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Virtually all previous classifier models take vectors as inputs, performing directly based on the vector pat-
terns. But it is highly necessary to consider images as matrices in real applications. In this paper, we rep-
resent images as second order tensors or matrices. We then propose two novel tensor algorithms, which
are referred to as Maximum Margin Multisurface Proximal Support Tensor Machine (M3PSTM) and Maximum
Margin Multi-weight Vector Projection Support Tensor Machine (M3VSTM), for classifying and segmenting
the images. M3PSTM and M3VSTM operate in tensor space and aim at computing two proximal tensor
planes for multisurface learning. To avoid the singularity problem, maximum margin criterion is used
for formulating the optimization problems. Thus the proposed tensor classifiers have an analytic form
of projection axes and can achieve the maximum margin representations for classification. With tensor
representation, the number of estimated parameters is significantly reduced, which makes M3PSTM
and M3VSTM more computationally efficient when handing the high-dimensional datasets than applying
the vector representations based methods. Thorough image classification and segmentation simulations
on the benchmark UCI and real datasets verify the efficiency and validity of our approaches. The visual
and numerical results show M3PSTM and M3VSTM deliver comparable or even better performance than
some state-of-the-art classification algorithms.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the machine learning community, high-dimensional image
data with many attributes are often encountered in the real appli-
cations. The representation and selection of the features will have a
strong effect on the classification performance. Thus, how to effi-
ciently represent the image data is one of the fundamental prob-
lems in classifier model design. It is worth noting that most of
existing classification algorithms are oriented to vector space model
(VSM), e.g. Support Vector Machines (SVM) (Cristianini & Shawe-
Taylor, 2000; Vapnik, 1995). SVM relies on a single dataset, takes
vector data x in space Rn as inputs, and aims at finding a single lin-
ear (or nonlinear) function. Recently, Multisurface Proximal Support
Vector Machine classification algorithm via Generalized Eigenvalues
(GEPSVM) (Mangasarian & Wild, 2006) and Multi-weight Vector
Projection Support Vector Machines (MVSVM) (Ye, Zhao, Ye, & Chen,
2010) are proposed for pattern classification. Different from SVM
classifier, GEPSVM and MVSVM perform based on two datasets X,
Y 2 Rn and aim at computing two proximal planes via solving two
ll rights reserved.
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eigen-problems. In GEPSVM and MVSVM, each plane is generated
such that it is closest to one of the two datasets and as far as
possible from the other dataset. And each of the two datasets of
different classes will be proximal to one of two distinct planes that
were not parallel together. It is noted that GEPSVM and MVSVM
are also based on the vector space model, like SVM. Thus, if
GEPSVM and MVSVM are applied for image classification, images
are commonly represented as long vectors in the high-dimensional
vector space, in which each pixel of the images corresponds to a
feature or dimension. Thus, when the VSM focused methods are
applied, one is often confronted with an image space Rn with large
n. Let x denote an image with 64 � 64 pixels, then image x will be
represented as a long vector x̂ with dimension n = 4096. In such
cases, learning such a linear SVM function gðx̂Þ ¼ -Tx̂þ b in vector
space is time-consuming, where - 2 Rn and b are the parameters to
be estimated. It should be noticed that GEPSVM and MVSVM suffer
from the same problem. That is, when GEPSVM is employed, the
matrices to be eigen-decomposed are of some 4097 � 4097
symmetric matrices (Mangasarian & Wild, 2006). Similarly, the
matrices to be eigen-decomposed in MVSVM are 4096 � 4096
symmetric matrices (Ye et al., 2010). Thus when facing high-
dimensional features, GEPSVM and MVSVM may lose the property
of efficiency and need more running time to complement
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classification. And most importantly, such a vector representation
fails to take into account the spatial locality of pixels in the images
(Wang, Chen, Liu, & Zhang, 2008; Zhang & Ye, 2011).

Images are intrinsically matrices. To represent the images
appropriately, it is important to consider transforming the vector
patterns to the corresponding matrix patterns or second order
tensors before classification. In recent years, some interests about
tensor representation have been investigated. Specifically, some
tensor representation based approaches (Fu & Huang, 2008; He,
Cai, & Niyogi, 2005; Vasilescu & Terzopoulos, 2003; Xu & Yan,
2009; Yan et al., 2007; Yang, Zhang, Frangi, & Yang, 2004) are
proposed for high-dimensional data analysis. Tensorface in
Vasilescu and Terzopoulos (2003) is the most representative tens-
orized method, representing the images with a higher-order ten-
sor by extending Principal Component Analysis (PCA) (Dempster,
1971) to the higher-order tensor decomposition. It is noted that,
virtually all previously proposed tensor algorithms are presented
for performing dimensionality reduction and feature extraction.
We in this paper aim at proposing the tensorized algorithms
and designing the classifier models for image classification and
segmentation. The optimization problems of the proposed algo-
rithms are modeled by extending the GEPSVM and MVSVM prob-
lems into tensorzied scenarios. We then propose two new
supervised classification techniques, which we refer to the pro-
posed methodologies as Maximum Margin Multisurface Proximal
Support Tensor Machine (M3PSTM) and Maximum Margin Multi-
weight Vector Projection Support Tensor Machine (M3VSTM).
M3PSTM and M3VSTM each aim at obtaining four optimal trans-
forming basis vectors and focus on structuring two proximal ten-
sor planes for efficient image representation and classifier design.
It is worth noting that each of the transforming basis vector can
be easily obtained by the MATLAB command (e.g. eig MATLAB,
1994–2001) as the eigenvector corresponding to the biggest
eigenvalue of a scale-reduced standard eigen-problem. Consider-
ing the computational efficiency, we represent each sample image
with n pixels as a second order tensor in Rn1 � Rn2 , where
n1 � n2 � n. As a result, an n1 � n2 image can be identified with
a data point in Rn1 � Rn2 . A linear function in tensor space can
be similarly represented as h(x) = uTXv + b, where u 2 Rn1 and
v 2 Rn2 . Let X 2 Rn1 � Rn2 denote the image with 64 � 64 pixels,
function h(x) only involves n1 + n2 + 1 = 129 parameters (b,ui,vj,
i = 1,2, . . . ,n1, j = 1,2, . . . ,n2), which is much less than
n + 1(=4097) of a linear function in the vector space. Thus, com-
pared with GEPSVM and MVSVM, the matrices to be decomposed
in M3PSTM and M3VSTM are based on n1 � n1 or (and) n2 � n2

symmetric matrices. These properties will make M3PSTM and
M3VSTM particularly applicable for the case such that the number
of samples is smaller than the input dimensionality, because the
size of matrices decomposed in M3PSTM and M3VSTM depends
on the dimensionality, not on sample size. In solving the trans-
forming vectors for constructing the tensor planes, the maxi-
mum margin criterion (MMC) (Li, Jiang, & Zhang, 2006) is
employed for formulating the problems. As a result, the singular-
ity problem can be effectively avoided in solving the M3PSTM and
M3VSTM projection axes.

The outline of this paper can be organized as follows. In
Section 2, we review the formulations of Multisurface Proximal
Support Vector Machine classification via Generalized Eigenvalues
(GEPSVM), Multi-weight Vector Projection Support Vector Machines
(MVSVM) and maximum margin criterion mathematically. In
Sections 3 and 4, we present the computational analysis of the pro-
posed classification algorithms in detail. In Section 5, we numeri-
cally compare the performance of the proposed methods through
image classification and segmentation tasks using the benchmark
UCI and real-world datasets. Finally, we offer the concluding
remarks in Section 6.
2. Preliminaries

2.1. Multisurface Proximal Support Vector Machine via Generalized
Eigenvalues

A new classification algorithm called GEPSVM (Mangasarian &
Wild, 2006) is recently proposed wherein each of two sets are
proximal to one of two distinct planes that are not parallel to each
other (Mangasarian & Wild, 2006). Each plane is generated such
that it is closest to one of the two sets and as far as possible from
the other sets. Given m training data points in an n-dimensional
space Rn denoted by n �m1 matrix X in class C1 and n �m2 matrix
Y in class C2, satisfying m2 + m1 = m. The main focus of GEPSVM is
to find two nonparallel hyperplanes in an n-dimension space, that
is

XT-ðXÞ � rðXÞ ¼ 0; YT-ðYÞ � rðYÞ ¼ 0; ð1Þ

where the first plane is closest to the points belonging to class C1

and furthest from the points belonging to class C2, while the second
plane is closest to the sample points belonging to class C2 and fur-
thest from the sample points in class C1. For a nonnegative param-
eter d, the objective functions of GEPSVM can be defined as follows:

Min
ð-ðXÞ ;rðXÞÞ–0

kXT-ðXÞ � eðXÞrðXÞk2 þ d
-ðXÞ

rðXÞ

" #�����
�����

2

kYT-ðXÞ � eðXÞrðXÞk2 ;

Min
ð-ðYÞ ;rðYÞÞ–0

kYT-ðYÞ � eðYÞrðYÞk2 þ d
-ðYÞ

rðYÞ

" #�����
�����

2

kXT-ðYÞ � eðYÞrðYÞk2 ; ð2Þ

where the left formula in Eq. (2) defines the optimality computa-
tional rule that is able to enable GEPSVM obtaining the plane which
is closest to the data points of class C1 and, meanwhile, furthest
from another set. Similarly, the right formula show the optimality
computational rule enables GEPSVM obtaining the plane which is
closest to the data points of class C2 and furthest from the data
points for set C1. In Eq. (2), k�k denotes the two-norm and it is
implicitly assumed that (-(X),r(X)) – 0) YT-(X) � e(X)r(X) – 0 and
(-(Y), r(Y)) – 0) kXT-(Y) � e(Y)r(Y)k2 – 0. Define

GðXÞ ¼ ½XT �eðXÞ �T½XT �eðXÞ � þ dI;

HðXÞ ¼ ½YT �eðXÞ �T½YT �eðXÞ �;
GðYÞ ¼ ½YT �eðYÞ �T½YT �eðYÞ � þ dI;

HðYÞ ¼ ½XT �eðYÞ �T½XT �eðYÞ �;

ZðXÞ ¼ -ðXÞ

rðXÞ

" #
; ZðYÞ ¼ -ðYÞ

rðYÞ

" #
;

ð3Þ

where T denotes the transpose of a matrix or a vector, G(X), G(Y), H(X)

and H(Y) are symmetric matrices in space R(n+1) � (n + 1). Then, each
of the two proximal planes can be respectively obtained by the
eigenvectors corresponding to the smallest eigenvalues of the fol-
lowing two generalized eigenvalue problems:

Min
ZðXÞ–0

pðZðXÞÞ ¼ ðZ
ðXÞÞTGðXÞZðXÞ

ðZðXÞÞTHðXÞZðXÞ
; Min

ZðYÞ–0
qðZðYÞÞ ¼ ðZ

ðYÞÞTGðYÞZðYÞ

ðZðYÞÞTHðYÞZðYÞ
: ð4Þ

It is noted that the problems in Eq. (4) are known as the Rayleigh
quotient, thus we can solve the problems by the useful properties of
Rayleigh quotient (Parlett, 1998) effectively, i.e., solve G(X)Z(X) =
k(X)H(X)Z(X) and G(Y)Z(Y) = k(Y)H(Y)Z(Y).
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2.2. Multi-weight Vector Projection Support Vector Machines

Another effective multisurface support vector machine classi-
fier is called Multi-weight Vector Projection Support Vector Machines
(MVSVM) (Ye et al., 2010), which is originally addressed for
handling two-class classification problem. In MVSVM, the intra-
class scatter difference is defined by minimizing distances between
the intra-class points and the corresponding sample means. Mean-
while, MVSVM aims at optimizing the inter-class scatter by maxi-
mizing the difference between the class means from different
classes. Let vector Xi, Yi be the ith sample point of the n �m1X,
n �m2Y dataset belonging to different classes, then the criteria of
the MVSVM problems are given as

Max
-ðXÞ

-ðXÞT 1
m2

Xm2

i¼1

Yi �-ðXÞT 1
m1

Xm1

j¼1

Xj

�����
�����

2

� b
Xm1

i¼1

-ðXÞTXi

��
�-ðXÞT 1

m1

Xm1

j¼1

Xj

�����
2

; s:t: k-ðXÞk2 � 1 ¼ 0; ð5Þ

Max
-ðYÞ

-ðYÞT 1
m1

Xm1

i¼1

Xi �-ðYÞT 1
m2

Xm2

j¼1

Yj

�����
�����

2

� b
Xm2

i¼1

-ðYÞTYi

��
�-ðYÞT 1

m2

Xm2

j¼1

Yj

�����
2

; s:t: k-ðYÞk2 � 1 ¼ 0; ð6Þ

where vectors -(X) and -(Y) denote the two one-dimensional pro-
jection directions that are required to optimize, ð1=mÞ

P
j2C2

Yj ¼
MðYÞ and ð1=mÞ

P
j2C1

Xj ¼ MðXÞ are mean vectors of the sample data
in the datasets X and Y, and b is a trade-off parameter, which is used
for balancing the functional value. It is noted that MVSVM is based
on the maximum margin criterion. Let }(1), }(2) and }(3) satisfy

}ð1Þ ¼ 1
m2

Xm2

i¼1

Yi �
1

m1

Xm1

j¼1

Xj

�����
�����

2

;

}ð2Þ ¼
Xm1

i¼1

Xi �
1

m1

Xm1

j¼1

Xj

�����
�����

2

;

}ð3Þ ¼
Xm2

i¼1

Yi �
1

m2

Xm2

j¼1

Yj

�����
�����

2

; ð7Þ

then -(X) and -(Y) can be obtained by solving the following equiv-
alent problems to Eqs. (5) and (6):

Max
-ðXÞ

-ðXÞT}ð1Þ-ðXÞ � b-ðXÞT}ð2Þ-ðXÞ; s:t: -ðXÞT-ðXÞ � 1 ¼ 0; ð8Þ

Max
-ðYÞ

-ðYÞT}ð1Þ-ðYÞ � b-ðYÞT}ð3Þ-ðYÞ; s:t: -ðYÞT-ðYÞ � 1 ¼ 0; ð9Þ

where the term }(1) can be expressed in a matrix interpretation as
the following formulation:

}ð1Þ ¼ 1
m2

Xm2

i¼1

Yi�
1

m1

Xm1

j¼1

Xj

" #
1

m2

Xm2

i¼1

Yi�
1

m1

Xm1

j¼1

Xj

" #T

¼ 1
m2

2

Xm2

i¼1

Xm2

j¼1

YiY
T
j þ

1
m2

1

Xm1

i¼1

Xm1

j¼1

XiX
T
j �

1
m1m2

Xm1

j¼1

Xm2

i¼1

XjY
T
i �

1
m2m1

Xm2

i¼1

Xm1

j¼1

YiX
T
j ;

¼ 1
m2

2

YeT
2e2YTþ 1

m2
1

XeT
1e1XT�ðXPðXYÞYTþYQ ðYXÞXTÞ ð10Þ

where e1 is a 1 �m1 vector of all ones, e2 is a 1 �m2 vector of all
ones, m1 �m2 P(XY) and m2 �m1 Q(YX) are matrices satisfying
P(XY) = (1/m1m2)e1

Te2, Q(YX) = (1/m2m1)e2
Te1. Obviously, }(1) is sym-

metric. Then terms }(2) and }(3) can be similarly represented as
}ð2Þ ¼
Xm1

i¼1

Xi �
1

m1

Xm1

j¼1

Xj

" #
Xi �

1
m1

Xm1

j¼1

Xj

" #T

¼
Xm1

i¼1

XiX
T
i �

1
m1

Xm1

i;j¼1

XjX
T
i ¼ X I � 1

m1
eT

1e1

� �
XT;

}ð3Þ ¼ Y I � 1
m2

eT
2e2

� �
YT; ð11Þ

where I is an identity matrix,
According to Ye et al. (2010), MVSVM has been applied to clas-

sify the real handwritten digits, but most real data, including hand-
written digits, are usually stored as form of images (or, matrices),
but MVSVM performs in vector space, like GEPSVM. As a result,
when a pattern itself is an image, the image first has to be trans-
formed to a long vector pattern by concatenating its pixels and
then MVSVM can perform classification on it.
2.3. Maximum margin criterion (MMC)

Inspired by Support Vector Machines (SVMs) (Vapnik, 1995), Li
et al. (2006) proposed an efficient and robust learning method
called maximum margin criterion (MMC) for feature extraction.
When the class label g 2 {C1,C2, . . . ,Cc} of some pattern x is avail-
able, the margin is then defined to characterize the discriminant
ability of the features, where c is the number of classes. MMC max-
imizes the distances, which are used to measure the similarity or
dissimilarity, between classes after the transformation by optimiz-
ing the following feature extraction criterion:

J ¼ 1
2

Xc

i¼1

Xc

j¼1

pipjdðCi;CjÞ; ð12Þ

which is actually the summation of all pair interclass margins. pi de-
notes a priori probability of class i and d(Ci,Cj) is the distance metric
between class Ci and Cj. Let vi and vj be the mean vectors of the
class Ci and Cj, the interclass distance (or margin) can be defined as

dðCi;CjÞ ¼ dðvi;vjÞ � qðCiÞ � qðCjÞ; ð13Þ

where q(Ci) is some measure of the scatter of class Ci. Let Si be the
covariance matrix of class Ci, if overall variance tr(Si) is used to mea-
sure the scatter of data, then Eq. (13) measures the ‘‘average mar-
gin’’ between two classes while the minimum margin is used in
SVM, where tr(Si) denotes the matrix trace of the matrix Si. With
Eq. (13), q(Ci) and tr(Si), Eq. (12) can be rewritten as

J ¼ 1
2

Xc

i¼1

Xc

j¼1

pipjdðvi;vjÞ � trðSiÞ � trðSjÞ

¼ 1
2

Xc

i¼1

Xc

j¼1

pipjdðvi;vjÞ �
1
2

Xc

i¼1

Xc

j¼1

pipjðtrðSiÞ þ trðSjÞÞ: ð14Þ

Let S(wc) and S(bc) be the intra-class scatter and inter-class scatter
matrices of Fisher Linear Discriminant Analysis (LDA) (Martinez &
Kak, 2001) and v denote the overall mean vector. BecausePc

j¼1pjðv� vjÞ ¼ 0, by employing the Euclidean distance metric,
the former part of Eq. (14) can be simplified to tr(S(bc)):

1
2

Xc

i¼1

Xc

j¼1

pipjdðvi;vjÞ

¼ 1
2

Xc

i¼1

Xc

j¼1

pipjðvi � vjÞ
Tðvi � vjÞ

¼ 1
2

Xc

i¼1

Xc

j¼1

pipjðvi � vþ v� vjÞ
Tðvi � vþ v� vjÞ

¼ tr
Xc

i¼1

piðvi � vÞðvi � vÞT
" #

¼ trðSðbcÞÞ: ð15Þ
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Similarly, the latter part of Eq. (14) can be simplified to tr(S(wc)):

1
2

Xc

i¼1

Xc

j¼1

pipjðtrðSiÞ þ trðSjÞÞ ¼
Xc

i¼1

pitrðSiÞ ¼ tr
Xc

i¼1

piSi

" #
¼ trðSðwcÞÞ:

ð16Þ

Thus MMC aims at maximizing the following criterion as
discriminant criterion instead of utilizing the ratio form J(-) =
tr(-TS(bc)-/-TS(wc)-), which is called a margin in

Jð-Þ ¼ trð-TðSðbcÞ � SðwcÞÞ-Þ: ð17Þ

Compared with the LDA criterion, MMC is more efficient and
easier to be implemented. Most importantly, the small sample size
problem does not exist because it needs not to calculate the inverse
within-class scatter matrix. The canonical features extracted by
margin based methods can achieve better results in classification
(Liu, Chen, Tan, & Zhang, 2007; Wang, Zheng, Hu, & Chen, 2007;
Zheng, Zou, & Zhao, 2005) MMC has the advantages of reasonable
motivation in principle and simplicity (Li et al., 2006).

3. Maximum margin criterion based Multisurface Proximal
Support Tensor Machine (M3PSTM)

3.1. Tensor representation of data

The general formulation of the linear subspace learning in the
second order tensor space (He et al., 2005) is given as follows.
Let X;Y 2 Rn1�n2 represent an image of size n1 � n2, accompanied
with two class labels. Mathematically, X and Y can be regarded
as the second order tensor (or, 2-tensor) in the tensor space
Rn1 � Rn2 . Let ðu1;u2; . . . ; un1 Þ denote a set of the orthonormal basis
functions in Rn1 and let ðv1;v2; . . . ;vn2 Þ be a set of the orthonormal
basis functions in Rn2 (He et al., 2005), then a second order tensor of
X and Y can be mathematically formulated as

X ¼
X

ij

uT
i Xv j

� �
uivT

j ; Y ¼
X

ij

uT
i Yv j

� �
uivT

j ; ð18Þ

which indicates that uivT
j

n o
forms a basis of the tensor space

Rn1 � Rn2 . Let U(X) (or, U(Y)) represent a subspace of Rn1 spanned by

using fuigd1
i¼1 and V(X) (or, V(Y)) denote a subspace of Rn2 spanned

by using fv igd2
i¼1. Thus the tensor product U(X) � V(X) (or, U(Y) � V(Y))

is a subspace of Rn1 � Rn2 . Thus, by projecting vectors of
X;Y 2 Rn1�n2 onto the subspaces U(X) � V(X) and U(Y) � V(Y), we can

then obtain tensors eXi ¼ UðXÞTXiV
ðXÞ 2 Rd1�d2 and bYi ¼ UðYÞTYiV

ðYÞ 2
Rd1�d2 , respectively. It should be noted that, the number of parame-
ters estimated in the tensor space problem is much smaller than
that in the vector space problems. This property will make tensor
representation particularly applicable for dealing with the high-
dimensional small sample size problems (He et al., 2005).

3.2. The objective function

The proposed M3PSTM classifier is fundamentally formulated
based on the optimization problems of the regular GEPSVM meth-
od. The linear classifiers of M3PSTM in the tensor space can be rep-
resented as follows:

f ðXÞ ¼ ðUðXÞÞTXV ðXÞ � rðXÞ; f ðYÞ ¼ ðUðYÞÞ TYV ðYÞ � rðYÞ: ð19Þ

It is noted that the criterions of Eq. (19) can be mathematically
formulated through matrix inner product and are then defined as
the following criterions:

f ðXÞ ¼ hX;UðXÞðV ðXÞÞTi � rðXÞ; f ðYÞ ¼ hY ;UðYÞðV ðYÞÞTi � rðYÞ: ð20Þ
In our work, we also drop the parallelism condition on the prox-
imal planes, just like GEPSVM. We also require that each computed
tensor plane to be as close as possible to one of the datasets and as
far as possible from the other one. Then, we aim at finding the fol-
lowing two proximal tensor planes in the tensor spaces:

ðUðXÞÞTXV ðXÞ � rðXÞ ¼ 0; ðUðYÞÞTYV ðYÞ � rðYÞ ¼ 0; ð21Þ

where the first tensor plane is defined to be closest to the data
points belonging to dataset X and furthest from the points in dataset
Y. In contrast, the second tensor plane is defined to be closest to the
points in the dataset Y and furthest from the points in dataset X. To
achieve the tensor planes in Eq. (21), we aim to minimize the sum of
the squares of two-norm distances between each sample points of
the dataset X (or, Y) to the first (or, second) tensor plane in Eq.
(21) and maximizing the sum of the squares of two-norm distances
between each sample point of dataset Y (or, X) to the same tensor
plane (Mangasarian, 1999). All of these definitions can lead to the
following formulations.

Similar to the objective function of GEPSVM, the optimization
problems of the binary M3PSTM classification algorithm in tensor
space can be described as the following two maximization
problems:

Max
ððUðXÞ ;V ðXÞÞ;rðXÞÞ–0

kðUðXÞÞTYV ðXÞ � eðXÞrðXÞk2
=kðUðXÞÞTXV ðXÞ � eðXÞrðXÞk2

;

ð22Þ

Max
ððUðYÞ ;V ðYÞÞ;rðYÞÞ–0

kðUðYÞÞTXV ðYÞ � eðYÞrðYÞk2
=kðUðYÞÞTYV ðYÞ � eðYÞrðYÞk2

;

ð23Þ

where notation k � k2 denotes the squares of the two-norm distances
and it is also implicitly assumed that ((U(X),V(X)), r(X)) – 0)
(U(X))TXV(X) � e(X) r(X) – 0 and ((U(Y),V(Y)), r(Y)) – 0) (U(Y))TYV(Y) �
e(Y)r(Y) – 0. To achieve large margin classification, the numerator
of the problem in Eq. (22) maximizes the sum of the squares
of the two-norm distances in the ((U(X),V(X)), r(X))-space of the
sample data points belonging to the dataset Y to the plane
(U(X))TXV(X) � r(X) = 0, while the denominator of Eq. (22) minimizes
the sum of the squares of generalized two-norm distances in the
((U(X),V(X)),r(X))-space of the data points of dataset X to the same
tensor plane. All of these definitions and formulations are suitable
for the maximization optimization problem in Eq. (23).

3.3. Computational analysis

To compute the transforming basis vectors for constructing the
tensor planes, we can adopt the similar optimization approach of
GEPSVM to formulate the problems. We analogously define the fol-
lowing formulations:

GðXÞ ¼ ½YT �eðYÞ �T½YT �eðYÞ �;
HðXÞ ¼ ½XT �eðXÞ �T½XT �eðXÞ �;
GðYÞ ¼ ½XT �eðXÞ �T½XT �eðXÞ �;
HðYÞ ¼ ½YT �eðYÞ �T ½YT � eðYÞ�;

KðXÞ ¼ UðXÞðV ðXÞÞT

rðXÞ

" #
; KðYÞ ¼ UðYÞðV ðYÞÞT

rðYÞ

" #
:

ð24Þ

It is noted that if we employ the computational approach of
GEPSVM to solve the two proximal tensor planes (U(X))TXV(X) �
r(X) = 0 and (U(Y))TYV(Y) � r(Y) = 0, then the proximal tensor planes
can be respectively defined by the eigenvectors corresponding to
the leading eigenvalues of the following two trace ratio problems
(Guo, Li, Yang, Shu, & Wu, 2003; Jia, Nie, & Zhang, 2009; Wang,
Yan, Xu, Tang, & Huang, 2007):
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Max
KðXÞ–0

PðKðXÞÞ ¼ trððKðXÞÞ TGðXÞKðXÞÞ
trððKðXÞÞTHðXÞKðXÞÞ

;

MaxKðYÞ–0QðKðYÞÞ ¼ trððKðYÞÞ TGðYÞKðYÞÞ
trððKðYÞÞTHðYÞKðYÞÞ

: ð25Þ

It is worthy of noticing that the above maximization problems
can be solved by using the eigen-decomposition, which involves
the matrix inverse operation. As a result, we firstly need to regular-
ize the problems in Eq. (25) as GEPSVM, otherwise the computa-
tion process may be unstable due to the matrix inverse operation
on the matrices G(X)(H(X))�1 and G(Y)(H(Y))�1, i.e., singularity prob-
lems. To efficiently solve this problem and obtain a specific solu-
tion, we introduce a practical method. We take the left problem
of Eq. (25) for example. To solve this trace ratio (TR) problem,
Guo et al. (2003) have definitely indicated that the global optimum
of TR problem can be equivalently solved by using the trace differ-
ence problem, namely max tr((K(X))T(G(X) �lH(X))K(X)), based on the
concept of Foley-Sammon transform. In this way, the optimal TR
value l⁄ and K(X) can be effectively obtained. According to Jia
et al. (2009), the objective tr((K(X))T(G(X) � lH(X))K(X)) of the trace
difference problem can be considered as the generalized maximum
margin criterion (MMC) problem with tuning parameter l in-
volved or the standard MMC (Li et al., 2006) with l = 1. In this pa-
per, we focus on employing the generalized maximum margin
criterion to optimize our problems and solving the eigenvectors
U(X), V(X), U(Y) and V(Y) for designing tensor classifiers.

Based on the margin maximization criterion, each of the two
nonparallel proximal tensor planes is respectively obtained by
the eigenvector corresponding to the largest eigenvalues of two
scale-reduced standard eigenvalue problems. Namely, the two ten-
sor planes (U(X))TXV(X) � r(X) = 0 and (U(Y))TYV(Y) � r(Y) = 0 can be
obtained by solving the following two generalized maximum
margin criterion based eigen-problems from Eq. (25):

Max
KðXÞ–0

PðKðXÞÞ ¼ ðKðXÞÞTðð1� ‘yÞGðXÞ � ‘yHðXÞÞKðXÞ; ð26Þ

Max
KðYÞ–0

QðKðYÞÞ ¼ ðKðYÞÞ Tðð1� ‘yÞGðYÞ � ‘yHðYÞÞKðYÞ; ð27Þ

where ‘� 2 (0,1) is a balancing parameter, which will be used in the
later readings without introduction. In other words, we determine
the optimal vectors U(X), V(X), U(Y) and V(Y) so that nearby data pairs
belonging to the same class are as close together as possible and
sample data pairs of different classes are as far apart as possible.

Clearly, the eigenvector problems expressed by Eqs. (26) and
(27) with the normalized constraints (K(X))TK(X) = 1 and (K(Y))TK(Y) =
1 are typical eigen-problems, from which one can find that there is
no need for computing any matrix inversion in optimizing the
above margin criterions. Notice that the normalized constraints
(K(X))TK(X) = 1 and (K(Y))TK(Y) = 1 are only defined for aiding the opti-
mizations. One might have noticed that the transforming basis vec-
tors U(X) and V(X) are dependent on each other, that is K(X) and K(Y)

are not fixed while depend on U(X) and V(X). As a results, the projec-
tion axes U(X) and V(X) cannot be solved independently. All of these
discussions are suitable for the computation process of the second
proximal tensor plane (U(Y))TYV(Y) � r(Y) = 0, that is to say, U(Y) and
V(Y) involved in the second tensor plane can not be solved indepen-
dently as well.

In this paper, we aim at computing the basis vectors U(X), U(Y),
V(X) and V(Y) as follows. We next describe a simple but effective
computational technique to solve the optimization problems as
that of He et al. (2005). To simplify such a problem, we first fix
U(X) and U(Y). In the simulations, we initially set U(X) and U(Y) to
be the vectors with all ones. Thus if we let Xi

!¼ UðXÞTXi and
Yi
!¼ UðYÞTYi, then the tensor classifiers can be rewritten as

f ðX!Þ ¼ X
!

V ðXÞ � rðXÞ1 ; f ðY!Þ ¼ Y
!

V ðYÞ � rðYÞ1 ; ð28Þ
which are identical to the vector space model based linear classifi-
ers. In this way, basis vectors V(X) and V(Y) can be obtained by solving
the following two optimization problems from Eqs. (22) and (23):

Max
ðVðXÞ ;rðXÞ1 Þ–0

Y
!

V ðXÞ � eðXÞrðXÞ1

��� ���2

X
!

V ðXÞ � eðXÞrðXÞ1

��� ���2 ; Max
ðV ðYÞ ;rðYÞ1 Þ–0

X
!

V ðYÞ � eðYÞrðYÞ1

��� ���2

Y
!

V ðYÞ � eðYÞrðYÞ1

��� ���2 ; ð29Þ

where ðV ðXÞ; rðXÞ1 Þ – 0) X
!

V ðXÞ � eðXÞrðXÞ1 – 0 and V ðYÞ; rðYÞ1

� �
– 0)

Y
!

V ðYÞ � eðYÞrðYÞ1 – 0. It is obvious that the new-formulated optimiza-
tion problems in Eq. (29) are equivalent to the GEPSVM optimiza-
tion problems. It is noted that, with the constraints that vectors
U(X) and U(Y) are pre-initialized, then the problems in Eq. (29) can
be computed independently only depending on the training data
points.

Once the projection axes V(X) and V(Y) are computed, we simi-
larly let bXi ¼ XiV

ðXÞ; bYi ¼ YiV
ðYÞ. Thus, the tensor classifiers can be

transformed to the following linear classifiers in vector space and
are rewritten as follows:

f ðbXÞ ¼ bXTUðXÞ � rðXÞ2 ; f ðbY Þ ¼ bY TUðXÞ � rðYÞ2 : ð30Þ

By a complete analogous argument, we formulate the similar
problems in Eq. (31) to determine UðXÞ; rðXÞ2

� �
and UðYÞ; rðYÞ2

� �
for

constructing the two proximal planes in Eq. (30). Therefore, the ba-
sis vectors U(X) and U(Y) can be obtained by solving the following
two optimization problems Eqs. (22) and (23):

Max
UðXÞ ;rðXÞ2ð Þ–0

bY TUðXÞ � eðXÞrðXÞ2

��� ���2

bXTUðXÞ � eðXÞrðXÞ2

��� ���2 ; Max
UðYÞ ;rðYÞ2ð Þ–0

bXTUðYÞ � eðYÞrðYÞ2

��� ���2

bY TUðYÞ � eðYÞrðYÞ2

��� ���2 ;

ð31Þ

where ðUðXÞ; rðXÞ2 Þ– 0) bXTUðXÞ � eðXÞrðXÞ2 – 0 and UðYÞ; rðYÞ2

� �
– 0)bY TUðYÞ � eðYÞrðYÞ2 – 0. We similarly observe that the problems in Eq.

(31) are also equivalent to the standard GEPSVM optimization prob-
lems. Next we detail the computational step of the first tensor plane
(U(X))TXV(X) � r(X) = 0 as an example.

In this paper, we apply the margin maximization criterion
which has the advantages of reasonable motivation in principle
and simplicity, for optimizing the M3PSTM problems. That is, final-
ly we can formulate the optimization problems based on standard
and scale-reduced eigenvalue problems. It is important to notice
that the small sample size problem does not exist since the inverse
matrix operation is avoided effectively if the margin maximization
criterion is employed. So as to obtain the first tensor plane, i.e.,
(U(X))TXV(X) � r(X) = 0, from solving the problems of Eqs. (26) and
(27), it is equivalent to computing the first pair of basis vectors
U(X) and V(X) for determining the first tensor plane in the left for-
mula of Eq. (21). We similarly define

gðXÞ ¼ ½ Y
! �eðYÞ �T½ Y

! �eðYÞ �;

hðXÞ ¼ ½ X
! �eðXÞ �T½ X

! �eðXÞ �;

gðYÞ ¼ ½ bY T �eðYÞ �T½ bY T �eðYÞ �;

hðYÞ ¼ ½ bXT �eðXÞ �T½ bXT �eðXÞ �;

kðXÞ ¼
V ðXÞ

rðXÞ1

" #
; kðYÞ ¼

UðXÞ

rðXÞ2

" #
;

ð32Þ

where g(X), h(X), g(Y) and h(Y) are symmetric matrices in Rðn1þ1Þ�ðn1þ1Þ

or Rðn2þ1Þ�ðn2þ1Þ. Thus, the vectors U(X) and V(X) can be obtained by
the eigenvectors corresponding to the largest eigenvalues of two
generalized maximum margin criterion based standard and
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scale-reduced eigenvalue problems as maximizing M(k(X)) and
N(k(Y)) with respect to the orthogonal constraints (k(X))Tk(X) = 1
and (k(Y))Tk(Y) = 1, where

Max
kðXÞ–0

MðkðXÞÞ ¼ ðkðXÞÞTðð1� ‘yÞgðXÞ � ‘yhðXÞÞkðXÞ; ð33Þ

Max
kðYÞ–0

NðkðYÞÞ ¼ ðkðYÞÞTðð1� ‘yÞgðYÞ � ‘yhðYÞÞkðYÞ: ð34Þ

In other words, M3PSTM seeks k(X) and k(Y) such that points of

dataset X should be close to the two planes X
!TV ðXÞ � rðXÞ ¼ 0 andbXTUðXÞ � rðXÞ ¼ 0 (i.e., (k(X))Th(X)k(X) and (k(Y))Th(Y)k(Y) should be min-

imized) and the data samples of dataset Y should be far away from
the planes (i.e., the terms (k(X))Tg(X)k(X) and (k(Y))Tg(Y)k(Y) will be
maximized). The maximum of the problem in Eq. (33) or Eq. (34)
is obtained by an eigenvector of the standard eigenvalue problem

in Eq. (33) or Eq. (34) corresponding to the largest eigenvalue kðXÞ1

or kðXÞ2 . If we represent the eigenvector by kðXÞ1 or kðYÞ1 , then

kðXÞ1 ¼ ðUðXÞÞT rðXÞ1

h iT
and kðYÞ1 ¼ ðV ðXÞÞT rðXÞ2

h iT
will determine

the tensor plane (U(X))TXV(X) � r(X) = 0, which is closest to the sam-
ple data points in the dataset X and furthest away from the data
points in the dataset Y. Thus the first proximal tensor plane in
the left of Eq. (21) can be solved by the MATLAB (MATLAB,
1994–2001) commands: eig((1 � ‘�) g(X) � ‘�h(X)) and eig((1 � ‘�
)g(Y) � ‘�h(Y)), each of which can produce n1 + 1 or n2 + 1 eigen-
values and eigenvectors of the margin maximization optimization
problems. Note that term r(X) in the first tensor plane is given by

rðXÞ1 þ rðXÞ2

� �
=2. By an complete similar argument, we can employ

the similar method to achieve U(Y), V(Y) and r(Y) from the maximum
margin problems in Eq. (23) and then determine the second prox-
imal tensor plane in the right formula of Eq. (21) which is closest to
the points of dataset Y and furthest from the sample points in data-
set X. Based on the advantages of MMC, i.e., reasonable motivation
in principle and simplicity, the optimization problems of M3PSTM
can be effectively and steadily solved.

After vectors U(X) and V(X), U(Y) and V(Y) are obtained, the training
stage of M3PSTM is completed. For the testing phase, the class label
of a new coming image z will be determined by the following deci-
sion rules:

z has the same class label as

�
X; if kUðXÞTzV ðXÞ � rðXÞk < kUðYÞTzV ðYÞ � rðYÞk;
Y ; if kUðXÞTzV ðXÞ � rðXÞk > kUðYÞTzV ðYÞ � rðYÞk;
X or Y ; if kUðXÞTzV ðXÞ � rðXÞk ¼ kUðYÞTzV ðYÞ � rðYÞk;

8><>: ð35Þ
Table 1
Maximum Margin Multisurface Proximal Support Tensor Machine (M3PSTM)
algorithm.

Input: Image data or 2nd order tensorX 2 Rn1�n2 and Y 2 Rn1�n2

Output: Two (d1 � d2)-dimensional tensor spaces U(X) � V(X) and U(Y) � V(Y)

Step 1: Compute matrices G(X), H(X), G(Y), H(Y), K(X), K(Y) defined in Eq. (24)
Step 2: Initial U(X) and U(Y) to the vectors with all ones in Rðn1þ1Þ�ðn1þ1Þ or

Rðn2þ1Þ�ðn2þ1Þ

Step 3: Linear planes f ðX!Þ ¼ X
!TV ðXÞ � rðXÞ1 and f ðY!Þ ¼ Y

!TV ðYÞ � rðYÞ1 are

obtained, where V ðXÞ; rðXÞ1 ;V ðYÞ and rðYÞ1 are obtained by using eigen-
decomposition of ((1 � ‘�)G(X) � ‘�H(X))

Step 4: Compute matrices g(X), h(X), g(Y), h(Y), k(X), k(Y) defined in Eq. (32)
Step 5: Define cXi ¼ XT

i V ðXÞ;cYi ¼ YT
i V ðYÞ and obtain the linear planes

f ðbXÞ ¼ bXTUðXÞ � rðXÞ2 and f ðbY Þ ¼ bY TUðXÞ � rðYÞ2 , where UðXÞ; rðXÞ2 ;UðYÞ

and rðYÞ2 are obtained by conducting eigen- decomposition of
((1 � ‘�)g(X) � ‘�h(X))

Step 6: Design tensor classifiers f(X) = hX,U(X)(V(X))Ti � r(X) and
f(Y) = hY,U(Y)(V(Y))Ti � r(Y)
where kU(X)TzV(X) � r(X)k is the tensor represented distance between
the sample z and the first tensor plane in Eq. (21). Similarly,
kU(Y)TzV(Y) � r(Y)k denotes the tensor represented distance between
sample z and the second tensor plane in Eq. (21). The implementa-
tion procedures of the M3PSTM algorithm are detailed in
Table 1.
4. Maximum margin criterion based Multi-weight Vector
Projection Support Tensor Machine (M3VSTM)

4.1. The objective function

In this section, we present the problem of M3VSTM, which re-
lies in the tensorized representation for MVSVM and aims at com-
puting two pair of transforming axes, i.e., (U(X),V(X)) and (U(Y),V(Y)),
for representing datasets X and Y, one for each dataset. Based on
tensor representations, each pattern Xi, Yi of X, Y is represented
as tensors eXi ¼ UðXÞTXiV

ðXÞ, eYi ¼ UðXÞTYiV
ðXÞ by using U(X) and V(X).

Similarly, each pattern Xi, Yi of the datasets X, Y can be represented
as tensors bXi ¼ UðYÞ TXiV

ðYÞ, bYi ¼ UðYÞTYiV
ðYÞ by using by using U(Y)

and V(Y). According to Cai, He, and Han (2009), we can have
kuvTk2 = tr(uvTvuT) = (vTv)tr(uuT) = (vTv)tr(uTu) = (vTv)(uTu), thus
the optimization problems in Eqs. (5) and (6) can be transformed
into the following generalized maximum margin criterion based
variant problems:
Max
UðXÞ ;V ðXÞ

ð1� ‘yÞ 1
m2

Xm2

i¼1

eYi �
1

m1

Xm1

j¼1

fXj

�����
�����

2

� ‘y
Xm1

i¼1

eXi �
1

m1

Xm1

j¼1

fXj

�����
�����

2

;

s:t: kUðXÞV ðXÞTk2 ¼ ðV ðXÞTV ðXÞÞðUðXÞTUðXÞÞ ¼ 1; ð36Þ

Max
UðYÞ ;V ðYÞ

ð1� ‘yÞ 1
m1

Xm1

i¼1

� 1
m2

Xm2

j¼1

�����
�����

2

� ‘y
Xm2

i¼1

� 1
m2

Xm2

j¼1

�����
�����;

s:t: kUðYÞV ðYÞTk2 ¼ ðV ðYÞTV ðYÞÞðUðYÞTUðYÞÞ ¼ 1: ð37Þ
Similarly, in M3VSTM, the intra-class scatter difference is mea-
sured by minimizing the tensoried distances between tensorized
representations of intra-class points in the (U(X),V(X))-space and
their sample means. Also, M3VSTM aims at optimizing the inter-
class scatters by maximizing the scatter difference between the
tensorized representations of the class means of different classes.
By substituting }(1), }(2) and }(3) in Eq. (7) into Eqs. (36) and
(37), we can have the following problems:
Max
UðXÞ ;V ðXÞ

ð1� ‘yÞUðXÞT}ð1ÞV ðXÞ � ‘yUðXÞT}ð2ÞV ðXÞ;

s:t: ðV ðXÞTV ðXÞÞðUðXÞTUðXÞÞ � 1 ¼ 0; ð38Þ

Max
UðYÞ ;V ðYÞ

ð1� ‘yÞUðYÞT}ð1ÞV ðYÞ � ‘yUðYÞT}ð3ÞV ðYÞ;

s:t: ðV ðYÞTV ðYÞÞðUðXÞTUðYÞÞ � 1 ¼ 0: ð39Þ
It is noted that, when solving vectors U(X), V(X), U(Y), V(Y), the
above two problems are dependent with each other as well, thus
they can not be solved independently. Next we show the computa-
tional method.

4.2. Computational analysis

We firstly show how to compute the vectors U(X) and V(X) for
representing the data points belonging to the dataset X from the
problem in Eq. (36). Since kAk2 = tr(ATA), we can obtain
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UðXÞT}ð1ÞV ðXÞ

¼ tr
1

m2

Xm2

i¼1

eYi �
1

m1

Xm1

j¼1

fXj

 !T
1

m2

Xm2

i¼1

eYi �
1

m1

Xm1

j¼1

fXj

 !24 35
¼ tr

1
m2

2

Xm2

i¼1

Xm2

j¼1

eYi
TfYj þ

1
m2

1

Xm1

i¼1

Xm1

j¼1

eXi
TfXj

"

� 1
m1m2

Xm2

i¼1

Xm1

j¼1

eYi
TfXj �

1
m1m2

Xm1

j¼1

Xm2

i¼1

fXj
T eYi

#

¼ tr
1

m2
2

Xm2

i¼1

Xm2

j¼1

V ðXÞTYT
i UðXÞUðXÞTYjV

ðXÞ

"

þ 1
m2

1

Xm1

i¼1

Xm1

j¼1

V ðXÞTXT
i UðXÞUðXÞTXjV

ðXÞ

#

� tr
1

m1m2

Xm1

j¼1

Xm2

i¼1

V ðXÞTYT
i UðXÞUðXÞTXjV

ðXÞ

"

þ 1
m1m2

Xm2

i¼1

Xm1

j¼1

V ðXÞTXT
j UðXÞUðXÞTYiV

ðXÞ

#
¼ tr V ðXÞT @

ðUÞ
1 þ @

ðUÞ
2 � @

ðUÞ
3 � @

ðUÞ
4

� �
V ðXÞ

h i
; ð40Þ

where @
ðUÞ
1 ¼ 1

m2
2

Pm2
i¼1

Pm2
j¼1YT

i UðXÞUðXÞTYj; @
ðUÞ
2 ¼ 1

m2
1

Pm1
i¼1

Pm1
j¼1XT

i UðXÞUðXÞTXj;

@
ðUÞ
3 ¼ 1

m1m2

Pm1
j¼1

Pm2
i¼1YT

i UðXÞUðXÞTXj and @
ðUÞ
4 ¼ 1

m1m2

Pm2
i¼1

Pm1
j¼1XT

j UðXÞ UðXÞTYi:

Similarly, we have

UðXÞT}ð2ÞV ðXÞ

¼
Xm1

i¼1

tr eXi �
1

m1

Xm1

j¼1

fXj

 !T eXi �
1

m1

Xm1

j¼1

fXj

 !24 35
¼ tr

Xm1

i¼1

eXi
T eXi �

1
m1

Xm1

i;j¼1

fXj
T eXi

" #

¼ tr
Xm1

i¼1

V ðXÞTXT
i UðXÞUðXÞTXiV

ðXÞ � 1
m1

Xm1

i;j¼1

V ðXÞTXT
j UðXÞUðXÞTXiV

ðXÞ

" #
¼ tr V ðXÞT #

ðUÞ
1 � #

ðUÞ
2

� �
V ðXÞ

h i
; ð41Þ

where #
ðUÞ
1 ¼

Pm1
i¼1XT

i UðXÞUðXÞTXi; #
ðUÞ
2 ¼ 1

m1

Pm1
i;j¼1XT

j UðXÞUðXÞTXi. If U(X)

is set to be vector with all ones, we similarly let Xi
!¼ XT

i UðXÞ and
Yi
!¼ YT

i UðXÞ, then @ðUÞ1 ; @
ðUÞ
3 ; @

ðUÞ
3 ; @

ðUÞ
4 ; #

ðUÞ
1 and #ðUÞ2 can be simplified

independently only depending on the training data points and are
respectively given as

@
ðUÞ
1 ¼ 1

m2
2

Xm2

i¼1

Xm2

j¼1

Yi
!

Yj
!T; @

ðUÞ
2 ¼ 1

m2
1

Xm1

i¼1

Xm1

j¼1

Xi
!

Xj
!T;

@
ðUÞ
3 ¼ 1

m1m2

Xm1

j¼1

Xm2

i¼1

Yi
!TXj
!T;

@
ðUÞ
4 ¼ 1

m1m2

Xm2

i¼1

Xm1

j¼1

Xj
!

Yi
!T; #

ðUÞ
1 ¼

Xm1

i¼1

Xi
!

Xi
!T; #

ðUÞ
2 ¼ 1

m1

Xm1

i;j¼1

Xj
!

Xi
!T:

Thus the transforming basis vector V(X) can be computed by solving
the following typical eigen-problem:

ð1� ‘yÞ @ðUÞ1 þ @
ðUÞ
2 � @

ðUÞ
3 � @

ðUÞ
4

� �
� ‘y #ðUÞ1 � #

ðUÞ
2

� �� �
v ¼ kðvÞv ;

ð42Þ
z has the same class label as
X; if kUðXÞTzV ðXÞ � UðXÞTMðXÞV ðXÞk
Y; if kUðXÞTzV ðXÞ � UðXÞTMðXÞV ðXÞk
X or Y ; if kUðXÞTzV ðXÞ � UðXÞTMðXÞV ðXÞk

8><>:
from which the optimal V(X) is selected as the eigenvector corre-
sponding to the biggest eigenvalue of the above eigen-problem.
Due to the property of the matrix trace, kAk2 = tr(AAT), thus we
can similarly obtain

UðXÞT}ð1ÞV ðXÞ

¼ tr
1

m2

Xm2

i¼1

eYi �
1

m1

Xm1

j¼1

fXj

 !
1

m2

Xm2

i¼1

eYi �
1

m1

Xm1

j¼1

fXj

 !T
24 35

¼ tr
1

m2
2

Xm2

i¼1

Xm2

j¼1

eYi
fYj

T þ 1
m2

1

Xm1

i¼1

Xm1

j¼1

eXi
fXj

T � 1
m1m2

Xm2

i¼1

Xm1

j¼1

eYi
fXj

T

"

� 1
m1m2

Xm1

j¼1

Xm2

i¼1

fXj
eYi

T

#
¼ tr UðXÞT @

ðVÞ
1 þ @

ðVÞ
2 � @

ðVÞ
3 � @

ðVÞ
4

� �
UðXÞ

h i
; ð43Þ

where @
ðVÞ
1 ¼ 1

m2
2

Pm2
i¼1

Pm2
j¼1YiV

ðXÞV ðXÞTYT
j ; @

ðVÞ
2 ¼ 1

m2
1

Pm1
i¼1

Pm1
j¼1XiV

ðXÞV ðXÞTXT
j ;

@
ðVÞ
3 ¼ 1

m1m2

Pm1
j¼1

Pm2
i¼1YiV

ðXÞV ðXÞTXT
j and @

ðUÞ
4 ¼ 1

m1m2

Pm2
i¼1

Pm1
j¼1XjV

ðXÞ V ðXÞTYT
i :

Similarly, we can have

UðXÞT}ð2ÞV ðXÞ ¼
Xm1

i¼1

tr eXi �
1

m1

Xm1

j¼1

fXj

 ! eXi �
1

m1

Xm1

j¼1

fXj

 !T
24 35

¼ tr
Xm1

i¼1

eXi
eXi

T � 1
m1

Xm1

i;j¼1

fXj
eXi

T

" #

¼ tr UðXÞT #
ðVÞ
1 � #

ðVÞ
2

� �
UðXÞ

h i
; ð44Þ

where #
ðUÞ
1 ¼

Pm1
i¼1XiV

ðXÞV ðXÞ TXT
i ; #

ðUÞ
2 ¼ 1

m1

Pm1
i;j¼1XjV

ðXÞV ðXÞTXT
i . After

the transforming vector V(X) is computed by solving Eq. (42), if we

similarly set bXi ¼ XiV
ðXÞ and bYi ¼ YiV

ðXÞ, then terms @ðVÞ1 ; @
ðVÞ
3 ; @

ðVÞ
3 ;

@
ðVÞ
4 ; #

ðVÞ
1 and #

ðVÞ
2 can be simplified independently only depending

on the training data points as well. Thus the projective basis vector
U(X) can be computed by solving the following typical eigen-
problem:

ð1� ‘yÞ @ðVÞ1 þ @
ðVÞ
2 � @

ðVÞ
3 � @

ðVÞ
4

� �
� ‘y #ðVÞ1 � #

ðVÞ
2

� �� �
u ¼ kðuÞu;

ð45Þ

from which the optimal U(X) is selected as the eigenvector corre-
sponding to the biggest eigenvalue of the above eigen-problem.
After U(X) and V(X) are obtained, we can then use them to construct
the tensor space for representing the data points from the dataset X.
With an entirely similar argument, the solutions U(Y) and V(Y) can be
solved and then the (U(Y), V(Y))-space can be constructed. The
detailed computational issues of computing U(Y) and V(Y) are not
provided due to page limitation. It is noted that the optimization
problems of M3VSTM are also based on the maximum margin crite-
rion (Li et al., 2006), that is no matrix inverse operation is involved.
Therefore we can steadily and effectively obtain the solutions of the
M3VSTM problems based on the useful properties of MMC.

After U(X) and V(X), U(Y) and V(Y) are obtained, the training
stage of M3VSTM is completed. For testing, the class label of a
new coming image z will be determined by the following decision
rules:
< kUðYÞTzV ðYÞ � UðYÞTMðYÞV ðYÞk;
> kUðYÞTzV ðYÞ � UðYÞTMðYÞV ðYÞk;
¼ kUðYÞTzV ðYÞ � UðYÞTMðYÞV ðYÞk;

ð46Þ
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where M(X) and M(Y) are mean images. kU(X)TzV(X) � U(X)TM(X)V(X)k
denotes the tensor represented distance between sample z and
the sample mean of the data points in dataset X. Similarly,
kU(X)TzV(X) � U(X)TM(X)V(X)k denotes the tensor represented distance
between sample z and the sample mean of the data points in data-
set Y.
4.3. Comparison and discussion

In this section, we mainly discuss some issues related to our
algorithms. We first compare the regular MVSVM and GEPSVM
classification algorithms with our M3PSTM and M3VSTM algo-
rithms from the following two aspects:

(1) The conventional MVSVM and GEPSVM algorithms perform
based on the vector space model, taking the vectors in Rn

as inputs. Different from MVSVM and GEPSVM, M3PSTM
and M3VSTM take the second order tensors (or matrices)
in Rn1 � Rn2 as inputs, wheren1 � n2 � n. For example, a vec-
tor x 2 Rn can be transformed by some means to a second
order tensor data (or matrix) X 2 Rn1 � Rn2 .

(2) For given data matrices X and Y in different classes and n-
dimensional input space Rn, then the linear classifiers of
the regular GEPSVM can be represented as f(X) = X-(X) � r(X)

and f(Y) = Y-(Y) � r(Y), in which there are 2(n + 1)(�2 �
n1 � n2 + 2) parameters rðXÞ; rðYÞ;-ðXÞi ;-ðYÞi ; i ¼ 1;2; . . . ;n

� �
.

With similar argument, there are 2n (�2 � n1 � n2) parame-
ters to estimate in MVSVM. Note that the linear classifiers of
M3PSTM in Rn1 � Rn2 can be represented as g(X) = U(X)TXV(X) �
r(X) and g(Y) = U(Y)TYV(Y) � r(Y), where UðXÞ;UðYÞ 2 Rn1 and
V ðXÞ;V ðYÞ 2 Rn2 . Thus, there are total 2 � (n1 + n2 + 1) para-

meters rðXÞ; rðYÞ;UðXÞi ;UðYÞi ;V ðXÞj ;V ðYÞj ; i ¼ 1;2; . . . ;n1; j ¼ 1;
�

2; . . . ;n2Þ involved in M3PSTM to be estimated. Similarly,
the linear classifiers of M3VSTM in Rn1 � Rn2 can be repre-
sented as g(X) = U(X)TXV(X) � U(X)TM(X)V(X) and g(Y) = U(Y)TY-

V(Y) � U(Y)TM(Y)V(Y), where bases UðXÞ;UðYÞ 2 Rn1 and
V ðXÞ;V ðYÞ 2 Rn2 . Thus, M3VSTM needs to estimate

2 � (n1 + n2) parameters UðXÞi ;UðYÞi ;V ðXÞj ;V ðYÞj ; i ¼ 1;2; . . . ;
�

n1; j ¼ 1;2; . . . ;n2Þ. This property can make our proposed
M3PSTM and M3VSTM classification algorithms computa-
tional efficiency and especially applicable for small sample
size problems and the classification tasks on datasets involv-
ing high dimensionality, because tensoried algorithms,
including M3PSTM and M3VSTM, need to estimate small
number of parameters than those vectorized MVSVM and
GEPSVM.

The proposed M3PSTM and M3VSTM approaches are based on
the tensor representation, thus it is important to investigate the
choice of subspace, i.e., the size of the tensor. In tensor space mod-
el, an image is represented as a tensor and each input pixel in the
tensor corresponds to a feature. For an image x 2 Rn, one can con-
vert it to the second order tensor data X 2 Rn1�n2 , in which
n1 � n2 � n. Suppose that n1 P n2, in order to have at least n entries
in the tensor while minimizing the size of the tensor, thus we have
(n1 � 1) � n2 < n < n1 � (n2 � 1) (He et al., 2005). However, there
are still many different choices to determine the values of n1 and
n2, especially when n is larger. Note that all these (n1,n2) combina-
tions can be used in the tensor subspace learning methods. It
should be noted that each vector itself in Rn can be considered as
a second order tensor in Rn � R1. The validity of the proposed
tensoried classifier models will be verified by extensive simula-
tions with the benchmark UCI and real datasets.
5. Simulation results and analysis

In this section, several classification and segmentation simula-
tions will be carried out to show the effectiveness of the proposed
M3PSTM and M3VSTM algorithms. The system performance of
M3PSTM and M3VSTM is compared with that of GEPSVM and
MVSVM. For M3PSTM and M3VSTM, the sample images are repre-
sented as matrices or second order tensors. In short, the classifica-
tion processes of M3PSTM and M3VSTM have three steps. First, we
calculate the image subspace from the training set of images. Then
the new images to be identified are transformed into (d1 � d2)-
dimensional tensor space. Finally, new coming images will be
identified by the tensor based classifier learned from the training
dataset. For the GEPSVM, MVSVM, M3PSTM and M3VSTM prob-
lems, each algorithm has a single parameter. The parameters will
be estimated and selected by applying 10% of each training fold
as a tuning set. The best parameter will be then determined by
observing the performance of the three classifiers on datasets.
Then the trained classifiers with the best parameter are used for
measuring the testing accuracy (the ratio of the number of cor-
rectly classified test samples to that of total test samples). All the
algorithms are implemented in Matlab 7.1. The eigen-problems in-
volved in these algorithms are all solved by using the eig function
in Matlab 7.1.We carry out the simulations on a PC with Intel (R)
Core (TM) i5 CPU 650 @3.20 GHz 3.19 GHz 4G.

In this present study, seven publicly available UCI datasets from
ML UCI Repository (Blake & Merz, 1998) and two real databases are
evaluated. These UCI datasets include Votes, Tic-Tac-Toe, Balance
Scale, Iris, Contraceptive Method Choice (CMC), Blood Transfusion
and Letter Image Recognition. The real databases include the USPS
Handwritten Digits database (Hull, 1994) and the Berkeley image
segmentation database (Martin, Fowlkes, Tal, & Malik, 2001).
5.1. Classification on UCI dataset

We first employ the standard UCI datasets, that is, Votes
(D = 16, Num = 435, C = 2), Tic-Tac-Toe (D = 9, Num = 958, C = 2),
Balance Scale (D = 4, Num = 625, C = 3), Iris (D = 4, Num = 150,
C = 3), CMC (D = 9, Num = 1473, C = 3), Blood Transfusion (D = 4,
Num = 748, C = 3) and Letter Recognition (D = 16, Num = 2000,
C = 26), to objectively evaluate the effectiveness of the proposed
M3PSTM and M3VSTM algorithms by comparing their classifica-
tion performance with GEPSVM and MVSVM. Where D is the
number of dimensionality of the original space, Num is the num-
ber of data points, and C is the number of classes. It is noted that
GEPSVM, MVSVM, M3PSTM and M3VSTM are originally proposed
for handling two-class classification problems. In this simulation,
for the Balance Scale, CMC and Blood Transfusion datasets, we
merge the latter two classes into a single class to create the
two-class case. For the Letter Image Recognition, we choose let-
ters ‘B’ and ‘C’ for classification. For the Iris dataset, we create
three two-class problems, i.e., (Iris Setosa vs. Iris Versicolour),
(Iris Setosa vs. Iris Virginica) and (Iris Versicolour vs. Iris Virgini-
ca). For classification, the samples of the datasets are represented
as vectors in GEPSVM, MVSVM. For M3PSTM and M3VSTM, each
sample of the tested datasets will be embedded into the
(d1 � d2)-dimensional tensor space, satisfying d1 = d2. Because dif-
ferent training samples from each class for a fixed dataset usually
lead to different levels of classification accuracies, it is difficult to
compare the performance of the classifiers in a meaningful way.
In the simulations, the sample points of each dataset are ran-
domly split into training and testing sets. The classification accu-
racy rates and standard deviations of the four algorithms will be
measured by using 10-fold cross-validation methodology and are
treated as our test accuracy metric.
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Table 2 summarizes the 10-fold mean classification accuracies
and standard deviations over the UCI datasets. The best test record
and averaged running time (we compute in seconds) are also re-
ported in Table 2. We have the following observations from Table
2: (1) On the whole, there is an improvement in the generalization
performance of M3PSTM and M3VSTM over the corresponding non-
tensorized learning methods. In most cases, M3PSTM and M3VSTM
deliver comparable to or better classification accuracy rate and
best record than the original algorithms. Specifically, M3PSTM
and M3VSTM significantly outperform GEPSVM and MVSVM on
the Iris (Versicolour vs. Virginica), CMC and Blood datasets. (2)
Considering the running time performance, M3PSTM and M3VSTM
exhibit the comparative results to GEPSVM and MVSVM in each
case.

5.2. Image classification on USPS handwritten digits

In this section, we address a classification task using the real-
world USPS Handwritten Digits database (Hull, 1994). In this study,
the publicly available dataset from URL: http://www.cs.nyu.edu/
�roweis/data.html/USPSHandwrittenDigits is used for the simula-
tions. The dataset has 11,000 examples of handwritten digits.
There are 8-bit grayscale digit images of ‘0’ through ‘9’ and 1100
images of each digit. In the database, the size of each digit image
is 16 � 16 pixels, with 256 grey levels per pixel. As result, each im-
age is then represented by a 256-dimensional vector in For
GEPSVM and MVSVM, and each image of the database will be rep-
resented by a (16 � 16)-dimensional matrix in M3PSTM and
M3VSTM for the simulations. The optimal parameters are esti-
mated by tuning on each training fold. Fig. 1 shows some typical
sample images of digits ‘1’, ‘2’ and ‘3’ from the USPS database. In
the simulations, we randomly choose 200 samples from each digit
for training and testing. We create nine two-class problems by
using the digits, including (0 vs. 1), (1 vs. 2), (2 vs. 3), (3 vs. 4), (4
Fig. 1. Sample images of digits ‘1’, ‘2’ and ‘3’ fr

Table 2
Performance comparisons on the seven benchmark UCI datasets.

Method Result
Simulation setting

Votes (D = 16, Num = 435) Letter (D = 16, Nu

Mean ± std Best Time Mean ± std

GEPSVM 95.62 ± 0.0710 95.69 0.5568 63.92 ± 0.0202
M3PSTM 95.63 ± 0.0449 95.68 0.6786 64.65 ± 0.0127
MVSVM 95.63 ± 0.0613 96.03 0.5989 84.46 ± 0.0137
M3VSTM 95.61 ± 0.0393 96.10 0.7325 85.12 ± 0.0125

Iris (Setosa vs. Versicolour) Iris (Setosa vs. Vi

Mean ± std Best Time Mean ± std

GEPSVM 94.99 ± 0.0086 97.19 0.0160 99.78 ± 0.0074
M3PSTM 97.38 ± 0.0107 98.35 0.0592 99.87 ± 0.0075
MVSVM 98.89 ± 0.0147 99.89 0.0147 99.98 ± 0.0032
M3VSTM 9847 ± 0.0037 98.77 0.0366 99.96 ± 0.0022

Balance scale (D = 4, Num = 625) CMC (D = 9, Num

Mean ± std Best Time Mean ± std

GEPSVM 89.15 ± 0.0134 94.58 0.1530 58.65 ± 0.0470
M3PSTM 88.64 ± 0.0099 94.61 0.2479 63.76 ± 0.0219
MVSVM 90.13 ± 0.0078 94.86 0.0921 56.39 ± 0.0142
M3VSTM 92.13 ± 0.0048 95.12 0.1300 62.81 ± 0.0109
vs. 5), (5 vs. 6), (6 vs. 7), (7 vs. 8) and (8 vs. 9). We test GEPSVM,
MVSVM, M3PSTM and M3VSTM algorithms. The classification
results over different numbers of training data from each digit
are reported in Fig. 2. For each fixed training sample size, the
results averaged over 10 random splits of the training samples
are reported as the test accuracy metric.

Observing from the results in Fig. 2, we conclude that: (1) The
experimental results show again that M3PSTM and M3VSTM are
comparable or even better than other algorithms in terms of clas-
sification accuracy in most cases. (2) The performance of all the
methods varies with the increasing number of training data sam-
ples. (3) Different pairwise digits produce different accuracy trends
and each method tends to perform especially well on some kind of
combinations. For instance, M3PSTM achieve the highest accuracy
rates on the cases: (0 vs. 1), (1 vs. 2) and (3 vs. 4). M3VSTM exhibits
the highest accuracy rates on the cases: (2 vs. 3), (6 vs. 7). GEPSVM
is capable of exhibiting the highest accuracy for the case of (4 vs.
5). For the cases of (1 vs. 2) and (6 vs. 7), M3PSTM is able to deliver
similar trend to GEPSVM and their accuracies are comparable. Sim-
ilarly, M3VSTM can obtain the comparative results to MVSVM for
cases of (7 vs. 8) and (8 vs. 9). Overall, the performance of both
GEPSVM and M3PSTM are superior to MVSVM and M3VSTM for
the cases of (3 vs. 4), (4 vs. 5), (7 vs. 8) and (8 vs. 9). In contrast,
the overall performance of both MVSVM and M3VSTM are superior
to GEPSVM and M3PSTM for the cases of (6 vs. 7). Relatively,
MVSVM works poorly on the cases of (1 vs. 2), (2 vs. 3) and (4
vs. 5).

Table 3 presents an overview of the means and standard devia-
tions of the classification accuracy rate achieved by each method.
The highest accuracy and average running time computed in sec-
onds are also reported. We can obtain the following observations
from Table 3. (1) The superiority of the four algorithms keeps con-
sistent with the plotted results in Fig. 2. For example, the mean
accuracy of M3VSTM is 95.72 for the case of (5 vs. 6), followed by
om the USPS handwritten digits database.

m = 2000, B vs. C) Tic-Tac-Toe (D = 9, Num = 958)

Best Time Mean ± std Best Time

67.34 0.9664 67.89 ± 0.046 73.56 0.1129
69.84 1.0967 67.90 ± 0.075 74.21 0.1410
85.86 1.0743 68.79 ± 0.031 75.65 0.1019
86.29 1.0404 67.02 ± 0.065 76.23 0.1389

rginica) Iris (Versicolour vs. Virginica)

Best Time Mean ± std Best Time

99.98 0.0158 82.26 ± 0.0056 88.87 0.0129
99.99 0.0564 83.82 ± 0.0075 89.00 0.0510
99.99 0.0143 83.60 ± 0.0032 88.26 0.0119
99.99 0.0368 84.04 ± 0.0069 89.97 0.0289

= 1473) Blood (D = 4, Num = 748)

Best Time Mean ± std Best Time

64.88 0.1630 70.48 ± 0.0709 75.26 0.1171
70.65 0.3979 78.61 ± 0.0159 83.87 0.1911
63.64 0.1597 66.15 ± 0.0165 73.49 0.1054
71.70 0.2987 73.88 ± 0.0274 78.68 0.1744

http://www.cs.nyu.edu/~roweis/data.html/USPSHandwrittenDigits
http://www.cs.nyu.edu/~roweis/data.html/USPSHandwrittenDigits


Table 3
Performance comparisons on the USPS handwritten digits database.

Method Result
Simulation setting

USPS Digit Database (0 vs. 1) USPS Digit Database (1 vs. 2) USPS Digit Database (2 vs. 3)

Mean ± std Best Time Mean ± std Best Time Mean ± std Best Time

GEPSVM 99.16 ± 0.0011 99.96 5.1168 88.20 ± 0.0087 92.31 5.1100 94.56 ± 0.0032 94.96 5.1122
M3PSTM 99.34 ± 0.0010 99.96 0.5598 88.83 ± 0.0092 90.74 0.5604 95.68 ± 0.0062 97.34 0.5926
MVSVM 98.58 ± 0.0016 99.59 5.0396 75.51 ± 0.0097 78.98 4.9156 92.96 ± 0.0057 95.58 5.0790
M3VSTM 98.82 ± 0.0029 99.64 0.5236 84.14 ± 0.0106 90.30 0.5172 96.95 ± 0.0054 98.19 0.5357

USPS Digit Database (3 vs. 4) USPS Digit Database (4 vs. 5) USPS Digit Database (5 vs. 6)

Mean ± std Best Time Mean ± std Best Time Mean ± std Best Time

GEPSVM 96.26 ± 0.0057 96.90 5.12085 94.85 ± 0.0035 95.99 5.5438 91.77 ± 0.0015 91.90 5.7811
M3PSTM 96.95 ± 0.0048 98.57 0.49258 93.21 ± 0.0098 94.29 0.6517 94.68 ± 0.0065 96.06 0.6778
MVSVM 94.51 ± 0.0043 95.18 5.05227 83.59 ± 0.0067 84.98 5.2615 92.41 ± 0.0051 94.21 5.5878
M3VSTM 94.24 ± 0.0063 96.62 0.54190 86.87 ± 0.0088 89.45 0.6050 95.72 ± 0.0075 97.58 0.6255

USPS Digit Database (6 vs. 7) USPS Digit Database (7 vs. 8) USPS Digit Database (8 vs. 9)

Mean ± std Best Time Mean ± std Best Time Mean ± std Best Time

GEPSVM 79.95 ± 0.0055 81.82 5.5374 84.49 ± 0.0072 88.00 4.9508 95.84 ± 0.0050 96.67 5.1705
M3PSTM 81.64 ± 0.0097 84.39 0.7049 83.35 ± 0.0102 86.19 0.6270 94.99 ± 0.0064 97.33 0.5679
MVSVM 85.22 ± 0.0087 86.94 5.2914 78.87 ± 0.0095 81.07 4.9909 92.96 ± 0.0026 93.83 5.1589
M3VSTM 86.58 ± 0.0098 88.96 0.6404 79.06 ± 0.0125 82.24 0.5818 93.27 ± 0.0052 94.19 0.5241
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Fig. 2. The classification accuracy rates vs. different numbers of training samples on the USPS database.
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94.68 for M3PSTM, followed by 92.41 for MVSTM, and MVSTM
delivers the lowest accuracy, i.e., 91.77. Correspondingly, their best
records are 97.58, 96.06, 94.21 and 91.90, respectively. (2) Consid-
ering the running time performance, we find that the computa-
tional time of the M3PSTM and M3VSTM approaches are
significantly reduced by comparing with that of GEPSVM and
MVSTM in each case. This is because that by utilizing the tensor
representations, the number of parameters estimated by M3PSTM
and M3VSTM is greatly reduced, which makes the tensorized
algorithms faster than those vectorized algorithms in training the
learner for testing.

5.3. Application to image segmentation

In this simulation, we prepare an interactive image segmenta-
tion task using the benchmark Berkeley segmentation database
(Martin et al., 2001). This task focuses on extracting the foreground
objects from the natural images. Though many efforts have been
made, e.g., Protiere and Sapiro (2007), Xiang, Nie, and Zhang
(2008), Wang, Wang, Zhang, Shen, and Quan (2009), Ning, Zhang,
Zhang, and Wu (2010), image segmentation is still a challenging
problem. In handing interactive image segmentation, the most
important problem is how to collect the user specified pixels about
foreground and background. In this simulation, eight natural
Fig. 4. Details of the two segmented

Fig. 3. Natural image segmentation results, where (a) original natural images, (b) the part
of GEPSVM, (d) results of M3PSTM, (e) results of MVSTM, (f) results of M3VSTM.
images from the Berkeley database are tested. Each extracted pixel
from the images is represented by a 5-dimensional vector u in R5,
namely u = [R,G,B,v,g]T, where (R,G,B) denotes the normalized
color of the pixel and (v,g) denotes the spatial coordinate with im-
age width and height. After the pixels are extracted, GEPSVM,
MVSTM, M3PSTM and M3VSTM classifiers are applied to determine
the class labels of the pixels. The visual measurement results of
M3PSTM and M3VSTM are compared with those of GEPSVM,
MVSTM. For the GEPSVM and MVSVM algorithms, each pixel is
represented by a 5-dimensional vector. In M3PSTM and M3VSTM,
each vector u is considered as a second order tensor in R5 � R1.
Based on the obtained class labels of the pixels, the image regions
are classified into foreground and background.

Fig. 3 exhibits the comparison results. The row (a) illustrates the
original tested images. The row (b) shows the source images with
user specified pixels, where blue and red colors indicate different
segments. The rows (c) and (d) illustrate the segmentation results
of GEPSVM and our M3PSTM. The rows (e) and (f) exhibit the seg-
mentation results of MVSTM and our M3VSTM, respectively.
Observing from the results, we see that our proposed M3PSTM
and M3VSTM algorithms can deliver visually comparable and even
better classification performance than that of the original GEPSVM
and MVSTM, especially on the boundaries. Here we take the
woman image as an example. We show the two segmented regions
regions in the woman image.

ially labeled images with user specified pixels denoted by different colors, (c) results
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with original image resolution for performance comparison in
Fig. 4. Observing from the details, we see clearly that more pixels
from the foreground and background are misclassified by GEPSVM
and MVSTM. On the contrary, the M3PSTM and M3VSTM algo-
rithms perform better in classifying the pixels and are capable of
organizing more satisfactory segmentation results.

6. Concluding remarks

This paper aims at representing the image data as the second
order tensors (or, matrices) and designing new tensor classifier
models for efficiently classifying and segmenting the images. In
particular, we have proposed two novel classification algorithms
called Maximum Margin Multisurface Proximal Support Tensor Ma-
chine (M3PSTM) and Maximum Margin Multi-weight Vector Projec-
tion Support Tensor Machine (M3VSTM) for learning the linear
classifiers in tensor space. M3PSTM and M3VSTM aim at finding
the maximum margin presentations of images in tensor space
and aims to compute two pairs of optimal projection directions
to construct two tensor hyperplanes for image classification and
image segmentation. To effectively and steadily obtain the trans-
forming basis vectors, the maximum margin criterion is employed
for formulating the optimization problems. As a result, the compu-
tational process is always steady, since the matrix inverse opera-
tion or matrix singularity has been avoided. We have also
discussed that the parameters in our proposed tensorized methods
are greatly reduced due to the introduction of the tensorized rep-
resentations. With tensor representation, M3PSTM and M3VSTM
can successfully take into account the spatial locality of the pixels
in the images. To verify the effectiveness of our proposed algo-
rithms, thorough comparative simulations on several benchmark
UCI and two real databases have been conducted. The classification
results demonstrated that the proposed M3PSTM and M3VSTM
algorithms are highly competitive with the GEPSVM and MVSVM
techniques. The image segmentation results indicate that our algo-
rithms perform better in capturing the details from the image pix-
els and correctly classifying the segmented regions.

Though the proposed algorithms are proved to be effective for
image classification and segmentation, there are several problems
sill remains to be investigated. M3PSTM and M3VSTM are naturally
linear, so they are incapable of discovering the intrinsic nonlinear
structure embedded in the image space. Thus it is interesting to
consider developing kernelized M3PSTM and M3VSTM for classifi-
cation. Recently, semi-supervised classification problem has at-
tracted a lot of attention in machine learning area (Astorino &
Fuduli, 2007; Chapelle, Sindhwani, & Keerthi, 2008). Therefore,
considering extending M3PSTM and M3VSTM to the semi-super-
vised case is also a very interesting future work.
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