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a b s t r a c t

Supervised Fisher Linear Discriminant Analysis (LDA) is a classical dimensionality reduction approach.

LDA assumes each class has a Gaussian density and may suffer from the singularity problem when

handling high-dimensional data. We in this work consider more general class densities and show that

optimizing LDA criterion cannot always achieve maximum class discrimination with the geometrical

based optimized LDA technique called robust linearly optimized discriminant analysis (LODA).

A multimodal extension of LODA is also presented. In extracting the informative features, two effective

solution schemes are proposed. The kernelized extension of our methods is also detailed. Compared

with LDA, LODA has four significant advantages. First, LODA needs not the assumption on intra-class

distributions. Second, LODA characterizes the inter-class separability with the marginal criterion. Third,

LODA avoids the singularity problem and is robust to outliers. Fourth, the delivered projection matrix

by LODA is orthogonal. These properties make LODA more general and suitable for discriminant

analysis than using LDA. The delivered results of our investigated cases demonstrate that our methods

are highly competitive with and even outperform some widely used state-of-the-art techniques.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Utilizing dimensionality reduction to extract a small number
of features from high-dimensional datasets before performing
classification is important. The extracted features are supposed to
be holding the most representative information from high-dimen-
sional datasets which usually consist of redundant information
and noise. In the last decades, many linear or nonlinear, super-
vised or unsupervised, global or local dimensionality reduction
methods, e.g. [2,3,10,18,19,22,23,26,32] have been proposed.
Details can be referred to [1]. Fisher Linear Discriminant Analysis

(LDA) [2,3] and Principal Component Analysis (PCA) [3] are the
two most representative techniques of global supervised and
unsupervised methods, respectively. Linearized PCA and LDA are
widely applied in the pattern recognition community and have
been proven to be more powerful for performing feature representa-
tion and extraction. PCA and LDA is that they are both single-modal
methods [34], making them unable to deliver satisfactory results
when handling multimodal data distributions. It is also noticed
that, when the class labels accompanied with the data samples
are available, LDA tends to be more effective and efficient than
using the unsupervised PCA for pattern classification and image
recognition [9].
ll rights reserved.
Different from structure preservation based PCA, LDA focuses
on achieving maximum class discrimination for classification.
But it is noted that LDA suffers from several drawbacks. One of
the major drawbacks is LDA requires intra-class scatter to be
nonsingular. But this requirement poses certain limitation to some
emerging applications, which are mostly described by high-dimen-
sional distributions, because most of real data have many attri-
butes, e.g., gene distributions and global climate patterns. Thus this
may limit its certain real applications. To address this problem,
many approaches, including [4–7,18], have been proposed. Despite
some success, performing these types of LDA variants for dimen-
sionality reduction may lose certain important discriminative
information [12]. The second shortcoming of LDA is that it requires
an implicit assumption that each class has a unimodal Gaussian
distribution [2,3], enabling LDA to find the best directions for
discrimination [8]. Note that this condition usually cannot be
satisfied in many practical applications, because most real datasets
deliver more complex distributions. In another word, LDA is
usually unable to find the optimal discriminative directions when
intra-class distributions are multimodal or when there are some
faraway points. Another disadvantage of LDA is the rank limitation
on the inter-class scatters. To overcome these problems, some
methods, e.g. [8,13–16], have recently been presented. But it is
noted that these methods either still surfer from the singularity
problem caused by the intra-class scatter or focus on utilizing the
nonparametric intra- and inter- class sample neighbor information
around each data point for discriminant analysis.

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
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The processing of real life applications can be quite demanding
because virtually all real datasets are not unimodally distributed.
Also, most of the sample points in a class are usually located
closely forming a dense region (or, field), creating similar embed-
dings [10,11]. There are often many faraway points or outliers. For
discriminant analysis, we should take this distribution behavior
and the intra-class dense regions into account when we aim at
defining an effective discrimination criterion. From this perspec-
tive, there exists a drawback in the LDA intra-class scatter. Recall
that the intra- and inter-class scatters of LDA are formulated
based on the intra-class means and global mean. For those
complex real distributions, sample means of different classes
may be the same or very close due to the effect of faraway points,
although most of inter-class points may be distributed in sepa-
rated clusters. In this case, minimizing the original LDA intra-class
scatter is equivalent to congregating the embeddings of all data
points. Besides, LDA inter-class scatter is measured as a sum of
pairwise distances between each class mean and global mean, but
a cumulative large distance cannot guarantee a high separability
between pariwise classes. Thus, there are many research works
[18,25,27,30], which have been proposed to improve the original
LDA inter-class scatter. But it should be noted that these methods
all rely on the sample means of total within-class points, implying
that they are single-modal and are usually incapable of embed-
ding multimodal datasets respectably. Most importantly, these
methods are sensitive to the faraway points and do not consider
the neighborhood information of data. To address this issue,
Local Fisher Discriminant Analysis (LFDA) [20] has recently been
introduced to overcome the weakness of LDA against intra-class
multimodality and outliers [20]. We in this paper also consider
the neighborhood information of data as LFDA, but we mainly
focus on utilizing the density region computed from each class
and defining new marginal intra- and inter-class scatter criteria
for improving the original LDA. To the best of our knowledge, to
data no related work on this topic has been studied. The follow-
ings highlight the four major contributions of our work:
�
 By constructing the neighborhood sub-graph of each class via
nearest neighbor search, data graph of each class l is divided
into two parts, namely l-density-region and region out of
the l-density-region according to the degrees of vertices.
New marginal intra- and inter-class scatters are then formu-
lated based on the density-regions. As a result, our proposed
criterion is robust against the faraway sample points or
outliers. Geometrical comparisons of our proposed marginal
scatter criteria and the original LDA scatter criteria are also
provided.

�
 Based on the newly defined large margin scatters, the draw-

backs of LDA scatters can be effectively overcome. We then
propose a general and robust linearly optimized discriminant
analysis (LODA) technique. LODA finds the important marginal
discriminant directions without assuming the class densities.

�
 LODA is linear, which makes it fast and suitable for real-world

applications. Considering that nonlinear and multimodal struc-
tures are common in real data [20], we also focus on defining
pairwise nonlinear and multimodal scatters and extending LODA
to the nonlinear and multimodal dimensionality reduction sce-
narios for mining the nonlinear and multimodal structures hidden
in the datasets.

�
 To avoid the singularity problem and compute the transform-

ing axes steadily, the strategies of trace ratio (TR) optimization

[19,22] and maximum margin criterion (MMC) [18] are used to
formulate our presented problems. As a result, the obtained
transforming basis vectors are guaranteed to be mutually
orthogonal, implying that the similarity will not be changed
if it is based on the Euclidean distance measure [22].
�
 The theoretical comparisons between our work and related
works are elaborated. We mathematically show that our
criterion is more general and exhibit a strong generalization
capability. That is, PCA, LDA, MMC and Locality Preserving

Projections (LPP) [23] can be interpreted with our criteria as
special cases.

The outline of the paper is described as follows. In Section 2,
we briefly review LDA. In Section 3, we describe our new marginal
LODA scatter criteria mathematically. We then detail the multi-
modal extension of LODA. Two effective solution schemes are also
presented. We then discuss the connections between this present
work and the previous related works. We in Section 4 describe the
simulation settings and evaluate our proposed techniques using
benchmark datasets. Finally, we offer the concluding remarks in
Section 5.
2. Fisher Linear Discriminant Analysis (LDA)

Let xiARn
ði¼ 1,2,. . .NÞ be vectors of N n-dimensional data

and yi(A{1,2, y, c}) be the associated class labels, where c is the
number of classes. Then classical LDA aims to compute an
optimal transformation matrix X that maps each pattern xi of X¼

[x19x29y9xN] from an n-dimensional space to a feature vector in a
d-dimensional space (drn). The embedding of each xi is then
given by XTxi, where T denotes the transpose of a matrix or a
vector. Let S(b) and S(w) denote the LDA inter-class scatter and
intra-class scatter given as

SðbÞ ¼
Xc

l ¼ 1

NlðM
ðlÞ
�MÞðMðlÞ�MÞT, ð1Þ

SðwÞ ¼
Xc

l ¼ 1

X
i:yi ¼ l

ðxi�MðlÞ Þðxi�MðlÞ ÞT, ð2Þ

where Nl is the number of data points belonging to class
lA{1,2, y, c},

P
i:yi¼ l denotes the summation over i such that

yi¼ l, MðlÞ ¼ ð1=NlÞ
P

i:yi ¼ lxi is the average vector of points in class l

and M ¼ ð1=NÞ
Pc

l ¼ 1

P
i:yi ¼ lxi is the global mean of all the data

points. Then LDA finds the n�d transformation matrix X from the
following ratio trace (or, determinant ratio) [19,22] problem for
discrimination:

Xn
¼ argmax

XARn�d

TrððXTSðwÞXÞ�1
ðXTSðbÞXÞÞ ¼ argmax

XARn�d

XTSðbÞX
��� ���
XTSðwÞX
��� ��� , ð3Þ

where tr(H) denotes the matrix trace of matrix H. That is, LDA
finds a transformation matrix X such that the inter-class scatter is
maximized while the intra-class scatter is minimized. Provided
that the intra-class scatter S(w) has full rank, then the optimal

transforming axes of LDA are given by the eigenvectors fxjg
d
j ¼ 1

associated with the generalized eigenvalues l1Zl2Z?Zld of
the following generalized eigen-problem:

ðSðwÞÞ�1SðbÞxj ¼ ljxj: ð4Þ

Note that S(w) is a positive semi-definite matrix, thus the
inverse of S(w) may be singular. In order to ensure the stability
of Eq. (4), we need to generalize S(w) by adding a regularization
term and compute the transforming axes by solving the following
generalized eigen-problem: ðSðwÞ þmIÞ�1SðbÞx¼ lx, where m is a
positive small number and I is an identity matrix. Then a solution
X is analytically given as X¼(x19x29y9xd).
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3. Robust linearly optimized discriminant analysis (LODA)

3.1. Formulation of LODA

For a given data matrix X¼[x19x29y9xN] with class labels
yi(A{1, 2, y, c}), we firstly conduct k-nearest neighbor search

(NNS) to determine the nearest neighbor set NðxiÞ
þ of each sample

xðlÞi in subset XðlÞ ¼ ½xðlÞ1 9xðlÞ2 9 � � � 9xðlÞNl
� belonging to the class l(A{1,2,

y, c}), where Nl denotes the number of sample points of the lth

class. It is noted that xðlÞi is the closest neighbor of the point xðlÞi

itself. We then construct c neighborhood sub-graphs within each
given class. Considering that, in real applications, sample points
from the same object or class tend to be densely distributed with
similar embeddings [10,11,23], thus most data points within an
object or a class are distributed closely together. And commonly
there is a small number of sample data points that are far away
from the dense cluster center and are usually treated as outliers. The
simple two-class case problem shown in Fig. 1(a) is a representative
example of the real-world datasets.

In order to elaborate the argument, we only show the neigh-
borhood sub-graph Gr

N within the class r in Fig. 1(a) to make the
figure clearer. We conduct the k(¼3) nearest neighbor search to
find the neighbors of each data point and construct the neighbor-
hood sub-graph Gr

N for the class r. Based on the above descriptions,
the following definitions are stated prior to formulating our proposed
new scatter criteria.

Definition 1. (l-density-graph). The l-density-graph ~G
l

D of class l

consists of vertices fx̂
l
ig

ql

i ¼ 1 that are included in class l and have

degree Dl
Z ðmaxð ~D

l

iÞþminð ~D
l

iÞÞ=b in the neighborhood sub-graph

Gl
N within class l. Where ~D

l

i,i¼ 1,2, . . ., ql denotes the degree of

each vertex xl
i, ql is the number of vertices in graph ~G

l

D, bxl
i denotes
Fig. 1. Neighborhood graph construc

Table 1

Procedures for constructing the l-density-graph ~G
l

D within each class l.

(1) X lð Þ’ xl
19x

l
29:::9x

l
Nl

� �
; % Data matrix of class l.

(2) Determine the neighbors of each point and construct the neighborhood graph Gl
N

(3) Construct a weight matrix W whose entries Wi,j¼1 if xl
i and xl

i are neighbors, an

(4) Define a row or column vector F with entries Fi¼
P

jWi,j. Sort F in descending ord

(5) Determine the vertices bxl
i whose degrees ~D

l

i are bigger than Dl according to Step

(6) The neighborhood relationships among the samples of
d
X lð Þ form the final l-densi
a node or a vertex in the l-density-graph ~G
l

D, the density-data

matrix
c
X lð Þ
¼
cxl

1 9
cxl

2 9 � � � 9
cxl

ql

h i
, b is a controlling parameter. maxð ~D

l

iÞ

and minð ~D
l

iÞ denote the maximal and minimal values of ~D
l

i,

respectively.

Definition 2. (l-density-region). The l-density-region Dl within
class l is defined by the region that is formed by the vertices inbX ðlÞ ¼ cxl

1 9
cxl

2 9 � � � 9
cxl

ql

h i
and edges or links included in the l-density-

graph ~G
l

D. The sub-graph within the l-density-region is called the

l-density-graph of class l.

We present the procedures for constructing the l-density-

graph ~G
l

D within each class l in Table 1, where W is a symmetric

matrix, F actually reflects the importance of the vertices in the
neighborhood graph, that is the bigger the value of Fii, the more

important the corresponding vertex is. It is noticed that b is the
key parameter for determining the range of the l-density-region
Dl within class l. According to Definition 1, the bound of degree Dl

is maxð ~D
l

iÞZDl
Zminð ~D

l

iÞ. Thus the bound of b is

ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ

maxð ~D
l

iÞ

rbr
ðmaxð ~D

l

iÞþminð ~D
l

iÞÞ

minð ~D
l

iÞ

: ð5Þ

It is noted that when k in NNS is set to Nl, all data points have the
same degrees, i.e. Nl�1. In this case, the lower bound and upper

bound of b will be the same. According to Definitions 1 and 2, we
have circled the constructed density-regions of the two classes using

the schematic illustration in Fig. 1(a). In this case, b¼3, minð ~D
r

i Þ ¼ 3

over i and the lower bound of Dr is 5. Based on Definition 2, we can

easily obtain the sample mean ~M
ðrÞ
¼ ð1=qrÞ

Pqr

j ¼ 1
bxr
j within class r

through the points belonging to the r-density-region. Note that we
tion based on a two-class case.

within class l.

d else 0.

er.

(4) and Eq. (5) and then form the density-data matrix
d
X lð Þ
¼
cxl

1 9
cxl

2 9. . .9
cxl

ql

h i
.

ty-graph.
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have also shown the computed sample means of the two classes in
Fig. 1(a).
3.1.1. Newly defined intra-class scatter

We define a marginal intra-class scatter criterion and compare
it with the scatter S(w) of LDA. We firstly consider a typical three-
class case in Fig. 2(a), in which the class label information of
data points and the corresponding class means are also shown.
We see that the three means over all the intra-class data points
are closely together due to the effect of faraway sample points.
This phenomenon is rather common in real data, because
most real data are rather noisy and filled with some redundant
information.

Considering that the LDA intra-class scatter S(w) aims at
minimizing the difference between each within-class point and
their class mean by optimizing the criterion in Eq. (2). As a result,
data points of different classes in Fig. 2(a) tend to be congregated
when minimizing S(w), though maximizing the LDA inter-class
scatter S(b) can improve the inter-class separation to some extent.
Note that we will detail the disadvantages of optimizing S(b) in
next section. According to Definitions 1 and 2 and our computa-
tional method of the class means, we can easily achieve the
density-graph of each class and the density-region based sample
means, which are shown in Fig. 2(b). We see clearly that the class
means computed by using our method will not be affected by the
faraway points or outliers, implying that our proposed criterion
will be robust against the outliers. Actually, this observation is
significantly important for subsequent classification process,
because the decision boundary of classifier is usually sensitive
to the outliers. And more importantly, the differences or margins
between the class means are larger than those shown in Fig. 2(a).
This will significantly contribute to characterizing the inter-class
separability. Then the density-region based marginal intra-class
scatter L(w) of LODA is defined as minimizing

LðwÞ ¼
Xc

l ¼ 1

ql

Nl

XNl

i ¼ 1

ðxl
i�

~M
ðlÞ
Þðxl

i�
~M
ðlÞ
Þ
T: ð6Þ

Clearly, L(w) shares the same form as the scatter S(w) of LDA, but it
is noted that the intra-class compactness in LODA is measured as
the sum of distances between each within-class data point and its
class mean computed from the density-region. It is worth noting
that minimizing L(w) is also capable of achieving enhanced inter-
class separation compared with minimizing scatter S(w) due to the
fact that the margins of inter-class means have been significantly
enlarged in the L(w) criterion. Then L(w) can be interpreted as the
Fig. 2. Geometrical comparison of the intra-class s
following matrix form:

LðwÞ ¼
Xc

l ¼ 1

ql

Nl

XNl

i ¼ 1

xl
i�

1

ql

Xql

j ¼ 1

bxl
j

24 35 xl
i�

1

ql

Xql

j ¼ 1

bxl
j

24 35T

¼
Xc

l ¼ 1

ql

Nl

XNl

i ¼ 1

xl
ix

lT
i �

1

ql

XNl

i ¼ 1

Xql

j ¼ 1

xl
i
bxl

j

T
�

1

ql

Xql

j ¼ 1

XNl

i ¼ 1

bxl
j x

lT
i

24
þ

Nl

q2
l

Xql

i ¼ 1

Xql

j ¼ 1

bxl
i
bxl

j

T

35
¼
Xc

l ¼ 1

ql

Nl
XðlÞXðlÞT�

1

Nl
LðwÞþ þLðwÞTþ

� �
þ

1

ql

bX ðlÞbeðlÞTê
ðlÞbX ðlÞT� �

, ð7Þ

where LðwÞþ ¼ XðlÞeðlÞ
TbeðlÞbX ðlÞT, e(l) is a 1�Nl vector of all ones, and beðlÞ is

a 1� ql vector of all ones.
3.1.2. Newly defined inter-class scatter

Next we will detail the inter-class scatter L(b) for LODA. We
begin with another three-class case in Fig. 3. We observe from

Fig. 3(a) that the mean MðtÞ of class t is far away from the other

two means MðlÞ and MðrÞ that are close together. On one hand, by
defining the intra-class density-regions in Fig. 3(b), we can
characterize the inter-class separability with a marginal criterion.
In another word, the sum of distances between the inter-class
means in Fig. 3(b) is much larger than that of Fig. 3(a) by applying
our definition method.

On the other hand, recall that the inter-class scatter S(b) in LDA
is measured as the sum of distances between every class mean

MðjÞ , j¼1, 2, y, c and their global mean M . It is important to

notice that a large sum of the distances between MðjÞ and M , for

instance in Fig. 3(a) is unable to guarantee that MðlÞ and MðrÞ can
be mapped far away in the reduced space. As a result, minimizing
S(w) simultaneously is equivalent to pushing data points of class l

and class r closely together. This will directly result in a low inter-
class separation and a high classification error; this is critical for
performing discrimination. Note that the pairwise inter-class
criteria [18,25,27,30] has been addressed to improve the scatter
S(b). But these criteria still rely on class means of all the intra-class
data points, making them suffer from the same problem as LDA
does. That is to say that for real datasets, the intra-class mean is
notably affected by the faraway points and then congregated. This
work defines a new density-region based marginal inter-class
catter criteria of LDA (left) and LODA (right).



Table 2
Maximum margin criterion based linearly optimized discriminant analysis (LODA).

Input: Data points fðxi ,yiÞ9xi ARn ,yiðAf1,2, . . ., cgÞg
N

i ¼ 1

Dimensionality of embedding space d(1rdrn)

Output: n� d transformation matrix X¼ ½ ~j1
~j2 . . . ~jd �

������
(1) X’(x19x29...9xN); % data matrix.

(2) For each class lA{1, y, c}, using the procedures in Table 1 to construct the l-density-graph.

(3) Compute the sample mean ~M
ðlÞ

of class l using the data points in bX ðlÞ of the l-density-region.

(4) LðbÞ ¼
Pc�1

l ¼ 1

Pc
Z ¼ lþ1 ðqZ=qlÞ

bX ðlÞbeðlÞTbeðlÞbX ðlÞT�ðLðbÞþ þLðbÞTþ Þþðql=qZÞ
bX ðZÞbeðZÞTbe ðZÞ bX ðZÞT� �

;

LðwÞ ¼
Xc

l ¼ 1
ðql=NlÞX

ðlÞXðlÞ
T
�ð1=NlÞðL

ðwÞ
þ þLðwÞþ

T
Þþð1=qlÞ

bX ðlÞbe ðlÞTbe ðlÞ bX ðlÞT� �
:

(5) fjr ,cl½r� gdr ¼ 1’ standard eigenvectors and eigenvalues of ðLðbÞ�LðwÞÞ ~j ¼ ~l ~j , where bl ½1�Zbl ½2�Z � � �Zbl ½d� and ~jr
T ~jr ¼ 1, ~jr

T ~jr�1 ¼ 0, for 8rAf1,2, . . ., dg. Output

X¼ ~j1
~j2 . . . ~jd

�� ������
.

Fig. 3. Geometrical comparison of the inter-class scatter criteria of LDA (left) and LODA (right).
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scatter L(b) to improve the above pairwise criteria by maximizing

LðbÞ ¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qlqZð
~M
ðlÞ
� ~M

ðZÞ
Þð ~M

ðlÞ
� ~M

ðZÞ
Þ
T: ð8Þ

That is, the inter-class separation in LODA is measured as the
sum of the pairwise distances of the class means computed from
the density-regions. By utilizing this definition, the rank limita-
tion on the inter-class scatter is relaxed, implying that LODA is
able to extract more meaningful features than LDA, especially for
a large class number c. And most importantly, maximizing L(b) and
minimizing L(w) simultaneously can guarantee enhanced intra-class
compactness and inter-class separation because the difference or
margin between each class mean and other class means have been
significantly enlarged by LODA. Similarly, the symmetric marginal
inter-class scatter matrix L(b) can also be described by using the
following matrix form:

LðbÞ ¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qlqZ
1

ql

Xql

i ¼ 1

bxl
i�

1

qZ

XqZ
j ¼ 1

cxZj
24 35 1

ql

Xql

i ¼ 1

bxl
i�

1

qZ

XqZ
j ¼ 1

cxZj
24 35T

¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qlqZ
1

q2
l

Xql

i,j ¼ 1

bxl
i
bxl

j

T

�
1

qlqZ

Xql

i ¼ 1

XqZ
j ¼ 1

bxl
i
cxZj T

24
�

1

qlqZ

XqZ
j ¼ 1

Xql

i ¼ 1

cxZj bxl
i

T
þ

1

q2
Z

XqZ
i,j ¼ 1

cxZi cxZj T

35
¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qZ
ql

bX ðlÞêðlÞTbeðlÞbX ðlÞT�ðLðbÞþ þLðbÞTþ Þþ
ql

qZ
bX ðZÞbeðZÞTê

ðZÞbX ðZÞT" #
ð9Þ
where matrices LðbÞþ ¼
bX ðlÞ ~W ðlZÞbX ðZÞT and ~W

ðlZÞ
is a ql� qZ matrix with

all the elements equaling to one.

3.1.3. The objective function and solution

LODA solution scheme 1: To compute the transforming basis
vectors fzrg

d
r ¼ 1 of LODA and avoid the matrix singularity, a

maximum margin criterion (MMC) [18] based objective function
for LODA is defined as

Max
XARn�d

TrðXT
ðLðbÞ�LðwÞÞXÞ subject to XTX¼ I: ð10Þ

By introducing the Lagrangian function Ĵ of Eq. (10) with the
multiplier li, we can then obtain

Ĵðzi,liÞ ¼ ðL
ðbÞ
�LðwÞÞzi�liðJziJ

2
�1Þ: ð11Þ

By taking the derivatives with respect to zi and li, and zeroing
it, we can get the following typical eigenvalue problem:
ðLðbÞ�LðwÞÞzi

n
¼ li

nzi
n, where ln

i and zni are the standard eigenvalues
and transforming basis vectors of the matrix ðLðbÞ�LðwÞÞ, respec-
tively. That is, the optimal projection matrix X* can be obtained
by solving

Xn
¼ argmax

XARn�d ,XTX ¼ I

TrðXT
ðLðbÞ�LðwÞÞXÞ: ð12Þ

From Eq. (12), the orthogonal projection matrix X¼[z19z29
y9zd] can be analytically obtained. In this paper, we refer to the
MMC based LODA as LODA. The algorithmic procedures of LODA
are summarized in Table 2.

LODA solution scheme 2: Based on the newly defined intra-
class and inter-class scatters L(w) and L(b), LODA can also be simply
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defined as the following LDA-style trace ratio (TR) form problem:

Max
XARn�d

TrðXTLðbÞXÞ=TrðXTLðwÞXÞ subject to XTX¼ I: ð13Þ

Note that this TR problem is usually converted into the
simplified ratio trace (RT) problem to find the optimal projection

matrix by Xn
¼ argmaxXARn�d TrððXTLðwÞXÞ�1

ðXTLðbÞXÞÞ as LDA.

Then this problem can be easily solved by using the generalized
eigen-decomposition approach, but the obtained solution may
not optimal and does not necessarily best optimize the corre-
sponding TR optimization problem [21]. In this paper, the itera-
tive ITR [19,22] is employed to solve the TR problem of LODA. ITR
tackles the TR problem in Eq. (13) by directly optimizing the

objective TrðXTLðbÞXÞ=TrðXTLðwÞXÞ under the assumption, i.e., col-

umn vectors of X are orthogonal together. For given lv at each
iteration v, Xv can be obtained by the following trace difference
(TD) problem:

Xv
¼ argmaxXTX ¼ ITrðXT

ðLðbÞ�lvLðwÞÞXÞ, ð14Þ

and then ITR renews lvþ1 as TR value given by Xv: lvþ1
¼

TrððXv
Þ
TLðbÞXv

Þ=TrððXv
Þ
TLðwÞXv

Þ until convergence. Mathematical
proof show that ITR can converge to the global optimum [19].
See the theoretical proofs of ITR in [19]. It is also noted that, under
TR criterion, the orthogonal constraint CTC¼ I is always imposed.
In another word, the obtained projection matrix is also guaran-
teed to be orthogonal and the similarity between the data points
can be efficiently preserved if it is based on Euclidean distance
measure according to [19,22].

It is worth noting that, in ITR, X0 needs to be initialized as an
arbitrary orthogonal matrix, which implies that ITR maybe
unstable due to the randomness. And most importantly, the
orthogonal initialized X0 is difficult to be constructed and a bad
initialization may greatly increase the number of iterations in the
optimization. In this paper, we initialize l0 instead of initializing
X0 to be the orthogonal matrix as [22]. The solutions of LODA can
then be effectively solved by this revised ITR. In summary, for the
positive semi-definite matrices L(b) and L(w), the algorithmic
procedures are described in Table 3. The construction steps of
the scatters L(w) and L(b) are the same as Table 2. Similarly, this
work refers to this TR criterion based LODA as TR-LODA.

3.1.4. Comparison between LODA, LDA and MMC

We mainly compare our proposed LODA algorithm with LDA
and MMC from the following four aspects:

(1) LDA and MMC are based on utilizing all the data points to
construct the intra-class scatter S(w) and inter-class scatter S(b),
whilst the scatters L(w) and L(b) of LODA are based on the density-
graphs and density-regions. As a result, our proposed criteria are
more robust to the outliers in real applications than LDA and
MMC criteria. It is noted that, for an evenly distributed dataset,

degrees ~D
l

i,i¼ 1,2, . . ., Nl of all the vertices may be the same. Or

when k value in NNS is set to Nl, the l-density-graph and
l-density-region within class l will be consisted of all data points
Table 3
TR criterion based robust linearly optimized discriminant analysis (TR-LODA).

(1) Initialize lv
¼0, step v¼0.

(2) Solve the standard eigenvalue problem ðLðbÞ�lvLðwÞÞp¼ tvp and calculate the vec

(3) Projection matrix Xv
¼ fpv

dg
d
d ¼ 1

is formed by the eigenvectors according to the fi

(4) Renew lvþ1 by computing TrððXv
Þ
TLðbÞXv

Þ=TrððXv
Þ
TLðwÞXv

Þ.

(5) If 9lvþ1
�lv9oe, go to Step 6; else v¼vþ1, Steps 2–4 repeat.

(6) Output ln
¼ lv , and Xn

¼ argmaxXTX ¼ ITrðXT
ðLðbÞ�lvLðwÞÞXÞ.
belonging to the class l. Or when b¼ ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=minð ~D
l

iÞ,
that is XðlÞ ¼ bX ðlÞ. In these cases, the sample mean of class l can be

calculated as ~M
ðlÞ
¼ ð1=NlÞ

PNl

j ¼ 1 xl
j which is equivalent to MðlÞ in

LDA, thus the intra-class scatter L(w) of LODA can then be
transformed into

~L wð Þ
¼
Xc

l ¼ 1

XNl

i ¼ 1

xl
i�

1

Nl

XNl

j ¼ 1

xl
j

24 35 xl
i�

1

Nl

XNl

j ¼ 1

xl
j

24 35T

¼
Xc

l ¼ 1

XNl

i ¼ 1

ðxl
i�MðlÞ Þðxl

i�MðlÞ ÞT ð15Þ

which is just the intra-class scatter S(w) of LDA. Similarly, the
marginal scatter L(b) can be reformulated as

~
LðbÞ ¼

Xc�1

l ¼ 1

Xc

Z ¼ lþ1

NlNZðM
ðlÞ
�MðZÞ ÞðMðlÞ�MðZÞ ÞT: ð16Þ

Clearly, this is just the pairwise inter-class scatter criterion
introduced in [27,30]. Thus, the scatter criterion in Eq. (16) can be
considered as a generalized version of our L(b) criterion. Especially,

when data points of each class are evenly distributed (i.e. ~M
ðlÞ
¼MðlÞ

for each class l) and the sample means of all classes are equal, namely

~M
ðiÞ
¼ ~M

ðjÞ
¼MðiÞ ¼MðjÞ ¼M , i¼ 1,2, . . ., c�1, j¼ iþ1,2, . . ., c: ð17Þ

Obviously, scatter
~

LðbÞ will be equivalent to scatter S(b), i.e.
~

LðbÞ ¼

SðbÞ ¼ 0N�N , where 0N�N is a N�N matrix with all zeros, implying
that the LDA method is considered as a special case of our LODA.
When the above two conditions are satisfied simultaneously, LODA
can be reduced to MMC. Also, when k in NNS is set to Nl, that is the
lower bound and upper bound of b are the same, thus MMC is also
regarded as a special case of our LODA. It is also important to note
that when condition in Eq. (17) is satisfied, LDA, MMC and our
techniques will become inefficient in achieving inter-class separa-
tion, because there does not exists any inter-class difference. This is
a drawback of our LODA, but it is noted that this condition is
difficult to be satisfied in real applications. (2) There is no
assumption on intra-class distribution in LODA. Without prior
information on the data distributions, the inter-class margin can
better characterize inter-class separability than the inter-class
variance of LDA. These make LODA more general than applying
LDA for discriminant analysis. (3) LODA is built on the TR criterion
and MM criterion, thus the singularity problems can be effectively
avoided by LODA because there is no need to compute the matrix
inverse of any matrix. Moreover, the obtained projection matrix is
always orthogonal under the two solution schemes. It should be
noted that the LDA projection matrix is not orthogonal, thus the
similarity may be changed if it is based on the Euclidean distance
[19,22]. (4) Similar to LDA and MMC, the density- regions based
LODA is also single-modal, thus they tend to map intra-class
clusters into a single cluster in the real applications. We will in
next section detail a natural multimodal extension of LODA, which
we call multimodal LODA (MLODA), by defining new multimodal
pairwise inter- and intra-class scatter criteria.
tors fpv
dg

d
d ¼ 1

of ðLðbÞ�lvLðwÞÞ by conducting the eigen-decomposition.

rst d leading eigenvalues ftv
dg

d
d ¼ 1

of the matrix ðLðbÞ�lvLðwÞÞ.
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3.2. Multimodal extension of LODA

3.2.1. Multimodal intra-class and inter-class scatters

Intrinsic multimodal structure is common in real applications
[11]. Thus, preserving the multimodal structures for dimension-
ality reduction and discriminant analysis is also an important
issue that needs to be addressed. We first take the two-class case
problem in Fig. 1(b) as an example, in which each class has two
isolated clusters, i.e. multimodal. Accordingly the density-region
within each class is consisted of two density sub-regions, because
the density-graph within the same class may be disconnected
due to multimodal distributions. Next we will extend LODA to
multimodal scenarios for endowing LODA the capability to handle
multimodal datasets.

Similarly, the density-graphs based multimodality preserving
intra-class scatter criterion ML(w) of MLODA can be defined as the
following pairwise description from L(w):

ML wð Þ
¼
Xc

l ¼ 1

ql

Nl

XNl

i ¼ 1

Xql

j ¼ 1

xl
i�
bxl

j

� �
xl

i�
bxl

j

� �T
A lð Þ

i,j , ð18Þ

which is minimized to measure the intra-class compactness. To
preserve the multimodal structures of the datasets, weight matrix

A(l) is added to represent the proximity around each data point bxl
i

in the l-density-region of class l. Note that A(l) can be similarly
defined as the similarity matrix of Locality Preserving Projections

(LPP) [23]. A(l) also aims at keeping the projections of all similarity
neighboring pairs from the same class in close vicinity of
the original space still close in the reduced space. As a result,
the intrinsic multimodality can be effectively preserved. For the

simple-minded method [10], A lð Þ
i,j ¼ 1 if xl

i (or, bxl
i ) and bxl

j are

mutually neighbors of a class, and A lð Þ
i,j ¼ 0 if xl

i (or, bxl
i ) is not a

neighbor of bxl
j . Thus minimizing ML(w) is equivalent to improving

the tightness of all the data points in the same class without
losing multimodal distributions. Based on similar algebra compu-
tation, we can interpret the multimodal intra-class scatter ML(w)

with the following matrix form:

MLðwÞ ¼
Xc

l ¼ 1

ql

Nl

XNl

i ¼ 1

Xql

j ¼ 1

ðxl
i�
bxl

j Þðx
l
i�
bxl

j Þ
TAðlÞi,j

¼
Xc

l ¼ 1

ql

Nl

XNl

i ¼ 1

X
j

AðlÞi,j

24 35xl
ix

l
iT�

XNl

i ¼ 1

Xql

j ¼ 1

xl
iA
ðlÞ
i,j
bxl

j

T

0@
�
Xql

j ¼ 1

XNl

i ¼ 1

bxl
j A
ðlÞ
j,i x

l
iTþ

Xql

j ¼ 1

X
i

AðlÞi,j

" #bxl
j
bxl

j

T

1A
¼
Xc

l ¼ 1

ql

Nl
XðlÞ ~V

l
XðlÞT� LðwÞ� þLðwÞT�

� �
þ

ql

Nl

bX ðlÞ ~UlbX ðlÞT	 

, ð19Þ

where LðwÞ� ¼ XðlÞQ ðlÞ
c
XðlÞ

T

, Q(l) is a Nl� ql matrix with entries

Q ðlÞi,j ¼ ðql=NlÞA
ðlÞ
i,j ,

~U
l

and ~V
l

are diagonal matrices with entries

being the column and row sums of A(l), respectively.
Analogous to the definition of pairwise inter-class criterion

L(b), the density-region based marginal multimodal inter-class
scatter criterion ML(b) for our MLODA can be formulated as the
following pairwise form:

ML bð Þ
¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

Xql

i ¼ 1

XqZ
j ¼ 1

ð
bxl

i�
cxZj Þðbxl

i�
cxZj ÞT ð20Þ

which will be maximized to measure the inter-class separation.
Clearly, ML(b) can be considered as a multimodal interpretation of
the pairwise inter-class criteria [27,30]. But note that our scatter
ML(b) is defined based on the density-regions rather than all the
data points of each class. Clearly, the scatter matrix ML(b) is

defined as the sum of pairwise distances between points bxl
i and cxZj

from l-density-region and Z-density-region, respectively. Thus
maximizing ML(b) can push points of different density-regions
far apart without losing the multimodal structures in the dimen-
sion-reduced space. By using matrix interpretation, scatter ML(b)

can be reformulated as

MLðbÞ ¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

Xql

i ¼ 1

XqZ
j ¼ 1

ð
bxl

i�
cxZj Þðbxl

i�
cxZj ÞT

¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qZ
Xql

i ¼ 1

bxl
i
bxl

i

T

�
Xql

i ¼ 1

XqZ
j ¼ 1

bxl
i
cxZj T

24
�
XqZ
j ¼ 1

Xql

i ¼ 1

cxZj bxl
i

T

þql

XqZ
j ¼ 1

cxZj cxZj T

35
¼
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qZ
bX ðlÞbX ðlÞT�ðLðbÞ� þLðbÞ� TÞþql

bX ðZÞbX ðZÞT� �
, ð21Þ

where LðbÞ� ¼
bX ðlÞ ~Q ðlZÞbX ðZÞT and ~Q

ðlZÞ
is a ql� qZ matrix with all

entries ~Q
ðlZÞ
i,j ¼ 1. Clearly, ML(b) is symmetric.

3.2.2. The objective function and solution

Similar to LODA, maximizing marginal ML(b) and minimizing
marginal ML(w) can exhibit enhanced intra-class compactness and
inter-class separation. Based on the scatters ML(w) and ML(b), the
objective function of MLODA can be similarly formulated as the
following TR criterion and MM criterion based problems:

JTR�MLODAðXÞ ¼ Max
XARn�d

TrðXTMLðbÞXÞ=TrðXTMLðwÞXÞ subject to XTX¼ I,

ð22Þ

JMLODAðXÞ ¼ Max
XARn�d

TrðXT
ðMLðbÞ�MLðwÞÞXÞ subject to XTX¼ I: ð23Þ

Similarly, we refer to TR criterion based robust MLODA as TR-
MLODA and MM criterion based MLODA as MLODA. Notice that
the TR optimization process of TR-MLODA is similar in spirit to
that of optimizing the TR-LODA criterion. Detailed computational
issue will not provided due to the page limitation.

The transforming basis vectors of MLODA can be similarly
obtained as LODA by solving a standard eigen- problem. Let
fzrg

d
r ¼ 1 be the eigenvectors, ordered according to the eigenvalues

l1Zl2Z?Zld, we can then take as transforming axes of
MLODA the eigenvectors corresponding to maximum eigenvalues
of the following eigen-value problem: ðMLðbÞ�MLðwÞÞzj ¼ ljzj. Then
a solution of MLODA is analytically given as X¼(z19z29y9zd).

It is important to note that the processes of computing the
projection axes of MLODA and TR-MLODA are also stable as the
computation processes can avoid the matrix inverse operation.
Most importantly, the obtained projection matrices are orthogo-
nal. The algorithmic procedures of obtaining the transforming
basis vectors from MLODA and TR-MLODA can be similarly
implemented as Tables 1 and 2.

3.2.3. Comparison with LODA, LDA, MMC, PCA, LPP and LFDA

Comparison with LDA, MMC and LODA: MLODA is a natural
extension of LODA, so they share some common advantages. The
margins of inter-class clusters and intra-class clusters can also be
enlarged by MLODA and the compactness of intra-class points
can be shrunk at the same time. Also, there is no assumption on
intra-class data distributions in MLODA. Different from LDA, MMC
and LODA, MLODA can avoid computing the intra-class means
and global mean. Thus, for a multimodally distributed dataset,
using the MLODA criterion will not project the intra-cluster data
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points into a single cluster. Also, MLODA is robust against the
outliers as LODA.

Connection with PCA, LPP and LFDA: For an evenly distributed
dataset, degrees ~D

l

i,i¼ 1,2, . . ., Nl of all the vertices may be the
same, or when b¼ ðmaxð ~D

l

iÞþminð ~D
l

iÞÞ=ðminð ~D
l

iÞÞ. Thus the den-
sity-region within each class contains all the data points of a class.
As a result, the sample set

~
XðlÞ out of the l-density-region is empty

and set
b
Xl will be generalized to Xl, then the intra-scatter matrix

ML(w) can be transformed into

~MLðwÞ ¼
Xc

l ¼ 1

XNl

i,j ¼ 1

ðxl
i�xl

jÞðx
l
i�xl

jÞ
TAðlÞi,j , ð24Þ

which can be considered as a supervised weighted metric for LPP.
It is also noted that when AðlÞi,j is similarly defined as [20], ~ML

ðwÞ
is

equivalent to the local scatter matrix of the LFDA algorithm.
It is noted that

X
l4Z

XNl
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XNZ
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i�xZj Þðx

l
i�xZj Þ
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¼
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T
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i�xZj Þ

T

the multimodal inter-class scatter ML(b) can be converted into the
following pairwise form:
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Clearly, Eq. (25) is just the total scatter matrix of the PCA
criterion, thus maximizing XT ~

MLðbÞX is equivalent to optimizing
the PCA criterion.

3.3. Kernelized LODA and MLODA for nonlinear dimensionality

reduction

This section considers extending LODA and MLODA to the
nonlinear scenarios by employing the standard kernel trick [31].
Kernelized LODA and MLODA find matrix U¼[g1, g2, y, gd] for
projections. Let f be the mapping from Rn to a higher-dimen-
sional space Zp

ðpbnÞ. This mapping can be implicitly defined by
using a kernel function. More specifically, the (i,j)th entry of a
kernel matrix K is given by Kij¼K(xi,xj)¼f(xi)

Tf(xj). The Gaussian
RBF kernel [31] with parameter s, a typical choice of the kernel
function, is defined as

Kðxi,xjÞ ¼ expð�99xi�xj99
2
=2s2Þ: ð26Þ

We take the computational formulation of kernelizing LODA as
an example. Rewriting every z in Zp as an expansion in terms of
the mapped training data points, that is z¼

PN
i ¼ 1 gifðxiÞ ¼fðXÞg,

then scatters ðXTLðwÞXÞf and ðXTLðbÞXÞf of LODA in the kernel
feature space can be written as

ðXTLðwÞXÞf ¼XfT
Xc

l ¼ 1

ql

Nl
fðXðlÞÞfðXðlÞÞT�ðLðwÞþ þLðwÞTþ Þ

f
�

þ
1

ql

fðbX ðlÞÞbEðlÞfðbX ðlÞÞT�Xf, ð27Þ

ðXTLðbÞXÞf ¼XfT
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qZ
ql

f bX ðlÞ	 
bEðlÞf bX ðlÞ	 
T
"

�ðLðbÞþ þLðbÞþ TÞfþ
ql

qZ
f bX ðZÞ� �bEðZÞf bX ðZÞ� �T

#
Xf, ð28Þ

where ðLðwÞþ Þ
f
¼fðXðlÞÞðW ðlÞ

Þ
ffðbX ðlÞÞT, ðLðbÞþ Þ

f
¼fðbX ðlÞÞbeðlÞTbeðZÞf bX ðZÞ� �T

,

bEðlÞ ¼ beðlÞTbeðlÞ for each class l and ðW ðlÞ
Þ
f is a Nl� ql matrix with

input elements ðW ðlÞ
i,j Þ

f
¼ ð1=NlÞ. By substituting the matrix inner

product into Eqs. (27) and (28), we have the following equivalent
form for Eq. (27):

ðXTLðwÞXÞf ¼ UT
Xc

l ¼ 1

ql

Nl
K ðlÞK ðlÞ

T
�ðK ðwÞþ þK ðwÞþ TÞþ

1

ql

d
K ðlÞa Ê

ðlÞd
K ðlÞa

T� �
U,

ð29Þ

where K ðwÞþ ¼ K ðlÞðW ðlÞ
Þ
fdK ðlÞa T

, K ðlÞ ¼fðXÞTfðXðlÞÞ and bK ðlÞa ¼fððXÞT

fðbX ðlÞÞ of class l is computed as the kernel Gram matrix over data
matrix consisting of data points in the l-density-region. Similarly
e real USPS handwritten digits database.
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we can obtain

ðXTLðbÞXÞf ¼ UT
Xc�1

l ¼ 1

Xc

Z ¼ lþ1

qZ
ql

d
K ðlÞa
bEðlÞdK ðlÞa T

�ðK ðbÞþ þK ðbÞTþ Þ

�

þ
ql

qZ

dK ðZÞa bEðZÞdK ðZÞa T
#
U, ð30Þ
Fig. 5. Recognition accuracies vs. number of neighbo

Table 4
Parameter analysis results on the real USPS handwritten digits database.

Value Digital class l

1 2 3 4

(a) k¼p/6þ1

maxð ~D
l

iÞ
41 48 45 50

minð ~D
l

iÞ
20 20 20 20

ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=maxð ~D
l

iÞ
1.49 1.42 1.44 1.40

ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=minð ~D
l

iÞ
3.05 3.40 3.25 3.50

Mean 2.27 2.41 2.35 2.45

(b) k¼p/4þ1

maxð ~D
l

iÞ
59 74 63 88

minð ~D
l

iÞ
30 30 30 30

ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=maxð ~D
l

iÞ
1.51 1.41 1.48 1.35

ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=minð ~D
l

iÞ
2.97 3.47 3.10 3.93

Mean 2.24 2.44 2.29 2.64

(c) k¼p/2þ1

maxð ~D
l

iÞ
104 110 114 119

minð ~D
l

iÞ
60 60 60 60

ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=maxð ~D
l

iÞ
1.58 1.55 1.53 1.51

ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=minð ~D
l

iÞ
2.73 2.83 2.90 2.98

Mean 2.15 2.19 2.22 2.25
where K ðbÞþ ¼
bK ðlÞa beðlÞTbeðZÞbK ðZÞa T

. Note that the kernel matrices bK ðlÞa ¼
fðXÞTfðbX ðlÞÞ and bK ðZÞa ¼fðXÞTfðbX ðZÞÞ are all defined based on the

density regions. By substituting Eqs. (29) and (30) into the
problems of Eqs. (10) and (13), the orthogonal transforming axes
of the kernelized LODA can be similarly obtained. It is important
to notice that MLODA can be similarly extended into the nonlinear
rs (k) on the USPS handwritten digits database.

5 6 7 8 9 10

38 36 40 44 37 43

20 20 20 20 20 20

1.53 1.56 1.50 1.45 1.54 1.47

2.90 2.80 3.00 3.20 2.85 3.15

2.22 2.18 2.25 2.33 2.20 2.31

54 57 55 63 54 60

30 30 30 30 30 30

1.56 1.53 1.56 1.48 1.56 1.50

2.80 2.90 2.83 3.10 2.80 3.00

2.18 2.22 2.20 2.29 2.18 2.25

114 107 113 109 113 112

60 60 60 60 60 60

1.53 1.56 1.53 1.55 1.54 1.54

2.90 2.78 2.88 2.82 2.88 2.87

2.22 2.17 2.21 2.19 2.21 2.21
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Fig. 6. Recognition accuracies vs. number of reduced dimensions on the USPS handwritten digits database.
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scenarios as kernelizing LODA, but detailed computational formula-
tions will not be provided because of page limitation. It is also noted
that LODA and MLODA can be kernelized by applying the KPCA-trick
framework [33,35]. See details in [33,35]. By utilizing the KPCA-
trick, linear LODA (or, MLODA) can be kernelized directly using a
two-stage procedure, i.e. KPCA plus LODA (or, MLODA). Because the
size of matrices to be eigen-decomposed in those kernelized
methods depends on the number of data points, kernelized for-
mulations can improve the computational efficiency when the
sample size is smaller than its input dimensionality of the original
space. But it is noted that kernelized methods heavily depend on the
kernel family, including kernel function and kernel parameter, due
to the fact that different kernel functions produce different map-
pings and properties [31]. To data there is still no theoretical
guarantee of optimal selection of kernels, thus in this paper we
mainly focus on evaluating the proposed linear methods.
4. Simulation results and analysis

We in this section conduct extensive simulations, including
handwritten digits recognition and object recognition, to verify
the validity of our presented methods. We compare the recogni-
tion accuracy rates of our LODA family method (i.e., LODA and TR-
LODA) and MLODA family (i.e., MLODA and TR-MLODA) with six
widely used techniques, including LDA, MMC, CCA [28], LFDA, ITR
algorithm based LDA (TR-LDA) [19,22] and PCA. It is noted that
Table 5
Performance comparisons on the USPS handwritten digits database.

Method Result

Simulation setting

USPS digit database (Dim¼256,G20/P480)

Mean Best Dim Time(s)

LDA 0.6938 0.6987 8 0.1686

MMC 0.8996 0.9035 72 0.1125

CCA 0.6659 0.6992 12 0.1439

LFDA 0.8555 0.8657 44 0.2087

TR-LDA 0.9087 0.9140 12 0.1402

LODA 0.8776 0.9059 12 0.1741

MODA 0.8646 0.8894 16 0.1742

TR-LODA 0.9082 0.9139 8 0.1897

TR-MLODA 0.8989 0.9167 24 0.1887

USPS digit database (Dim¼256,G60/P440)
Mean Best Dim Time(s)

LDA 0.8778 0.8805 8 0.3349

MMC 0.9485 0.9536 24 0.2536

CCA 0.8640 0.8804 8 0.3063

LFDA 0.9336 0.9473 40 0.5354

TR-LDA 0.9390 0.9457 32 0.2956

LODA 0.9499 0.9666 20 0.6354

MODA 0.9470 0.9628 28 0.6526

TR-LODA 0.9476 0.9539 68 0.7190

TR-MLODA 0.9477 0.9602 53 0.7207

USPS database (Dim¼256,G100/P400)
Mean Best Dim Time(s)

LDA 0.9367 0.9398 8 0.4225

MMC 0.9576 0.9623 56 0.3435

CCA 0.9260 0.9410 16 0.3989

LFDA 0.9514 0.9623 36 0.7224

TR-LDA 0.9423 0.9493 32 0.3878

LODA 0.9653 0.9782 24 0.9535

MODA 0.9628 0.9758 24 0.9806

TR-LODA 0.9565 0.9625 12 1.0314

TR-MLODA 0.9627 0.9713 68 1.0491
the CCA method with the c label coding [28] used in our
simulations is the multi-class extension of the binary-class CCA
[29]. For classification, the one-nearest-neighbor (1NN) classifier
with Euclidean metric is used to avoid the bias caused by
the choice of the learning methods. All the used algorithms are
implemented in MATLAB 7.1. For all the semi-definite matrix
inverse operation and generalized eigen-decomposition involved
methods, the regularization factor m is determined by the 10-fold
cross validation methodology. We perform all the simulations on
a PC with Intel (R) Core (TM) i5 CPU 650 at 3.20 GHz 3.19 GHz 4 G.
In this study, two real databases are evaluated. The first one is the
real USPS handwritten digits database [17] and the second one is
the real ETH80 object recognition database [24]. The training set
will be preliminarily processed by PCA operator to eliminate the
null space before dimensionality reduction. For image recogni-
tion, after a nearest neighbor classifier (or, learner) is obtained
from the training set, the test image data will be projected in the
feature space by using the dimensionality reduction matrix
learned from training data. The obtained learner is then used
for evaluating the recognition accuracies of the test set in the
dimension-reduced embedding space.

4.1. Handwritten digits recognition on USPS database

In this section, the USPS handwritten digits database [17] is
applied to test our proposed methods. In this study, the publically
available handwritten digit set from http://cs.nyu.edu/�roweis/
USPS digit database (Dim¼256,G40/P460)

Mean Best Dim Time(s)

0.7714 0.7749 8 0.2577

0.9301 0.9345 72 0.1795

0.7489 0.7734 12 0.2282

0.9053 0.9201 24 0.2456

0.9242 0.9302 12 0.2203

0.9288 0.9470 16 0.2306

0.9210 0.9407 20 0.2322

0.9328 0.9383 60 0.2545

0.9281 0.9474 80 0.2529

USPS digit database (Dim¼256,G80/P420)
Mean Best Dim Time(s)

0.9179 0.9216 8 0.4042

0.9536 0.9585 44 0.3180

0.9091 0.9255 16 0.3784

0.9416 0.9534 40 0.6036

0.9400 0.9472 36 0.3630

0.9569 0.9686 16 0.8306

0.9535 0.9670 32 0.8474

0.9536 0.9597 36 0.9054

0.9561 0.9666 44 0.9214

USPS database (Dim¼256,G120/P380)
Mean Best Dim Time(s)

0.9393 0.9433 8 0.4061

0.9577 0.9629 12 0.3406

0.9302 0.9446 16 0.3885

0.9574 0.9673 40 0.3365

0.9425 0.9502 32 0.3798

0.9677 0.9811 24 0.3071

0.9660 0.9780 24 0.3164

0.9595 0.9656 12 0.3275

0.9642 0.9725 36 0.3315

<ce:italic>http://cs.nyu.edu/&sim;roweis/data.html</ce:italic>
<ce:italic>http://cs.nyu.edu/&sim;roweis/data.html</ce:italic>
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data.html is used in our simulations. This sample set includes
16�16 pixels in 8-bit grayscale images of ‘0’ through ‘9’. Each
digit has 1100 images. We show some sample typical images of ‘0’
to ‘9’in Fig. 4. In this simulation, we select 500 samples from each
digit character (totally 5000 examples) for the experiments. Four
simulation settings under different numbers of training data
samples are tested. The sampled image set is partitioned into
Original 
Images 

PCA

LDA

MMC

CCA 

LFDA

TR-LDA 

LODA

MLODA 

TR-LODA

TR-MLODA 

Fig. 8. Visualization of the transforming matrices of PCA, LDA, MMC, CCA, LFDA, TR-LD

Subcategories of each big categoryEight big
categories 1 2 3 4 5 6 7 8 9 10 
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Pear
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Dog 

Horse

Cup

Car

Fig. 7. The categories of the ETH-80 database and each row describes one big

category of this database.
different galleries and probe sets, where GP/Pq means p images per
individual accompanied with the underlying class labels are
randomly selected for training the learner and the remaining q

sample images are used for testing the accuracies. In this simula-
tion, six experimental configurations based on different GP/Pq,
p¼20, 40, 60, 80, 100 and 120 are evaluated.
4.1.1. Parameter selection of b in density-graph construction

We first investigate the selection of the parameter b. We take
the case of GP/Pq, p¼120, q¼380, as an example. Three cases,
including k¼p/6þ1, k¼p/4þ1 and k¼p/2þ1 are tested. Accord-
ing to the lower bound and upper bound of b in Eq. (5), for each
class l, we report the maximal and minimal values of ~D

l

i, lower
and upper bounds of parameter b in Table 4 after the neighbor-
hood graph each class l is constructed. We also record the values
of ðmaxð ~D

l

iÞþminð ~D
l

iÞÞ=maxð ~D
l

iÞ and ðmaxð ~D
l

iÞþminð ~D
l

iÞÞ=minð ~D
l

iÞ

in the bottom of Table 4. Observing from Table 4, we find that
the lower bound of b is around 1.5 and the upper bound is around
3. It is also interesting to find that the means are all close to the
constant 2 for all the tested cases. For other investigated cases
over different GP/Pq and databases, we can find similar observa-
tions. Thus in this present work, the selection of the controlling
parameter b is referred to the mean value and is set to 2 in all the
simulations.

4.1.2. Performance analysis of k in NNS

We investigate the impact of the number of neighbors, k,
involved in NNS on the recognition performance of our proposed
A and our proposed methods on the car object category from the ETH80 database.

<ce:italic>http://cs.nyu.edu/&sim;roweis/data.html</ce:italic>
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methods. For each setting over GP/Pq, we first fix the number of
training images of each digit and then vary the number of k. For
each k, we average the recognition accuracies over 20 random
splits of training and test samples. The results are reported in
Fig. 5. We see from Fig. 5 that the recognition performance of our
methods varies with the increasing number of k. In particular, our
methods exhibit an unusual behavior, that is the result initially
decreases with the k value and then starts going up after some
point till reaching the highest record. According to the observed
results, a relatively large k tend to improve the accuracy, therefore
the number of k is always set to p-2 for the following handwritten
digits recognition simulations.

4.1.3. Handwritten digits recognition

This study aims at testing the LDA, TR-LDA, MMC, LFDA, CCA
and our proposed algorithms for recognizing the handwritten
digits. In order to ensure that our observed recognition results are
not biased from a specific random realization of the training/test
set, for each GP/Pq, we compute the averaged accuracy over 20
random splits of training/test sets. The recognition results are
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Fig. 9. Recognition accuracies vs. number of reduced dim
illustrated in Fig. 6, where Dim is the dimensionality of the
original digital image space and Num is the total number of data
examples.

Observing from Fig. 6, we can obtain the following conclusions.
First, the performance of each method varies with the number
change of reduced dimensions. Also, the recognition accuracy of
each method increases with the increasing training sample size.
Second, our family methods, including LODA, MLODA, TR-LODA and
TR-MLODA, deliver the comparable or even better results to TR-LDA
and MMC in most cases. Specially, our methods outperform the
remaining methods in the latter three settings. The results of LDA
and CCA are very close in each setting due to intrinsic relationships
between them [28] and both are inferior to the other methods. LFDA
also works well in most cases and outperforms the LDA, TR-LDA and
CCA methods for the latter three cases. Third, due to the reasonably
defined marginal scatter criteria, our investigated cases indicate that
our proposed family methods tend to outperform the fully super-
vised LDA, CCA, LFDA, MMC and TR-LDA.

The mean and the highest accuracies according to the results
of Fig. 6 are recorded in Table 5. The averaged running time
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(including the training and testing time) computed in seconds
and the standard deviations over the repetitions are also reported.
The best subspaces corresponding to the best accuracies are
called the optimal digital image subspaces. Observing the test
results, we can find that: (1) in most cases, our proposed methods
exhibit the highest accuracies, compared with the other methods.
The mean accuracies delivered by our methods are better than
those obtained by other methods in most cases. (2) For each
evaluated method, the standard deviations computed over repeti-
tions are comparable with each other. (3) Considering the running
time performance, our proposed methods are comparable to the
remaining methods in most cases.

4.2. Object recognition on ETH80 database

This study addresses an object categorization task using the
benchmark ETH80 object recognition database [24]. This database
contains images of 8 big categories: apple, car, cow, cup, dog, horse,
pear and tomato. In each big category, there are 10 subcategories,
each of which contains 41 images from different viewpoints.
Overall, the database contains 3280 images of 80 objects. Each
image has 128�128 pixels. In our simulations, we resize each of
the images into a size of 32�32 pixels. Each pixel will be
considered as an input variable and thus each image corresponds
to a data point in a 1024-dimensional space. We show some
typical sample images from the ETH80 database in Fig. 7, where
we also describe the 8 big categories and 10 subcategories within
each big category.

4.2.1. Visualization of transforming matrix

We first examine the visual properties of the transforming
matrices obtained by our proposed methods. The performance of
our methods is compared with PCA, LDA, MMC, CCA, TR-LDA and
LFDA. In this simulation, the car category with 10 objects is tested
and each object corresponds to a single class. Then a ten-class
case is created. For each method, we randomly select 4 images
from each object for learning the optimal object image subspaces.
Table 6
Performance comparisons on the ETH80 object recognition database (80 classes).

Method Result

Simulation setting

ETH80 database (Dim¼1024,G15/P26)

Mean Best Dim Time(s)

LDA 0.4764 0.5202 24 0.2227

MMC 0.5702 0.5954 44 0.2057

CCA 0.4762 0.5202 22 0.2223

LFDA 0.5730 0.6067 12 0.2845

TR-LDA 0.4373 0.4859 148 0.2333

LODA 0.5666 0.5941 16 2.6961

MODA 0.5659 0.5933 16 2.7268

TR-LODA 0.5763 0.6046 24 2.7293

TR-MLODA 0.5912 0.6239 20 2.7431

ETH80 database (Dim¼1024,G25/P16)
Mean Best Dim Time(s)

LDA 0.5426 0.6055 24 0.2743

MMC 0.6122 0.6578 24 0.2541

CCA 0.5461 0.6052 24 0.2901

LFDA 0.6200 0.6411 20 0.4359

TR-LDA 0.5581 0.5940 120 0.28580.285

LODA 0.6545 0.6807 8 2.3938

MODA 0.6643 0.6881 16 2.4147

TR-LODA 0.6230 0.6652 24 2.4307

TR-MLODA 0.6391 0.6679 20 2.4628
We illustrate the first 10 eigenvectors (or called eigen-pictures) of
the transforming matrix obtained by each method. The eigen-
pictures are then reshaped into a matrix according to the original
object image size, i.e. 32�32. The computed eigen-pictures are
exhibited in Fig. 8. We observe from Fig. 4 that the eigen-pictures
obtained by LDA, MMC, CCA, TR-LDA, LFDA and our methods are
more noisy compared with PCA, which demonstrates that they
are capable of capturing more disciminant information about
object image details.
4.2.2. Object recognition of 80 categories

In this subsection, we focus on representing and recognizing the
object images from the ETH80 database. In this study, each sub-
category of the 8 big categories is regarded as a single class. As a
result, an 80-class classification problem is then created. In our
simulation, four settings over different training sample sizes are
evaluated. From the study, similar observation trend of the number
of k is found and k value is also set to p-2 for the simulations.

The recognition results under different numbers of training
samples in each class are illustrated in Fig. 9. To achieve more
accurate accuracy, we compute the recognition accuracies by aver-
aging the results over 10 random splits of training and test samples.
The performance of our proposed methods is compared with LDA,
MMC, CCA, TR-LDA and LFDA. Observing from the Fig. 9, we can
conclude that: (1) for each simulation setting, the recognition
performance of all the methods varies with the increasing number
of reduced dimensions. Specially, the accuracy of each method
initially increases as the number of reduced dimensionalities
increases and then starts to decrease after some point. In another
word, too higher reduced dimensions may cause the embedding
result of each method to deteriorate. (2) Our proposed TR-LODA
and TR-MLODA algorithms outperform the remaining methods for
settings of G15/P26 and G20/P21. In particular, trace ratio criterion based
TR-LODA and TR-MLODA are better than LODA and MLODA in these
two cases. On the contrary, for the latter two settings, that is G25/P16

and G30/P11, the recognition accuracies are significantly improved by
using our LODA and MLODA, compared with the other methods,
ETH80 database (Dim¼1024,G20/P21)

Mean Best Dim Time(s)

0.5089 0.5683 20 0.2387

0.5916 0.6321 24 0.2216

0.5115 0.5683 20 0.2446

0.5996 0.6355 8 0.3687

0.4966 0.5344 120 0.2464

0.5905 0.6222 20 3.4383

0.5900 0.6208 20 3.4508

0.5970 0.6379 28 3.4442

0.6099 0.6544 24 3.4556

ETH80 database (Dim¼1024,G30/P11)
Mean Best Dim Time(s)

0.5630 0.6284 28 0.2712

0.6312 0.6708 20 0.2496

0.5638 0.6284 28 0.2991

0.6467 0.6969 12 0.5453

8 0.5902 0.6378 120 0.2876

0.6546 0.6888 8 5.7790

0.6797 0.7125 20 5.8056

0.6491 0.6899 20 5.7732

0.6576 0.7032 16 5.8566
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including TR-LODA and TR-MLODA. (2) MMC and LFDA also work
well and are able to deliver the comparable results to our methods in
most cases. The accuracies of CCA and LDA are still very close in each
case. The performance of CCA, LDA and TR-LDA are worse than the
other methods in virtually all the cases. This may be due to that
the criteria of CCA, LDA and TR-LDA methods are unable to represent
the complex intrinsic distribution of this dataset respectably.

Table 6 details the mean and the highest accuracies based on
the results of Fig. 9. The averaged running time that is computed
in seconds and the standard deviations over the repetitions are
also described. Note that the best subspaces corresponding to the
best accuracies are similarly named as the optimal object image
subspaces. From the experimental results, we can observe that:
(1) the numerical mean and best results shown in the tables are
consistent to the results of the above figures in terms of perfor-
mance superiority. (2) The standard deviation over repetitions
produced by each method is comparable, implying that the
stability of these methods on this dataset is similar. (3) Considering
the running time performance, our methods need lightly more time
than the other methods due to fact that the class number is larger,
however our proposed methods are capable of exhibiting the better
accuracies, including means and best records, compared with other
3 6 9 12 15 18 21 24 27 30
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

Number of neighbors (k) in NNS

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

ETH80 (Dim=1024, Num=3280 ,d=20, G30P380)

0 15 30 45 60 75 90
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of neighbors (k) in NNS

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

ETH80 (Dim=1024, Num=3280, d=20, G90P320)

LODA
MLODA
TR-LODA
TR-MLODA

LODA
MLODA
TR-LODA
TR-MLODA

Fig. 10. Recognition accuracies vs. number of neighb
methods in most cases. In particular, our methods need relatively
smaller number of reduced dimensions to produce the optimal
object image subspace.

4.2.3. Object recognition of 8 categories

We also address another object recognition task using the
ETH80 database. In this simulation, each of the 8 big categories is
regarded as a single class. Thus an 8-class classification problem is
created and tested. Similarly, four experimental configurations
over different GP/Pq are evaluated. We first report the recognition
accuracy over different numbers of k in NNS in Fig. 10. For each
tested case, we average the accuracy over 20 random splits. The
following observations are found. (1) The overall performance of
our methods monotonically increases with respect to the k value
when the number of k increases. (2) Compared with TR-LODA and
TR-MLODA, LODA and MLODA are more robust to the number of k

in each case. In this study, we also set the k value to p-2.
In Fig. 11, the recognition results under different numbers of

reduced dimensions are illustrated. Observing from the results,
we have: (1) the performance of all tested methods vary with the
increasing number of reduced dimensions. In particular, the CCA,
MMC, LFDA, LODA, MLODA methods exhibit an unusual behavior.
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ors (k) on the ETH80 object database (8 classes).
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Fig. 11. Recognition accuracies vs. number of reduced dimensions on the ETH80 object database (8 classes).
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That is their overall performance initially increases with the
increasing reduced dimensions and then starts going down after
some point to some extent till reaching the lowest record at
around. (2) In all cases, LDA and CCA exhibit comparable results in
the beginnings, but LDA outperform CCA as the number of reduced
dimensions increases. Their performance is worse than the remain-
ing methods in most cases. (3) Our presented LODA, MLODA and TR-
MLODA methods can obtain the highest accuracies in most cases,
compared with other methods. LFDA performs well in most cases
and delivers the comparable results to our LODA and MLODA family
methods. The results MMC and TR-LDA are comparative in each case
and they tend to outperform LDA in all the cases. Also, MMC and
TR-LDA exhibits slightly worse results to our TR-LODA methods in
most cases.

Table 7 records the mean and the highest accuracies as shown
in Fig. 11. We also record the averaged running time and standard
deviations over the repetitions. The optimal object image sub-
spaces corresponding to the best accuracies are also shown. From
Table 7, we find that: (1) the performance superiority, including
mean and best results, of each method keeps consistent with the
observed results in Fig. 11. Similarly all the methods deliver
comparable standard deviations over repetitions. (2) For runtime
performance, the computational time of each method is compara-
tive with each other.
5. Concluding remarks

This paper discusses the supervised dimensionality reduction
problem. By taking more general class densities into account, we
geometrically show that optimizing the LDA scatter criteria is not
necessarily to achieve enhanced inter-class discrimination due to
the existence of faraway points or outliers. In this paper, we focus
on defining new robust criteria to improve the LDA criteria. By
taking the distribution behavior of real datasets into account, we
construct the density-region within each class. The data points in
the density-regions are then used to compute the means and
define the marginal scatters. As a result, faraway points or outliers
cannot affect the construction of the scatters. We then propose a
robust linearly optimized discriminant analysis (LODA) technique.



Table 7
Performance comparisons on the ETH80 object database (8 classes).

Method Result

Simulation Setting

ETH80 database (Dim¼1024,G30/P380) ETH80 database (Dim¼1024,G60/P350)

Mean Best Dim Time(s) Mean Best Dim Time(s)

LDA 0.6241 0.6252 8 0.1971 0.6410 0.6548 8 0.2887

MMC 0.6805 0.6832 60 0.1194 0.7047 0.7099 12 0.1857

CCA 0.5785 0.6245 12 0.1613 0.6258 0.6580 24 0.2473

LFDA 0.6812 0.6939 40 0.2688 0.7439 0.7693 20 0.3316

TR-LDA 0.6607 0.6620 8 0.1615 0.6959 0.6976 8 0.2487

LODA 0.6955 0.7355 16 0.2211 0.7802 0.7986 20 0.2777

MODA 0.6939 0.7293 20 0.2234 0.7887 0.8096 20 0.2726 0.2726

TR-LODA 0.6929 0.6957 52 0.2954 0.7170 0.7243 24 0.3711

TR-MLODA 0.7201 0.7292 148 0.2890 0.7438 0.7524 56 0.3606

ETH80 database (Dim¼1024,G90/P320) ETH80 database (Dim¼1024,G120/P290)

Mean Best Dim Time(s) Mean Best Dim Time(s)

LDA 0.6740 0.6820 8 0.3582 0.7359 0.7435 20 0.3983

MMC 0.7120 0.7266 8 0.2505 0.7546 0.7711 52 0.2891

CCA 0.6446 0.6925 26 0.3284 0.7005 0.7455 12 0.3682

LFDA 0.7830 0.8074 32 0.4134 0.8036 0.8290 36 0.5906

TR-LDA 0.7221 0.7241 20 0.3235 0.7617 0.7653 16 0.3625

LODA 0.8098 0.8346 24 0.6653 0.8266 0.8458 24 0.9174

MODA 0.8086 0.8316 36 0.6816 0.8355 0.8535 32 0.9524

TR-LODA 0.7468 0.7576 8 0.7737 0.7757 0.7878 8 1.0188

TR-MLODA 0.7961 0.8035 108 0.7839 0.8032 0.8139 60 1.0440
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LODA characterizes the inter-class separability and intra-class com-
pactness by using a large margin criterion. We have shown that
LODA is able to tackle the difficulty problems encountered by LDA
effectively. We also present a natural multimodal extension of LODA
for enabling it to deal with multimodal datasets directly. Mathema-
tical comparisons and analyses between our work and the related
work indicate that our LODA is more general with a strong general-
ization capability for discriminant analysis and can offer some
attractive advantages.

The kernelized extension of our method is also addressed. It is
found that the performance of kernelized methods heavily
depends on the choice of kernel family. But there is still lack of
theoretic criteria for selecting the kernels, thus this work only
evaluates the presented linear methods. The performance of the
proposed family methods is thoroughly evaluated by extensive
simulations over benchmark real databases. For handwritten
digits recognition and object recognition, the delivered overall
performance of our methods is comparable or even better than
some widely used state-of-the-art linear discriminant techniques.
But we must say determining the optimal reduced dimensions for
dimensionality reduction still remains an open issue. Through
investigating the selection of the k value in NNS on real databases,
we find that our methods almost always tend to deliver better
results when the k value is relatively large compared with the
training sample number.
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