1. Trace ratio problem

In this section, we first review the basic idea of Linear Discrimi-
nant Analysis. The goal of LDA is to find a linear transformation
matrix WARD� d, for which the between-class scatter matrix is
maximized, while the within-class scatter matrix is minimized. Let
X ¼ fx1,x2,. . .,xlgARD�l be the training set, each xi belongs to a class
ci¼{1,2,y,c}. Let li be the number of data points in ith class, l be the
number of data points in all classes, we define the between-class
scatter matrix Sb, within-class scatter matrix Sw and total-class
scatter matrix St as

Sb ¼
Xc

i ¼ 1

liðmi�mÞðmi�mÞ
T

Sw ¼
Xc

i ¼ 1

X
xi A ci

ðxi�mci
Þðxi�mci

Þ
T

St ¼
Xl

i ¼ 1

ðxi�mÞðxi�mÞT ð1Þ

where mi¼1/li
P

xiAcixi is the mean of data points in the ith class,

mi ¼ 1=l
Pl

i ¼ 1 xi is the mean of data points in all classes. The original

formulation of LDA, called Fisher LDA [11] can only deal with binary
classification. Two optimization criterions can be used to extend
Fisher LDA to solving multi-class classification problem. For the first
criterion, the optimization of LDA can be given by

Wn
¼ argmaxW TrððWT SwWÞ�1

ðWT SbWÞÞ: ð2Þ

For the convenience to distinguish the trace ratio problem
introduced in later section, we call the above optimization ratio
trace problem. If we assume Sw is nonsingular, the optimization
problem in Eq. (2) can be solved by generalized eigen-value
decomposition (GEVD) as [34]

Sbwk ¼ tkSwwk ð3Þ

where wkARd is the eigenvector corresponding to the kth largest
eigenvalue tk. We then form W* by the top wk. Finally, the original
high-dimensional set X can be projected into a low-dimensional
set YARd� l by Y¼W*TX.

Another reasonable optimization criterion of LDA is to max-
imize Tr(WTSbW), while minimizing Tr(WTSbW). The optimization
problem can be given by

Wn
¼ argmaxWT W ¼ IðTrðWT SbWÞ=TrðWT SwWÞÞ: ð4Þ

We call the above problem trace ratio problem. Compared
with ratio trace problem in Eq. (2), solving TR problem can deliver
an empirically better discriminative projection when the classifi-
cation problem is based on Euclidean distance, as both Tr(WTSbW)
and Tr(WTSbW) directly reflect the Euclidean distances between
data points of inter and intra classes. In addition, the optimal
projection obtained by TR problem is orthogonal, so the similarity
between data points can be preserved without any change [4].

But solving the TR problem has never been a straightforward
issue, because it does not have a closed-form solution [7]. Thus,
instead of dealing with TR problem directly, many works tend to
solve an equivalent trace difference problem [3–7]. Let l* be the
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optimal trace ratio value satisfying

ln
¼maxWT W ¼ IðTrðWT SbWÞ=TrðWT SwWÞÞ: ð5Þ

According to Guo et al. [3], it follows:

maxWT W ¼ ITr½WT
ðSb�l

nSwÞW � ¼ 0: ð6Þ

Thus, inspired by Eq. (6), we cite the theorem in [3] without
proof as

Theorem 1. TR problem can be solved equivalent to find the zero

point of the trace difference function defined as

gðlÞ ¼maxWT W ¼ ITr½WT
ðSb�lSwÞW � ð7Þ

i.e., to solve a trace difference equation g(l*)¼0, which is called
trace difference problem. The optimal projection matrix W* can
then be calculated by

Wn
¼ argmaxWT W ¼ ITr½WT

ðSb�l
nSwÞW �: ð8Þ

2.2. Efficient algorithm for solving TR problem

2.2.1. Previous work

In this section, we first review some previous work for solving
TR problem. Recently, there are several methods proposed to deal
with the problem [3–8]. Guo et al. [3] has solved the trace
difference problem using the notion of Foley–Sammon transform.
The basic steps of the algorithm are
(1)
 Initialize l1 and l2 satisfying g(l1)404g(l2).

(2)
 Compute l¼(l1þl2)/2 and g(l).

(3)
 If f(l)40, letl1¼l, else let l2¼l.

(4)
 Iterate the steps (2) and (3) until convergence, the optimal

matrix W* is formed by the d eigenvectors of Sb�l*Sw

corresponding to the d largest eigenvalues.
It is easy to recognize that Guo et al. is equivalent to the
heuristic bisection method to find the zero point of trace differ-
ence function [7]. Xiang et al. [6] has improved this method by
determining a lower bound and an upper bound for l*. The binary
search can be efficiently achieved when l1 and l2 are well
initialized.

Wang et al. [4] has proposed a more efficient method, called
ITR algorithm, to solve the TR problem. The basic steps of the
algorithm are
(1)
 Initialize the projection matrix W0 as an arbitrary column-
orthogonal matrix.
(2)
 Compute the trace ratio value l¼ TrðWT SbWÞ=TrðWT SwWÞ.

(3)
 Update W ¼ argmaxWT W ¼ ITr½WT

ðSb�lSwÞW �.

(4)
 Iterate the steps (2) and (3) until convergence. The optimal

matrix W* is formed by the d eigenvectors of Sb�l*Sw

corresponding to the d largest eigenvalues.
Table 1
ITR-Score algorithm for solving trace ratio problem.

(1) Initialize l0 ¼ TrðSbÞ=TrðSwÞ.

(2) Compute the eigen-decomposition of Sb�ltSw as (Sb�ltSw)wi¼tiwi, where

wi(i¼1,2,y,D) is the eigenvector of Sb�ltSw.

(3) Compute the score si ¼ ðw
T
i SbwiÞ=ðw

T
i SwwiÞ for each of eigenvector wi.

(4) Choose the top d eigenvectors wi having the d largest scores si to form Wt.

(5) Update ltþ1 ¼ ðTrðWT
t SbWtÞÞ=ðTrðWT

t SwWtþaIdÞÞ.

(6) Iterate the steps (2–5) until 9ltþ1�lt9oe. Output W*.
The ITR algorithm is proved empirically efficient than the
former algorithm [4]. A more theoretical discussion can be seen
in the work of Jia et al. [5]. According to Jia et al., the ITR algorithm
is equivalent to the naive Newton–Raphson method for solving TR

problem. Due to the nature of the Newton–Raphson method, it is
generally faster than the simple bisection method in [3].

2.2.2. A more efficient algorithm

Though ITR algorithm works well for solving TR problem, it has
its drawbacks. First, the initialized orthogonal matrix W0 is
arbitrary and hard to choose. In some cases when W0 is well
chosen, the algorithm is able to converge relatively faster, while
in most cases, inappropriate W0 dramatically increases the
number of iterations. On the other hand, initializing l0 seems
much easier for any l0 satisfying g(l0)Z0. Thus, similar to the
work in [3], we can initialize the trace ratio value l0 instead of the
projection matrix W0. Furthermore, since a proper initialized
value can speed up the training procedure, we need to determine
a lower bound of l* as l0. We have the following Theorem 2:

Theorem 2. The lower bound of l* can be given by Tr(Sb)/Tr(Sw).

The proof of Theorem 2 is given in Appendix A. Therefore, in
practice we can set l0¼(Tr(Sb))/(Tr(Sw)) for initialization. Second,
the method of ITR algorithm has chosen d eigenvectors corre-
sponding to the d largest eigenvalues of Sb�l*Sw to form W*
maximizing the trace difference value Tr½WT

ðSb�l
nSwÞW �. But

these top eigenvectors cannot maximize the trace ratio value
ðTrðWT SbWÞÞ=ðTrðWT SwWÞÞ. Thus, we need to find better choices
of d eigenvectors satisfying max½ðTrðWT SbWÞÞ=ðTrðWT SwWÞÞ�.
Motivated by all these issues, we propose an improved ITR

algorithm, called ITR-Score algorithm in this paper, to solve the
problem. For all the eigenvectors of Sb�l*Sw, our algorithm
computes a score si ¼ ðw

T
i SbwiÞ=ðw

T
i SwwiÞ for each of eigenvector

wi. We then choose d eigenvectors having the largest scores to
form the optimal matrix W*. The basic steps of the proposed
algorithm are in Table 1.

One may easily note that the main difference between ITR

algorithm and the proposed ITR-Score algorithm is in Step 3–4
which are about choosing d eigenvectors of Sb�ltSw to update Wt.
The method of ITR algorithm has chosen d eigenvectors corre-
sponding to the largest eigenvalues of Sb�ltSw to form Wt. But the
renewed Wt are not necessarily formed by these top eigenvectors
as they may not be able to maximize ðTrðWT

t SbWtÞÞ=ðTrðWT
t SwWtÞÞ.

On the other hand, the proposed ITR-Score algorithm has chosen d

eigenvectors having the largest scores of si ¼ ðw
T
i SbwiÞ=ðw

T
i SwwiÞ to

form Wt. This procedures can be viewed as a greedy algorithm that
optimizes max

i

Pd
k ¼ 1ðw

T
ik

Sbwik Þ=ðw
T
ik

Swwik Þ, which is an approxima-
tion to

max
i

Pd
k ¼ 1 wT

ik
SbwikPd

k ¼ 1 wT
ik

Swwik

¼max
TrðWT SbWÞ

TrðWT SwWÞ
, ð10Þ

where i¼{i1,i2,y,id} is a certain permutation chosen from
{1,2,y,D}. Hence for any initial ltol*, the updated ltþ1 proposed
in our algorithm is usually greater than that in the ITR algorithm,
which indicates that our ITR-Score algorithm is more efficient than
the ITR algorithm. But in practice, it may also confront with the
situation that the updated ltþ1 of our ITR-Score algorithm is
smaller than that of ITR algorithm, especially when the iterative
process is close to the convergence. Hence in this case, a feasible
solution is to update ltþ1 by choosing the larger one. This can
guarantee that the updated trace ratio value is always no smaller
than that of ITR algorithm.

2.2.3. Convergence analysis

We next analyze the convergence of our ITR-Score algorithm. It
has been rigorously proved that for any initial ltol*, the updated
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lITR
tþ1 of ITR algorithm is larger than lt [4,24]. We next prove that

for ITR-Score algorithm, the updated l’
tþ1 satisfies (1) ltþ1Z

lITR
tþ14lt and (2) ltþ1rl*, which indicates that the ITR-Score

algorithm can converge to the global optimum.
The first inequality is straightforward as analyzed in the last

paragraph of Section 2.2.2. Hence we only prove the second
inequality.

Since ltþ1 ¼ ðTrðWT
t SbWtÞÞ=ðTrðWT

t SwWtÞÞ, we have Tr

ðWT
t SbWtÞ�ltþ1TrðWT

t SwWtÞ ¼ TrðWT
t ðSb�ltþ1SwÞWtÞ ¼ 0. Accord-

ing to the definition of trace difference function, i.e. gðlÞ ¼
maxWT W ¼ ITr½WT

ðSb�lSwÞW �, it follows

gðltþ1Þ ¼maxWT W ¼ ITrðWT
ðSb�ltþ1SwÞWÞ

ZTrðWT
t ðSb�ltþ1SwÞWtÞ ¼ 0:

This indicates that g(ltþ1)Z0. In addition, according to Theorem
1, it follows gðln

Þ ¼ TrðWnT
ðSb�l

nSwÞW
n
Þ ¼ 0, where W* is its

optimal projection matrix. We thus have

gðln
Þ ¼ 0¼ TrðWnT

ðSb�l
nSwÞW

n
ÞZTrðWT

t ðSb�l
nSwÞWtÞ

¼ gðltþ1Þþðltþ1�l
n
ÞTrðWT

t SwWtÞ:

To satisfy this inequality, i.e. gðltþ1Þþðltþ1�l
n
ÞTrðWT

t SwWtÞr0,
we can only have ltþ1�l*r0 as gðl0tþ1ÞZ0 and TrðWT

t SwWtÞZ0
(Sw is semi-positive definite). Therefore, we prove ltþ1rl*.

2.2.4. Singularity case

In the above algorithm, it assumes Sw is nonsingular. Otherwise,
if W is in the null space of Sw, i.e. WTSwW¼0, the trace ratio value
TrðWT SbWÞ=TrðWT SwWÞ can go infinite. This is the so called
singularity problem and can often occur when the null space of
Sw has dimensionality d0 larger than d (the reduced dimensionality)
[5,6]. This is because for d04d, the d column vectors of W can all lie
in the null space of Sw hence causing Tr(WTSwW)¼0. To solve this
problem, Xiang et al. [6] and Jia et al. [5] choose to find the optimal
solution by maximizing Tr(WTSbW) in the null space of Sw as

Wn
¼ argmaxWT SwW ¼ 0TrðWT SbWÞ or

Wn
¼ argmaxWT SwW ¼ 0TrðWT StWÞ:

One may easily find that the above algorithm is similar to that
of null space LDA (NLDA) [25] or Discriminative Common Vectors
(DCV) [28]. Hence the work in Xiang et al. [6] and Jia et al. [5] solve
TR problem in two cases: for drd0, using the algorithm of NLDA (or
DCV), for d4d0, using the algorithm in the previous work [3,4].

In this paper, we solve singularity problem by adding a
regularization term to the objective function of TR problem

Wn
¼ argmaxWT W ¼ IðTrðWT SbWÞ=ðTrðWT SwWþaIdÞÞÞ

where aIdARd�d is a multiply of identity matrix. From the above
equation, we can see that no matter whether W is in the null space
of Sw, it always holds Tr(WTSwWþaId)40. Hence the singularity
problem can be solved. In addition, if W* converges to the null
space of Sw, i.e. WTSwW¼0 and Tr(WTSwWþaId)¼ad, then it
follows Wn

¼ argmaxWT SwW ¼ 0TrðWT SbWÞ. This indicates that for
singularity case, the optimal solution of TR-LDA is equivalent to
that of NLDA (or DCV). But our algorithm is more efficient as it does
not need to consider the cases of drd0 and d4d0.
3. Trace ratio based semi-supervised dimensionality
reduction

3.1. Orthogonal constrained semi-supervised learning framework

The algorithms to solve TR problem are all supervised. In order
to use unlabeled data points to achieve satisfactory results, there
are many works incorporating both labeled and unlabeled set into
learning procedure [19–23]. In this paper, we first introduce a
semi-supervised learning framework. Denote X ¼ fXl,Xu

g repre-
senting the whole dataset, Xl

¼ fxig
l
i ¼ 1 is the labeled set corre-

sponding with the labeled matrix Y ¼ fyig
l
i ¼ 1 and Xu

¼ fxig
lþu
i ¼ l is

the unlabeled set, the framework can be given as

f n ¼ arg
f

min½Vl
ðXl,f ÞþgVu

ðXu,f Þ�, ð11Þ

where Vl and Vu are certain cost functions corresponding to the
labeled and unlabeled set, f ¼ ½f ðx1Þ, � � � f ðxlþuÞ�

T is an output space
associated with a basis, which can be represented either by
Euclidean space f¼WTX or Reproducing Kernel Hilbert Space
f ðxÞ ¼

Plþu
i ¼ 1 aiKðxi,xÞ [32,33], g is a parameter control the tradeoff

between two cost functions.
The goal of minimizing the labeled cost function Vl is to find an

optimal output space f* to preserve the discriminative structure
embedded in a low-dimensional set. Specifically, after performing
dimensionality reduction under such cost function, it is our
objective that the distance between data points in the same class
is close, while those in different classes are far apart. Furthermore,
when dealing with dimensionality reduction problems, we often
use a matrix with pairwise form to describe the distance relation-
ship between data points regarding whether they are close or far
apart [14]. Therefore, based on the notation of matrix with
pairwise form, we give the labeled cost function Vl as

Vl Xl,f
n o

¼
1

2
min

f

Xl

i,j ¼ 1

cd
ij:f ðxiÞ�f ðxjÞ:

2
þl

Xl

i,j ¼ 1

cs
ij:f ðxiÞ�f ðxjÞ:

2

0
@

1
A
ð12Þ

where Cd
¼ fcd

ijg and Cs
¼ fcs

ijg are the cost matrixes penalizing the

pairwise distances for any two data points of inter and intra class,

respectively. Let Dd
¼ fdd

iig
l

i ¼ 1 and Ds
¼ fds

iig
l

i ¼ 1 be the diagonal

matrixes satisfying dd
ii ¼

Pl
j ¼ 1 cd

ij and ds
ii ¼

Pl
j ¼ 1 cs

ij, the cost

function in Eq. (12) can then be rewritten as

Vl
fXl,f g ¼min

f
Trðf T Ldf þ f T Lsf Þ, ð13Þ

where Ld
¼Dd
�Cd and Ls

¼Ds
�Cs. In addition, if we regard Cd or Cs

as a weight matrix of a graph, Ld or Ls can be viewed as a graph
Laplacian matrix in spectral graph theory [36].

On the other hand, the unlabeled cost function Vu is optimized
to best preserve the geometric structure of dataset. Assuming this
geometric structure is smoothly embedded in a low-dimensional
manifold, it can be approximated using the graph Laplacian
associated with both labeled and unlabeled set [14]. Let G¼(V,E)
denotes the above graph, where V is vertex set of the graph
representing both labeled and unlabeled samples, and E is edge
set containing the neighborhood information between two nearby
data points. Let Cu be the corresponding weight matrix of E, a
nature method for defining the weight matrix is using Gaussian
function

cu
ij ¼

expð�ðJxi�xjJ
2
Þ=s2Þ if xiANkðxjÞ or xjANkðxjÞ

0 otherwise

(
ð14Þ

where Nk(xi) denotes the k nearest neighborhood set of xi. The
unlabeled cost function Vu can then be written as

Vu
ðXu,f Þ ¼

1

2
min

f

Xlþu

i,j ¼ 1

cu
ij:f ðxiÞ�f ðxjÞ:

2
¼min

f
Trðf T Luf Þ: ð15Þ

If we only consider the linear embedded space f¼WTX (an
efficient nonlinear extension based on reproducing kernel Hilbert
space is discussed in Section 4) and impose the projection matrix
W with an orthogonal constraint, the total cost function can be
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written as

minWT W ¼ ITr½WT
ðXLdXT

þlXLsXT
þgXLuXT

ÞW �: ð16Þ

3.2. Semi-supervised trace ratio problem

The above framework in Eq. (16) has motivated us to extend
the TR problem to its corresponding semi-supervised version. To
establish the relationship between framework and TR problem,
we first rewrite between-class scatter matrix and within-class
scatter matrix using pairwise form. Let Cd and Cs be defined

cd
ij ¼

1
lk
� 1

l xi and xj belongs to the same class

� 1
l otherwise

8<
:

cs
ij ¼

1
lk

xi and xj belongs to the same class

0 otherwise
:

(
ð17Þ

According to He et al. [13], we have

1

2

Xl

i,j ¼ 1

cd
ij:WT xi�WT xj:

2
¼ TrðWT XLdXT WÞ ¼ �TrðWT SbWÞ

1

2

Xl

i,j ¼ 1

cs
ij:WT xi�WT xj:

2
¼ TrðWT XLsXT WÞ ¼ TrðWT SwWÞ: ð18Þ

By putting Eq. (18) into Eq. (13) and let f¼WTX, one may easily
find the labeled cost function Vl

¼minW ½�TrðWT SbWÞþlTr

ðWT SwWÞ� ¼maxW TrðWT SbW�lTrðWT SwWÞ�, which is exactly
the trace difference function of TR problem. For convenience, we
denote Lb, Lw, Lm as the graph Laplacian matrix of between-class
scatter matrix, within-class scatter matrix and manifold matrix,
respectively. Let g¼llm and Lb¼Ld, Lw¼Ls and Lm¼Lu, where Ld, Ls

and Lu are defined in Eq. (17) and (14), the semi-supervised trace
ratio problem can be written as

Wn
¼ argWT W ¼ IminWT

ð�XLbXT
þln
ðXLwXT

þlmXLmXT
ÞÞW : ð19Þ

The corresponding semi-supervised version of trace ratio
function and trace difference function can be given by

Wn
¼ argmaxWT W ¼ I

TrðWT XLbXT WÞ

TrðWT
ðXLwXT

þlmXLmXT
ÞWÞ

ð20Þ

gðlÞ ¼maxWT W ¼ ITr½WT
ðXLbX�lðXLwXþlmXLmXT

ÞW �: ð21Þ

One may easily find for semi-supervised TR problem, an extra
manifold matrix lmXTLmX is added to the original object function
in the TR problem. The manifold matrix can be positive semi-
definite due to the graph Laplacian property. Thus, we can simply
use the proposed ITR-Score algorithm to solving semi-surprised TR

problem by replacing XLwX with XLwXþlmXLmXT. The basic steps
of ITR-Score algorithm for solving semi-supervised TR problem are
in Table 2.
Table 2
ITR-Score algorithm for solving semi-supervised trace ratio problem.

(1) Initialize l0 ¼ ðTrðXLbXT
ÞÞ=ðTrðXLwXT

þlmXLmXT
ÞÞ.

(2) Compute the eigen-decomposition of XLbXT
�lt ðXLwXT

þlmXLmXT
Þ as

ðXLbXT
�ltðXLwXT

þlmXLmXT
Þwi ¼ tiwi , where wi(i¼1,2,y,D) is the

eigenvector of XLbXT
�ltðXLwXT

þlmXLmXT
Þ.

(3) Compute the score si ¼ ðw
T
i SbwiÞ=ðw

T
i SwwiÞ corresponding to each

eigenvector wi.

(4) Choose the top d eigenvectors wi having the d largest scores si to form Wt.

(5) Update ltþ1 ¼ ðTrðWT
t XLbXT WtÞÞ=ðTrðWT

t ðXLwXT
þlmXLmXT

ÞWtþaIdÞÞ.

(6) Iterate the steps (2–5) until 9ltþ1�lt9oe. Output W*.
4. Kernelization

The proposed TR-SDA is a linear algorithm. In this section, we
will extend it to solve the nonlinear problem using kernel trick
[32,33]. For convenience, we denote the kernel version of TR-SDA

as TR-KSDA.
The basic idea of the kernel trick is to map the original data

space to a high-dimensional Hilbert space given by f:X-F, then
perform linear dimensionality reduction on the new space. Let
f(X)¼{f(x1),f(x2),y,f(xlþu)} be such high-dimensional space,
we assume the map can be implicitly implemented in a kernel
function K(xi,xj)¼f(xi)

Tf(xi). The goal of TR-KSDA is to find an
optimal projection WfnARd�ðlþuÞ satisfying

Wfn
¼ argmaxWfT Wf

¼ I

TrðWfTfðXÞLbfðXÞT Wf
Þ

TrðWfTfðXÞðLbþLmÞfðXÞT Wf
Þ
: ð22Þ

Note f(X) is not available as it is only implicit. Thus we cannot
directly solve the problem in Eq. (22). In order to compute the
optimal projection Wfn, we can add some restricts to Wf, making
the solution to the problem in Eq. (22) available. Supposing the
QR decomposition of f(X) is f(X)¼QR, where R is an upper
triangular matrix, and Q is an orthogonal matrix satisfying QTQ¼ I.
Then, we have

fðXÞTfðXÞ ¼ RT R¼ K ð23Þ

which indicates that RTR can be viewed as Cholesky decomposi-
tion factorization of K. Furthermore, since Q is now an orthogonal
basis of f(X), assuming Wf is mapped into the span of Q, we then
have Wf

¼ QVf, where VfARd�ðlþnÞ is an orthogonal matrix with
the columns satisfying VfT Vf

¼ I. Thus, the original object func-
tion in Eq. (22) can be rewritten as

Vfn
¼ arg

VfT Vf
¼ I

max
TrðVfT RLbRT Vf

Þ

TrðVfT RðLbþLmÞR
T Vf
Þ
: ð24Þ

The output data points in the reduced space can be given by

Yf
¼ ðWfn

Þ
TfðXÞ ¼ ðVfn

Þ
T QT QR¼ ðVfn

Þ
T R: ð25Þ

The basic steps of using ITR-Score algorithm to solve TR-KSDA

are shown in Table 3.
Recalling the objective function of TR-SDA in Eq. (20), it is

noticed that it has the same form as TR-KSDA in Eq. (24). If we
rewrite the objective function of TR-LDA, TR-SDA and their
corresponding kernel version in the form of Vn

¼ argmaxVT V ¼ I

ððTrðVT RM1RT VÞÞ=ðTrðVT RM2RT VÞÞÞ, these different algorithms can
be connected according to different choices of matrix Mi and R in
Table 4.
Table 3
ITR-Score algorithm for solving TR-KSDA.

(1) Perform Cholesky decomposition to the kernel matrix K¼RTR.

(2) Initialize l0 ¼ ðTrðRLbRT
ÞÞ=ðTrðRLwRT

þlmRLmRT
ÞÞ

(3) Compute the eigen-decomposition of RLbRT
�lt ðRLwRT

þlmRLmRT
Þ as

ðRLbRT
�ltðRLwRT

þlmRLmRT
Þvf

i ¼ tiv
f
i , where vf

i ði¼ 1,2,. . .,DÞ is the

eigenvector of RLbRT
�ltðRLwRT

þlmRLmRT
Þ.

(4) Compute the score si ¼ ðv
fT
i Sbvf

i Þ=ðv
fT
i Swvf

i Þ corresponding to each

eigenvector vf
i .

(5) Choose the top d eigenvectors vf
i having the d largest scores si to form Vf

t .

(6) Update ltþ1 ¼ ðTrðVfT
t RLbRT Vf

t ÞÞ=ðTrðVfT
t ðRLwRT

þlmRLmRT
ÞVf

t þaIdÞÞ.

(7) Iterate the steps (2–5) until 9ltþ1�lt9oe. Output Wfn
¼ ðVfn

Þ
T R.



Table 4
Connection between TR-LDA, TR-SDA, TR-KLDA and TR-KSDA.

Method Matrix M1 Matrix M2 Matrix R Output Y

TR-LDA Lb Lw X Y¼V*TX

TR-SDA Lb LwþLm X Y¼V*TX

TR-KLDA Lb Lw RTR¼K(Chol.) Y¼V*TR

TR-KSDA Lb LwþLm RTR¼K(Chol.) Y¼V*TR
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5. Related work

In the paper, we propose a semi-supervised version of TR-LDA.
It is to the best of our knowledge that there are several recently
proposed semi-supervised dimensionality reduction methods
using the same objectives of this paper [19–22]. By analyzing
the strategy and mechanism of these algorithms, we show that
our proposed algorithm is, in fact, an improved or extended
method among these algorithms.

5.1. Relation to SDA [19], Lap-LDA [21] and SS-CCA [23]

The method of SDA algorithm [19] can be viewed as adding a
manifold regularization term to the original objective function of
Regularized LDA. The objective function of SDA is

JðWÞ ¼maxW

WT XLbXT W
��� ���

WT
ðXLwXþl1XLmXT

þl2IÞW
��� ��� ð26Þ

where I is Tikhonov regularization term choosing an identity
matrix for imposing the smoothes of possible solution, li are the
parameters balanced the tradeoff of two regularization terms.
Lap-LDA [21] is another semi-supervised dimensionality reduc-
tion method with the objective function given as

minW:Y�XT W:2

Fþl1TrðWT XLmXT WÞþl2TrðWT WÞ: ð27Þ

Note that Lap-LDA is proposed under a least square framework.
Considering the relationship between LDA and multivariate linear
regression with certain class indicator matrix [10], Lap-LDA can be
viewed equivalent to SDA. The solution of SDA and Lap-LDA can
then be obtained by solving generalized eigen-value decomposi-
tion problem (GEVD) as

XLbXT wk ¼ tkðXLwXþl1XLmXT
þl2IÞwk

where wkARd is the eigenvector corresponding to the kth largest
eigenvalue tk, note l2¼0 for Lap-LDA as it has no Tikhonov
regularization term.

We next build the relationship between SDA (or Lap-LDA) and TR-

SDA. Actually, as described in [24], given an uncorrelated constraint,
the objective function of LDA can be rewritten in a form of trace ratio
criterion maxWT St W ¼ IððTrðWT SbWÞÞ=ðTrðWT SwWÞÞÞ. Here, we extend
this form to a semi-supervised vision as

maxWT
ðSt þlmXT LmXÞW ¼ IðTrðWT SbW=ðTrðWT

ðSwþlmXT LmXÞWÞÞÞ:

ð26Þ

Since St¼SwþSb, the objective function in Eq. (26) can be
rewritten as maxWT

ðSt þlmXT LmXÞW ¼ ITrðWT SbWÞ and the optimal
solution can be obtained by solving GEVD of SbW¼tk(Stþ

lmXLmXT)W, which is equivalent to that of SDA. Hence from Eqs.
(26) and (20), we can observe that the main difference between
SDA (or Lap-LDA) and TR-SDA is whether the objective function is
based on uncorrelated constraint or orthogonal constraint. When
the classification problem is based on Euclidean Distance, our
proposed TR-SDA algorithm is superior to SDA as elaborated in the
analysis of Section 2. Another semi-supervised method having the
similar thought is SS-CCA [23]. Given a certain class indicator
matrix [18], SS-CCA can be equivalent to SDA. Thus our proposed
TR-SDA is also superior to SS-CCA.

5.2. Relation to SSMMC [22] and MMC [15]

Other semi-supervised and supervised learning algorithms
sharing the same concept include SSMMC [22] and MMC [15].
The basic objective function of SSMMC is

JðWÞ ¼maxWT W ¼ ITr½WT
ðXLbXT

�l1XLwX�l2XLmXT
ÞW �: ð27Þ

We can observe that there is a great similarity between
Eq. (27) and our proposed semi-supervised trace difference
function in Eq. (21). But according to the work in [22], li is
empirically selected and adjusted by a 5-fold cross validation.
This can be arbitrary time-consuming. On the other hand, by
adjusting lm slightly in Eq. (20) so that Tr(XLwXT) and Tr(XLmXT)
are in the same level, the optimal trace ratio value l* and the
projection matrix W* can be found using an iterative procedure.
Thus our algorithm can be seen as a parameter-adaptive algo-
rithm finding the optimal solution; this is a great improvement to
SSMMC. In addition, by fixing l1¼1 and l2¼0, the objective
function in Eq. (27) is equivalent to that of MMC [15]

JðWÞ ¼maxWT W ¼ ITr½WT
ðXLbXT

�XLwXÞW �: ð28Þ

We can observe that MMC can be seen as an approximated
solution to the TR problem with l*¼1. Since MMC cannot
preserve the geometric structure (it has no manifold terms), our
algorithm is superior to it.

5.3. Relation to SSDR [20]

Zhang et al. have proposed another semi-supervised dimen-
sionality reduction, called SSDR [20] using a must-link and
cannot-link constraints. Though it is different from our algorithm
as it is based on pairwise constraints instead of the labeled
information directly, it can be covered into our framework. Let
C and M be the sets of cannot-links must-links, respectively, the
objective function of SSDR can be formulated as

JðWÞ ¼ max
WT W ¼ I

1

2n2

X
i,j

:WT xi�WT xj:
2
þ

a
2nC

X
ðxi ,xjÞAC

:WT xi�WT xj:
2

2
4

�
b

2nM

X
ðxi ,xjÞAM

:WT xi�WT xj:
2

3
5 ð28Þ

where nC and nM are the number of cannot-links and must-links, a
and b are two parameter balanced the tradeoff of two terms.
Recalling the framework in Eq. (21), let

cd
ij ¼

�ða=nCÞ if xi and xj belong to different classes

0 otherwise

�

cs
ij ¼

a=nM if xi and xj belong to the same class

0 otherwise

�

cu
ij ¼ �ð1=n2Þ for all data set :

The algorithm can be equivalent to SSDR.
6. Simulations and results

We will evaluate our algorithms with several synthetic datasets
and real world datasets. For synthetic datasets, we use 2d Gaussian
dataset to show the discriminative boundary learned by our
algorithm and a 3d Gaussian dataset to visualize the output set
in a 2d reduced space. We also use a two-moon dataset to deal
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with nonlinear classification problem and show the discriminative
boundary learned by our algorithm. In addition, we demonstrate
visualization and classification problem on four real world datasets
including the UMIST dataset [37], ORL dataset [38], USPS dataset
[39] and MNIST dataset [40]. We also compare the performance of
our proposed algorithms with other state-of-art algorithms.

6.1. Toy examples for synthetic dataset

Three toy examples based on 2d Gaussian dataset, 3d Gaussian
dataset and two moon dataset are studied. In the first toy example,
we generated a 2d dataset with two classes, each of which follows
a Gaussian distribution. In this dataset, we randomly selected two
data points per class as labeled set and the remaining as unlabeled
set. Fig. 1 shows the boundary obtained by LDA, SDA, TR-LDA and
Fig. 1. Boundary obtained by LDA, SDA, TR-LDA and TR-SDA: 2d Gaussian dataset.
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Fig. 3. Gray image of reduced space learned by KSDA and T

Fig. 2. Output set in the reduced 2d space of SDA and TR-SDA: 3d Gaussian d
TR-SDA. The results show that both SDA and TR-SDA are superior to
LDA and TR-LDA, as the boundaries learned by SDA and TR-SDA can
directly divide the data points into two classes, while for LDA and
TR-SDA, some of data points may be divided into false class. The
improved performance of our proposed algorithm show they are
able to improve LDA and TR-LDA by incorporating both labeled and
unlabeled set to preserve the geometrical structure of dataset. In
addition, TR-SDA performs better than SDA. This enhanced perfor-
mance is believed to be due to the fact that optimal projection
obtained by TR-SDA is orthogonal, which results in preserving the
similarities (Euclidean distance) between data points. In contrast,
SDA may change such similarities as the optimal projection of SDA

is not required to be orthogonal, When evaluating the similarities
(Euclidean distance) between data points, it may put different
weights on different projection directs.

In the second toy example, we generated a 3d dataset with two
classes, each of which are Gaussian distributed. In each class, two
data points were selected as labeled set and the remaining as
unlabeled set. We used SDA and TR-SDA to perform dimension-
ality reduction. Fig. 2 shows the output set in the reduced 2d

space of SDA and TR-SDA. It shows that our proposed TR-SDA is
superior to SDA. In Fig. 2c, it is clear that in the reduced space the
data points in a class are pulled together, while the data points in
different classes appear to be far apart. In contrast, Fig. 2b shows
that SDA is unable to deliver a clear class boundary.

In the third toy example, we generated another dataset with two
classes, each of which follows a half-moon distribution. In each class,
two data points were selected as labels set and the remaining as
unlabeled set. Since the distribution of the two moon dataset is non-
Gaussian, we only performed KSDA and TR-KSDA for dimensionality
reduction. Fig. 3 shows the gray images of reduced space learned by
KSDA and TR-KSDA. The value of each pixel in the images represents
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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R-KSDA: two moon dataset (a) KSDA and (b) TR-KSDA.

ataset (a) original set, (b) output set of SDA and (c) output set of TR-SDA.
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the distance difference from a pixel to its nearest labeled data points
after dimensionality reduction by KSDA and TR-KSDA. In this exam-
ple, we set the dimensionality of projection as 1. From Fig. 3a and b,
we can see both KSDA and TR-KSDA can obtain a desired classification
boundary indicating that the two algorithms can deal with nonlinear
problems. Our proposed TR-SDA can deliver slightly better perfor-
mance than SDA. The sketch of two half-moon learned by TR-KSDA is
smoother and clearer than that learned by KSDA.

6.2. Sub-manifold visualization

We demonstrate the sub-manifold visualization of our pro-
posed TR-SDA algorithm and compare it with PCA, LPP and SDA. In
this study, two real-world dataset including the UMIST face
dataset [37] and USPS handwritten digit dataset [39] are used.

In the UMIST face dataset, we selected five individuals to
illustrate the sub-manifolds of the dataset. For each individual,
we randomly selected four data points as labeled set and the
remaining as unlabeled set. Fig. 4 shows the 2d sub-manifolds
learned by PCA, LPP, SDA and TR-SDA. From the results in Fig. 4a
and b, we can see that in unsupervised method such as PCA and
LPP, the sub-manifold structure, i.e. the ordering of poses from
profile to frontal views, can be well preserved. LPP delivers
slightly better performance than PCA, as the manifold lines of
face poses are more smoothly preserved. This improved perfor-
mance is mainly due to the characteristics of LPP that local
information embedded in dataset is preserved. But we can also
see from Fig. 4a and b that the boundaries of sub-manifolds in
different classes are heavily overlapped and confused, which
means both PCA and LPP cannot preserve the discriminative
structure. On the other hand, from Fig. 4c and d, we can see by
providing discriminative information based on the labeled set,
SDA and TR-SDA are able to preserve the discriminative structure
as well as geometric structure. In Fig. 4d, it demonstrates that our
proposed TR-SDA algorithm is able to outperform SDA in a way
Fig. 4. 2d sub-manifolds learned by PCA, LPP, SDA and TR-SDA: four ind
that the sub-manifold of each individual is closely conglomerated,
while those belonging to different individuals are clearly sepa-
rated. Fig. 5 shows the sub-manifold of a typical class learned by
TR-SDA, which represents the face subset of one individual. From
Fig. 5 we can see that the poses of faces are turned from frontal
views to profile views along the red lines indicating TR-SDA can
smoothly preserve the sub-manifold of face subset. In contrast,
SDA cannot preserve the sub-manifold of each class satisfactory as
there are two classes seriously overlapped in Fig. 4c.

In the USPS handwritten digit dataset, we selected four digits
0–3 to illustrate the sub-manifolds of the dataset. For each digit,
we randomly selected fifty data points as labeled set and the
remaining as unlabeled set. Fig. 6 shows that the 2d sub-mani-
folds learned by PCA, LPP, SDA and TR-SDA. In Fig. 6 we can see
that the sub-manifolds learned by LPP, SDA and TR-SDA in
Figs. 6b–d are much better than those learned by PCA in Fig. 6a.
The local structures are smoothly preserved in LPP, SDA and
TR-SDA, while in PCA, these localities are mostly overlapped. This
indicates that the USPS dataset has lots of local information, hence
the local method (LPP) or other methods, which involve local
strategy (SDA, TR-SDA), can preserve such useful local informa-
tion. In contrast, the global method (PCA) clearly cannot preserve
the locality. In addition, the results in Fig. 6c and d show that the
boundary between different classes learned by SDA and TR-SDA

are more distinctive and less confused compared with PCA and
LPP as shown in Fig. 6a and b. This indicates that semi-supervised
methods such as SDA and TR-SDA can provide more discriminative
information than unsupervised method such as PCA and LPP. Our
proposed TR-SDA is superior to SDA, because the sub-manifolds of
different classes are more separated and less overlapped, while
the sub-manifold in each class are smoothly preserved. Fig. 7
further details the sub-manifold of digit 0 learned by TR-SDA.
From Fig. 7, we can see that different hand-writing styles of digit
0 are smoothly varied along a sub-manifold line (red line in Fig. 7)
indicating that TR-SDA can preserve the manifold structure.
ividuals of UMIST dataset (a) PCA, (b) LPP, (c) SDA and (d) TR-SDA.



Fig. 5. 2d sub-manifold learned by TR-SDA and zoom in one individual: (a) TR-SDA of four individuals and (b) Zooming in one individual.

Fig. 6. 2d sub-manifold learned by PCA, LPP, SDA and TR-SDA: handwritten digits 0–4 of USPS dataset (a) PCA, (b) LPP, (c) SDA and (d) TR-SDA.

Fig. 7. 2d sub-manifold learned by TR-SDA and zoom in for digit 0: (a) TR-SDA of four digits 0-4 and (b) Zooming in digit 0. (For interpretation of the references to color in

this figure, the reader is referred to the web version of this article.)
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6.3. Classification

In this section, we used six datasets to compare the classifica-
tion performance between our proposed TR-SDA algorithm and
other algorithms such as PCA, LPP, MMC, CCA, LDA and SDA. The six
datasets include the UMIST face dataset [37], ORL face dataset
[38], USPS handwritten digit dataset [39], MNIST handwritten
digit dataset [40], COIL100 dataset [41] and AR dataset [42]. The
details of data information and simulation settings are list in
Table 5.

It is noted that a variant version of CCA based on c�1 label
coding [18] was used, because it can solve multi-class classifica-
tion problem, while the original CCA [16] only deals with binary
classification. In this comparative study, we randomly split each
dataset into training set and test set. We also randomly selected
data points as the training set to form labeled and unlabeled set.
The training set in all datasets are preliminarily processed with
PCA operator to eliminate the null space before performing
dimensionality reduction. For unsupervised method such as PCA

and LPP, we used the training set to train the learner. For
Table 5
Data information and simulation settings.

Dataset # Classes # Images # Dim # Training # Test

UMIST 20 564 32�32 15�20 remains

ORL 40 400 32�32 8�40 2�40

USPS 10 9298 16�16 100�10 100�10

MNIST 10 60,000 28�28 100�10 100�10

COIL100 100 7200 32�32 20�100 20�100

AR 100 2600 32�32 20�100 remains
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Fig. 8. Average accuracy under different dimensionality: UM
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Fig. 9. Average accuracy under different dimensionality:
supervised method such as MMC, CCA, LDA and TR-LDA, we used
only labeled set to train the learner. For semi-supervised method
such as SDA and TR-SDA, we used all the training set with both
labeled and unlabeled set to train the learner. All algorithms used
labeled set in the output reduced space to train a nearest
neighborhood classifier for evaluating the accuracies of test set.

6.3.1. Face recognition

For face recognition, we use the UMIST and ORL face dataset to
evaluate the performance of algorithms. The simulation settings are
as follows: We randomly selected 15 data points per class to form
training set for UMIST dataset, and 8 data points per class for ORL

dataset. The remaining dataset is as test dataset. In the training set,
we randomly selected 4, 7, 10 and 2, 5, 8 data points per class as
labeled set and the remains as unlabeled set in the UMIST and ORL

dataset, respectively. For manifold regularized term in SDA and TR-

SDA, the regularized parameter lm is set as 0.1m0 both in UMIST and
ORL dataset, where m0 ¼ ðTrðXLmXT

ÞÞ= ðTrðXLwXT
ÞÞ. For LPP, SDA and

TR-SDA, we set the neighborhood number as 8. We then employ
Gaussian function to construct the weight matrix in LPP, SDA and
TR-SDA. The parameter s in Gaussian function is determined as
follows: We first calculated all the pairwise distances among data
points of the whole training set. We then set s equivalent to half the
median of those distances. This can provide a reasonable estimation
for the value s [30]. The above two parameters are set the same for
the UMIST and ORL dataset.

For simulation, we first fixed the labeled number in the training
set as 4, 7, 10 for the UMIST dataset and 2, 5, 8 for the ORL dataset.
The average accuracies over 20 randomly split with the above
parameters under different dimensionality are shown in
Figs. 8 and 9 for UMIST and ORL dataset, respectively. Tables 6 and 7
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Table 6
Average accuracy on the test set: UMIST dataset.

Dataset Method 4 labeled 7 labeled 10 labeled

Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim

UMIST PCA 80.16 0.97 32 88.34 0.69 35 93.00 0.65 18

LPP 81.00 0.84 23 89.09 0.58 19 93.56 0.49 24

MMC 82.13 0.83 19 89.54 0.68 19 93.93 0.53 19

CCA 84.02 0.68 28 90.15 0.53 24 94.32 0.51 19

LDA 85.03 0.71 19 90.47 0.49 19 94.40 0.53 19

SDA 86.34 0.74 13 91.71 0.40 13 95.43 0.50 19

TR-LDA 84.75 0.67 19 91.42 0.44 18 94.43 0.48 19

TR-SDA 87.69 0.53 13 92.92 0.42 19 96.13 0.51 19

Table 7
Average accuracy on the test set: ORL dataset.

Dataset Method 2 labeled 5 labeled 8 labeled

Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim

ORL PCA 71.00 1.95 69 86.75 3.02 46 93.12 2.73 61

LPP 80.37 1.47 41 93.75 2.69 33 96.87 1.31 58

MMC 74.00 2.02 34 92.50 3.52 37 96.50 1.90 39

CCA 81.12 1.54 60 94.50 2.79 64 97.37 0.97 65

LDA 81.62 1.42 39 95.12 2.52 39 97.37 1.16 39

SDA 82.37 1.66 39 95.62 3.49 39 97.87 1.97 39

TR-LDA 81.62 1.43 39 94.87 2.75 39 97.50 1.40 39

TR-SDA 82.50 1.95 39 95.75 2.99 39 98.00 1.39 38
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show the average accuracy with the best dimensionality for the two
datasets. From the results shown in Fig. 8 and Table 6, we can
observe that for the UMIST dataset the semi-supervised methods
outperform the corresponding supervised methods by 2–3%
improvements, i.e. SDA and TR-SDA are superior to LDA and TR-

LDA, respectively. This indicates that by incorporating the unlabeled
set into the training procedure, the classification performance can be
markedly improved, because manifold structure embedded in the
dataset is preserved. In addition, TR-SDA achieves better results than
SDA. This is mainly due to the orthogonal property of the projection
matrix. We further compare two supervised algorithms namely
MMC and multi-class CCA. The results show that our proposed
method outperformed MMC and CCA by about 5% and 3%, respec-
tively. These improvements are believed to be due to the fact that
our TR-SDA is a kind of improved MMC. Given a certain class
indicator matrix [18], the multi-class CCA can be equivalent to
LDA, thus TR-SDA can certainly outperform CCA. All supervised and
semi-supervised methods are better than unsupervised methods
such as PCA and LPP, which means the labeled information is of
great importance for discriminative learning, for instance the TR-SDA

outperformed PCA and LPP by approximately 7% and 6%, respec-
tively. It is noticed that the classification accuracy of all algorithms
change when the number of labeled set increases, for instance the
accuracy of TR-SDA increased from about 87% to 96% when the
number of labeled data increased from 4 to 10. We can also observe
from Fig. 8 that the accuracy of all algorithms varies when the
number of reduced dimensionality increased. For LDA and SDA, their
accuracy remained unchanged beyond the bound of c�1 dimen-
sionality. For other methods such as PCA, LPP, MMC, CCA and TR-SDA,
their accuracies increased only until a certain dimensionality.
Another observation from Fig. 8 is that our proposed method TR-

SDA converges more efficient than other methods, i.e.TR-SDA can
reach the highest accuracy using fewest number of dimensionality.
This shows a great superiority of our proposed algorithm over other
methods.
For the ORL dataset, the following observations from Fig. 9 and
Table 7 can be obtained. (1) SDA and TR-SDA are superior to its
corresponding supervised methods of LDA and TR-LDA, for
instance SDA and TR-SDA outperformed LDA and TR-LDA by about
1–2%.( 2) Our proposed method TR-SDA is better than SDA due to
the orthogonal property. (3) Our proposed method TR-SDA can
deliver about 7% and 2% improvements compared with the two
supervised methods of MMC and CCA. (4) All supervised and semi-
supervised algorithms are better than unsupervised algorithms
such as PCA and LPP, e.g. TR-SDA can achieve 8% and 2% improve-
ments compared to PCA and LPP, respectively. (5) The accuracies
of all algorithms will change significantly when the labeled
number increased, i.e. the accuracy of TR-SDA increased from
82% to 98% when the number of labeled data increased from 2 to
8. (6) Our proposed method TR-SDA can reach the highest
accuracy using the fewest number of dimensionality.

6.3.2. Handwritten digit recognition

For handwritten digit recognition, we used the USPS and MNIST

dataset to evaluate the performance. Since the MNIST dataset has a
training set of 60,000 data points and a testing set of 10,000 data
points, we only selected the first 2000 data points from the
original training set and testing set. The simulation settings are
as follows: We randomly selected 100 data points per class as
training set and 100 data points as test dataset from the USPS and
MNIST dataset. In the training set, we randomly selected 20, 50, 80
data points per class as labeled set and the remains as unlabeled
set. For the manifold regularized term in SDA and TR-SDA, the
regularized parameter lm was set as 0.1m0 for the USPS and MNIST

dataset. For LPP, SDA and TR-SDA, we set the neighbor number as 8.
The Gaussian function is used to construct the weight matrix in
LPP, SDA and TR-SDA, for which the parameter s in Gaussian
function is determined using the same strategy in face recognition.

We first fixed the number of labeled data in the training set as
20, 50 and 100 to train the learners. The average accuracy over 20
randomly splits with the above parameters under different
dimensionality are shown in Figs. 10 and 11 for the USPS and
MNIST dataset, respectively. Tables 8 and 9 show the average
accuracy with the best dimensionality for the two datasets. From
the results in Fig. 10 and Table 8, we can observe that for the USPS

dataset, the semi-supervised algorithms such as SDA and TR-SDA

outperformed the corresponding supervised algorithms of LDA and
TR-LDA by about 2%. Our proposed TR-SDA is slightly better than
SDA due to the orthogonal property of the projection matrix of TR-

SDA. In addition, compared with some other state-of-art super-
vised algorithms such as MMC and CCA, TR-SDA is also superior to
the two algorithms. The improvements, compared with MMC and
CCA, can reach to about 3% and 1%, respectively. All supervised and
semi-supervised algorithms outperformed the unsupervised algo-
rithms of PCA and LPP, e.g. TR-SDA can provide a 4% improvements
compared to PCA and LPP. Another observation shown in Fig. 10
and Table 8 is that the accuracy of all algorithms change as the
number of labeled data increased, e.g. the accuracies of TR-SDA can
reach 89%, 93% and 94% when the number of labeled set are 20, 50
and 80, respectively. But it is noticed that accuracy settles at a
certain level even when the number of labeled data continuously
increases. Apparently, the labeled information is sufficient for
discriminative learning when the labeled data reaches certain
level and further increases of labeled data will not have noticeable
effect. We can also observe from Fig. 10 that the accuracy of all
algorithms varies as the number of reduced dimensionality
increases. It is found that the accuracy of LDA and SDA maintain
unchanged to a bound of c�1, when the ranks of the projection
matrix are at most c�1. For other algorithms such as PCA, LPP,
MMC, CCA, TR-LDA and TR-SDA, their accuracies continuously
increase until a certain dimensionality is reached. But we must
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Fig. 11. Average accuracy under different dimensionality: MNIST dataset (a) 20 labels, (b) 50 labels and (c) 80 labels.

Table 8
Average accuracy on the test set: USPS dataset.

Dataset Method 20 labeled 50 labeled 80 labeled

Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim

USPS PCA 85.23 0.27 27 90.94 0.66 26 92.98 0.29 27

LPP 85.17 0.29 29 90.74 0.59 30 92.45 0.46 27

MMC 86.47 0.46 9 91.60 0.70 9 93.32 0.26 9

CCA 88.39 0.37 18 92.07 0.65 29 93.64 0.32 29

LDA 88.38 0.38 9 92.07 0.68 9 93.64 0.34 8

SDA 89.43 0.40 9 93.08 0.93 9 94.33 0.35 8

TR-LDA 88.70 0.43 9 91.70 0.52 9 93.28 0.40 9

TR-SDA 89.49 0.61 9 93.57 0.67 9 94.41 0.38 9

Table 9
Average accuracy on the test set: MNIST dataset.

Dataset Method 20 labeled 50 labeled 80 labeled

Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim

MNIST PCA 85.04 0.83 24 89.70 1.36 21 91.21 0.60 28

LPP 80.64 0.86 27 84.50 1.30 29 87.46 1.11 29

MMC 87.12 0.97 9 90.71 1.44 9 92.10 0.60 9

CCA 86.84 1.07 10 90.76 1.42 10 92.42 0.61 17

LDA 86.84 0.85 9 90.76 1.30 9 92.42 0.60 9

SDA 88.04 1.33 9 91.51 1.36 9 92.92 0.58 9

TR-LDA 87.47 0.86 9 90.49 1.66 9 92.14 0.90 9

TR-SDA 88.46 1.09 9 91.44 1.56 9 93.33 0.88 9
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Fig. 10. Average accuracy under different dimensionality: USPS dataset (a) 20 labels, (b) 50 labels and (c) 80 labels.
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say that the determination of the best reduced dimensionality still
remains an open issue. In Fig. 7 it shows that our proposed TR-SDA

can converge more efficiently than other algorithms, i.e. TR-SDA
requires fewer dimensionalities to reach the same level of accu-
racy compared with other algorithms.

For the MNIST dataset, the following observations from Fig. 11
and Table 9 are found: (1) The semi-supervised algorithms of SDA

and TR-SDA perform better than the supervised algorithms of LDA

and TR-LDA, i.e. SDA and TR-SDA can achieve 2% and 1% improve-
ments over LDA and TR-LDA, respectively. (2) Our proposed TR-

SDA is better than SDA due to orthogonal property of the
projection matrix learned by TR-SDA. (3) Our proposed TR-SDA

is superior to other state-of-art supervised algorithms such as
MMC and CCA with about 2% and 3% improvements, respectively.
(4) All supervised and semi-supervised algorithms are better than
unsupervised algorithms, e.g. TR-SDA can reach approximately 3%
and 8% improvements over PCA and LPP, respectively. (5) The
accuracies of all algorithms change with the number of labeled
data. But the accuracy will not change dramatically when the
number of labeled data reached certain level. (6) The perfor-
mances of all algorithms vary as the reduced dimensionality
increase. (7) Our proposed method TR-SDA converges more
efficiently, i.e. TR-SDA can reach higher level of accuracy using
the same dimensionality.

6.3.3. Large scale dataset

For large scale dataset, we used the COIL100 and AR dataset to
evaluate the performance. The simulation settings are as follows:
We randomly selected 20 data points per class as training set both
for the COIL100 and AR dataset. The remaining dataset is as test
dataset. In the training set, we randomly selected 4, 7, 10 data
points per class as labeled set and the remains as unlabeled set
both for COIL100 and AR dataset. For the manifold regularized term
in SDA and TR-SDA, the regularized parameter lm was set as
0.01m0. For LPP, SDA and TR-SDA, we set the neighbor number as 8.
The Gaussian function is used to construct the weight matrix in



Table 11
Average accuracy on the test set: AR dataset.

Dataset Method 4 labeled 7 labeled 10 labeled

Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim

AR PCA 48.06 1.71 180 57.93 1.73 180 64.42 2.27 180

LPP 47.38 2.03 190 56.97 1.36 185 64.16 2.47 190

MMC 64.66 3.29 135 80.89 2.28 120 87.35 1.67 130

CCA 81.32 1.96 65 92.16 1.11 65 94.30 0.80 70

LDA 81.32 1.98 65 92.16 1.11 65 94.30 0.80 70

SDA 82.94 1.90 70 92.50 1.75 60 94.35 0.81 60

TR-LDA 83.69 1.77 75 94.54 1.11 85 96.25 1.35 85

TR-SDA 85.92 1.97 80 94.87 1.05 90 96.87 1.12 75

Table 10
Average accuracy on the test set: COIL100 dataset.

Dataset Method 4 labeled 7 labeled 10 labeled

Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim Mean

(%)

Var

(%)

Dim

COIL100 PCA 71.51 1.29 120 80.27 0.96 95 84.74 1.28 85

LPP 69.18 0.90 30 77.28 0.77 25 82.54 1.18 35

MMC 72.38 1.18 30 80.96 0.80 30 85.87 0.76 35

CCA 59.21 1.38 30 75.89 1.26 25 83.17 1.29 30

LDA 59.21 1.38 30 75.89 1.26 25 83.17 1.29 30

SDA 60.95 1.29 35 76.20 0.77 25 83.27 0.79 35

TR-LDA 76.37 1.17 20 85.20 0.77 30 89.87 0.70 30

TR-SDA 77.85 1.17 20 86.30 0.77 30 90.98 0.70 30
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LPP, SDA and TR-SDA, for which the parameter s in Gaussian
function is determined using the same strategy in face recognition.

We first fixed the number of labeled data in the training set as
4, 7 and 10 to train the learners. The average accuracy over 20
randomly splits with the above parameters under different
dimensionality are shown in Figs. 12 and 13 for the COIL100

and AR dataset, respectively. Tables 10 and 11 show the average
accuracy with the best dimensionality for the two datasets. From
the results in Fig. 12 and Table 10, we can observe that for the
COIL100 dataset, the semi-supervised algorithms such as SDA and
TR-SDA outperformed the corresponding supervised algorithms of
LDA and TR-LDA by about 2%. In addition, we observe a consistent
superiority in the performance of the orthogonal algorithms, i.e.
PCA, MMC, TR-LDA and TR-SDA outperform the non-orthogonal
algorithms such as LPP, LDA and SDA, e.g. TR-LDA and TR-SDA can
provide 8–18% improvements compared to LDA and SDA. Another
observation shown in Fig. 12 and Table 10 is that the accuracy of
all algorithms change as the number of labeled data increased, e.g.
the accuracies of TR-SDA can reach 77%, 86% and 90% when the
number of labeled set are 4, 7 and 10, respectively. We can also
observe from Fig. 10 that the accuracy of all algorithms varies as
the number of reduced dimensionality increases. It is found that
the accuracies of all datasets firstly increase to a certain dimen-
sionality and then start to decrease. In Fig. 10 it shows that our
proposed TR-SDA can converge more efficiently than other algo-
rithms, i.e. TR-SDA requires fewest dimensionalities to reach the
same level of accuracy compared with other algorithms.

For the AR dataset, from Fig. 13 and Table 11, we can observe
similar results as COIL100 dataset. Other observations include: (1)
SDA and TR-SDA are slightly superior to its corresponding super-
vised methods of LDA and TR-LDA, this is mainly because the AR
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Fig. 12. Average accuracy under different dimensionality: COIL100 dataset (a) 4 labels, (b) 7 labels and (c) 10 labels.
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Fig. 13. Average accuracy under different dimensionality: AR dataset (a) 4 labels, (b) 7 labels and (c) 10 labels.
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dataset does not have a clear low-dimensional manifold structure
for the high-dimensional dataset, the manifold term does not play
a key role to enhance the performance. (2) PCA and LPP have poor
performances. (3) The accuracies of all algorithms vary as the
number of reduced dimensionality increases. It is found that the
accuracies of the supervised and semi-supervised algorithms
firstly increase to a certain dimensionality and then start to
decrease. For other algorithms such as PCA and LPP, their
accuracies increased until to a certain dimensionality.

6.4. Convergent analysis

We compared the convergent speed between ITR and ITR-Score

algorithms for solving TR problem of Eq. (4). In this study, six
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Fig. 14. Convergent analysis: comparative study between ITR and ITR-Score algorithms:

dataset and (f) AR dataset.
datasets were chosen for comparison including UMIST, ORL, AR,
USPS, MNIST and COIL100 dataset. The simulation settings is as
follows: we randomly chose 7 data points as training set for
UMIST, ORL, AR, COIL100 datasets and 50 data points for USPS and
MNIST datasets. The reduced dimensionality is set to 10 for UMIST,
ORL, USPS, MNIST datasets and 30 for AR and COIL100 datasets. In
the iterative process, we chose the trace difference value
gðtÞ ¼ gðltÞ ¼maxWT W ¼ ITr½WT

ðSb�ltSwÞW � to evaluate the con-
vergence. As described in Theorem 1, the global optimal l* results
in maxWT W ¼ ITr½WT

ðSb�l
nSwÞW � ¼ 0, hence this evaluation mea-

sures the convergent speed of the trace ratio value to the global
optimum.

Fig. 14 shows the convergent results for different datasets.
From the results we can observe that both ITR and ITR-Score
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algorithms can converge to the optimal trace ratio value hence
causing g(l*)¼0. This can be true as it has been theoretically
guaranteed in Section 2.2.3. In addition, it can be easily observed
that our proposed ITR-Score algorithm is able to converge faster
than ITR algorithm in all datasets. This improvement is believed to
be due to the reason that for any initial ltol*, the updated ltþ1

of the proposed ITR-Score algorithm is larger than that of ITR

algorithm.
6.5. Kernel validation

In this section, we choose four UCI datasets to evaluate the
kernel version of our algorithms and compare them with other
algorithms. The datasets include Iris, Wine, Balance and Synthetic

Control Chart Time Series (SCCTS). The details of data information
are listed in Table 12.

For comparative study, we randomly chose 70% data points
from each dataset as training set and the rest 30% as test set. We
also randomly chose 30% data points from training set as labeled
set and the rest 70% as unlabeled set. For unsupervised method
such as PCA and LPP, we used the training set to train the learner.
For supervised method such as MMC, CCA, LDA and TR-LDA, we
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Fig. 15. Kernel validation: average accuracy on the test set (a) Iris dataset, (b) Wine dat

Table 12
Data information of UCI dataset.

Dataset # Class # Num. # Dim.

Iris 3 150 4

Wine 3 178 13

Balance 3 625 4

SCCTS 6 600 60
used only labeled set to train the learner. For semi-supervised
method such as SDA and TR-SDA, we used all the training set with
both labeled and unlabeled set to train the learner. All algorithms
used labeled set in the output reduced space to train a nearest
neighborhood classifier for evaluating the accuracies of test set. In
this study, we use radial basis function (RBF) as kernel function.
The reduced dimensionality is set 3.

The average accuracies over 20 randomly split are shown in
Fig. 15 for different UCI datasets. From the results in Fig. 15, we
can observe that (1) SDA and TR-SDA are superior to its corre-
sponding supervised methods of LDA and TR-LDA, for instance SDA

and TR-SDA outperformed LDA and TR-LDA by about 1–2%. (2) Our
proposed method TR-SDA is better than SDA, especially in the
Balance datasets (by about 3%). (3) All supervised and semi-
supervised algorithms are better than unsupervised algorithms,
e.g. TR-SDA can achieve 3%, 20%, 22% and 6% improvements
compared to PCA and LPP in Iris, Wine, Balance and SCCTS dataset,
respectively.

6.6. Image segmentation

We demonstrated the image segmentation of our proposed
algorithms and compared them with other algorithms. In this
study, we chose an image in the COREL dataset for segmentation
[43] (see Fig. 16a). The image can be divided into five classes
including hill, boat, sky, sea and beach and our goal is to segment
all these classes. In the image, we describe each pixel as a
5-dimensional vector, i.e. xp¼[r,g,b,x,y]T, where (r,g,b) are the R,
G, B values of the pixel p and (x,y) are its spatial coordinates. We
next chose the specified pixels in the color lines (see Fig. 16b, each
color represents a class in the image) as labeled set and divide the
remaining pixels into unlabeled and test set. Finally, all
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Fig. 16. Image segmentation: COREL dataset (a) Original image, (b) partially labeled image, the pixels in each color line represent an object and (c) the segmentation results

of different algorithms.
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algorithms used the label set in the output reduced space to train
a nearest neighborhood classifier for evaluating the class label of
unlabeled and test set. In this example, the reduced dimension-
ality is set 3.

Fig. 16c shows the image segmentation results of different
algorithms. From the results we can see that the proposed TR-LDA

and TR-SDA algorithms are better than other algorithms. Taking
the boat as an example, it demonstrates that there are less miss-
classified pixels in our algorithms than in other algorithms. This
can be observed that in our algorithms the pixels belonging to the
boat are precisely extracted. However in other algorithms, part of
pixels belonging to the sea is miss-classified to the boat. The
similar performance can also be observed in the segmentation
results of other classes. This enhanced performance is mainly
because that optimal projection obtained by our algorithms is
orthogonal, which results in preserving the similarities (Euclidean
distance) between pixels.

7. Conclusions

A new efficient algorithm for finding optimal solution of trace
ratio problem is proposed. Based on this algorithm, we derive an
orthogonal constrained semi-supervised learning framework.
We show that the algorithm can be extended for solving
corresponding semi-supervised problems. The essence of the
proposed algorithm is that it is able to incorporate unlabeled set
into a learning procedure for preserving the geometrical struc-
ture embedded in both labeled and unlabeled set. Also, the
algorithm is able to preserve the discriminative structure
embedded in labeled set so that the data points in different
classes can be separated. It is important to note that under such
a framework many existing semi-supervised dimensionality
reduction methods such as SDA, SSDR, SSMMC can be improved
by incorporating our proposed framework. The framework can
also formulate a corresponding kernel version for handling
nonlinear problems. Theoretical analysis presented in this paper
indicates that there are certain relationships between linear and
nonlinear algorithms. It is worth noting that TR-LDA, TR-SDA and
their corresponding kernel version can be connected in a unified
form. Finally, extensive simulations on synthetic dataset and real
world dataset have been conducted. The results demonstrate that
our proposed TR-SDA is effective and is able to deliver significantly
improved performance compared with other state-of-art
algorithms.
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Appendix A

In order to prove Theorem 2, we first give two lemmas:

Lemma 1. If 8i, aiZ0, bi40 satisfying ða1=b1ÞZ ða2=b2ÞZ � � �

ðak=bkÞ, then ða1=b1ÞZ ðða1þa2þ � � � akÞ=ðb1þb2þ � � � bkÞÞZ ðak=bkÞ .

Proof. of Lemma 1:

Let (a1/b1)¼p, 8ia1, aiZ0, bi40, we have aiopbi. Hence,

a1þa2þ � � � ak

b1þb2þ � � � bk
r

pðb1þb2þ � � � bkÞ

b1þb2þ � � � bk
r

a1

b1
:

Let (ak/bk)¼q, 8iak, aiZ0, bi40, we have ai4qbi. Hence

a1þa2þ � � � ak

b1þb2þ � � � bk
Z

qðb1þb2þ � � � bkÞ

b1þb2þ � � � bk
r

ak

bk
:

Thus, we have

a1

b1
Z

a1þa2þ � � � ak

b1þb2þ � � � bk
Z

ak

bk
:

Lemma 2. If 8 i, aiZ0, bi40 satisfying

a1

b1
Z

a2

b2
Z � � �

am1

bm1

Z
am1þ1

bm1þ1
Z � � �

am2

bm2

, then

a1þa2þ � � � am1

b1þb2þ � � � bm1

Z
a1þa2þ � � � am2

b1þb2þ � � � bm2

:

Proof. of Lemma 2:

According to Lemma 1, we have

a1þa2þ � � � am1

b1þb2þ � � � bm1

Z
am1

bm1

Z
am1þ1

bm1þ1
Z

am1þ1þam1þ2þ � � � am2

bm1þ1þbm1þ2þ � � � bm2

,

hence we have

a1þa2þ � � � am1

b1þb2þ � � � bm1

Z
am1þ1þam1þ2þ � � � am2

bm1þ1þbm1þ2þ � � � bm2

:

According to Lemma 1 again, we have

a1þa2þ � � � am1

b1þb2þ � � � bm1

Z
a1þa2þ � � � am2

b1þb2þ � � � bm2

:

Proof. of Theorem 2:

Let WD ¼ ½w1,w2. . .wd,wdþ1,:::,wD�ARD�D be an orthogonal
square matrix with column vectors satisfying WT

DWD ¼WD

WT
D ¼ I. If we assume

wT
1XLbXT w1

wT
1XLwXT w1

Z
wT

2XLbXT w2

wT
2XLwXT w2

Z � � �Z
wT

dXLbXT wd

wT
dXLwXT wd

Z
wT

dþ1XLbXT wdþ1

wT
dþ1XLwXT wdþ1

Z � � �Z
wT

DXLbXT wD

wT
DXLwXT wD

,

then according to Lemma 2, we havePd
i ¼ 1 wT

i XLbXT wiPd
i ¼ 1 wT

i XLwXT wi

Z

PD
i ¼ 1 wT

i XLbXT wiPD
i ¼ 1 wT

i XLwXT wi

:

Let Wd¼[x1,x2,y,xd], according to the trace property Tr(AB)¼
Tr(BA), the above inequality can be rewritten as

TrðWT
dXLbXT WdÞ

TrðWT
dXLwXT WdÞ

¼

Pd
i ¼ 1 wT

i XLbXT wiPd
i ¼ 1 wT

i XLwXT wi

Z

PD
i ¼ 1 wT

i XLbXT wiPD
i ¼ 1 wT

i XLwXT wi

¼
TrðWT

DXLbXT WDÞ

TrðWT
DXLwXT WDÞ

¼
TrðXLbXT WDWT

DÞ

TrðXLwXT WDWT
DÞ

¼
TrðXLbXT

Þ

TrðXLwXT
Þ

Based on the object function in Eq. (5), we have

ln
¼ max

WT W ¼ I

TrðWT XLbXT WÞ

TrðWT XLwXT WÞ
Z

TrðWT
dXLbXT WdÞ

TrðWT
dXLwXT WdÞ

Z
TrðWT

DXLbXT WDÞ

TrðWT
DXLwXT WDÞ

¼
TrðXLbXT

Þ

TrðXLwXT
Þ
:

Thus the lower bound of l* is ðTrðXT LbXÞÞ=ðTrðXT LwXÞÞ.
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