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A new Self-Organizing Map algorithm, called the probabilistic polar self-organizing map (PPoSOM), is

proposed. PPoSOM is a new variant of PolSOM, which is constructed on 2-D polar coordinates. Two

variables: radius and angle are used to reflect the data characteristics. PPoSOM, developed to enhance

the visualization performance, provides more data characteristics compared with the traditional

methods that use Euclidian distance as the only variable. The weight-updating rule of PPoSOM is

associated with a cost function. Instead of using the hard assignment, PPoSOM employs the soft

assignment that the assignment of data to neuron is based on a probabilistic function. The obtained

results are compared with the conventional SOM and ViSOM. The presented results show that the

proposed PPoSOM is an effective method for multidimensional data visualization. In addition, the

quality measurement of mapping, synthetical cluster density (SCD) is applied and it shows PPoSOM

exhibits an improved result compared with PolSOM.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Data visualization is a graphical presentation of multidimen-
sional data. It has been widely used in many applications such
as signal compression, pattern recognition, image processing, etc.
Data visualization aims at producing a simplified graphical display,
usually in 2 dimensions, that makes the perceiving of high dimen-
sional data possible and easy. Compared with the data appear in
their original high dimensional space, we may be more capable of
finding the possible relationship among the data points in the low
dimensional space, i.e., 2-D. Principal component analysis (PCA) [1]
and multidimensional scaling (MDS) [2] are two classical methods
for data reduction and visualization. PCA is one of the most widely
used methods because it is effective and robust for performing linear
projection [3,4]. Linear projection means the projection of data is
conducted by multiplying each component of the original vector
with a scalar. Thus, PCA is not the most suitable approach when one
is dealing with highly nonlinear data [5,6]. MDS is another classical
projection but its final visualization map is difficult to perceive,
when one is handling high-dimensional and highly unsymmetrical
data set. Sammon’s mapping [7] is the earliest approach in nonlinear
projecting data into low dimensional space for visualizing multi-
variate data. Sammon’s mapping tries to minimize the distances
between input data in the original high dimensional space and the
output data in the projected space. It is capable of preserving the
ll rights reserved.
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topological structure of the original data and their corresponding
inter-point distances, but Sammon’s mapping is computationally
demanding especially when one is handling huge numbers of data
points. In addition, it requires re-computation when new data points
are added [8].

Self-organizing map (SOM) [9–11] is an unsupervised learning
neural network to visualize high-dimensional data in a low-dimen-
sional map. SOM forms a 2 dimensional map by mapping the input
space onto the output space. The SOM map is capable of displaying
the data topology by assigning each datum to a neuron with the
highest similarity. SOM is computationally effective because its
updating rule is based on a simple winner-take-all algorithm. All
these characteristics have made SOM applicable to many physical
problems. Despite all these advantages, conventional SOM is usually
defined under a uniform grid map making the output map relatively
rigid for preserving the data relationship among clusters or within
one cluster. In addition, the requirement of pre-defining the map size
is another shortcoming of SOM. As SOM does not preserve the inter-
neuron distances on the map, some coloring schemes such as
U-matrix [12,13] and interpolation [14], were proposed to imprint
the inter-neuron distances. The clusters and boundaries of U-matrix
can be marked as a result. In U-matrix, the data structure is visualized
by distance matrix, in which large distances stand for borders and
small distances represent clusters. The coloring scheme enhances the
visualization effect, but the data structure and distribution often
appear in distorted forms.

Since Kohonen derived the classical SOM, many modified SOM
[15–23] have been proposed. Visualization-induced SOM (ViSOM)
[15–18], a relatively new variant of SOM, is aimed at improving
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the visualization of SOM. ViSOM regularizes the Euclidian dis-
tance of any pair of neurons, which is proportional to the distance
of corresponding data in the input space. It uses a parameter,
derived from the inter-neuron distance, to define and control the
resolution of the output map. Thus, ViSOM is able to preserve the
data topology as well as the inter-neuron distances. It gives
an outstanding multidimensional data visualization. But ViSOM
is based on heuristic and no cost function is assigned to it.
Probabilistic Regularized SOM (PRSOM) [19] is another recently
developed SOM. Instead of hard assignment by ViSOM, PRSOM
employs a soft assignment approach and extends the weight-
updating rule from ViSOM. PRSOM hybridizes SOM and MDS in
order to reduce the computational burden and preserve the inter-
neuron distances. When one compares ViSOM with PRSOM,
ViSOM can be considered a special case of PRSOM. Simulation
results presented in [19] demonstrate that PRSOM is an effective
algorithm for data visualization. But the disadvantage of both
ViSOM and PRSOM lies in the fact that certain data points may be
projected onto one neuron, which results in blurring the relation-
ship among the data represented by the same neuron.

In this paper, a new algorithm, namely Probabilistic Polar SOM
(PPoSOM), is proposed for data visualization. It is derived from the
concept of a new visualization map PolSOM [20] which is designed
to visualize data in a 2-D polar coordinates map. PPoSOM is gene-
rated with the introduction of probabilistic assignment to form a
cost function which results in the principled weight-updating rule.
Instead of Cartesian coordinates, PPoSOM visualizes data in a 2-D
polar coordinates map with two variables: radius and angle. These
two variables represent data weight and feature, respectively.
The neurons learn data feature by a probabilistic data assignment
method, and the projected data points are updated to approach their
winning neurons. As a result, the data topology as well as the inter-
data distances is preserved. Simulation results and the comparisons
with SOM and ViSOM show that PPoSOM exhibits remarkable
performance on data visualization. In addition, it is worth noting
that the introduction of the probabilistic function made the PPoSOM
visualization performance, measured by synthetical cluster density
(SCD) [20], markedly increase compared with those without the
probabilistic mechanism.

This paper is organized as follows. Section 2 presents an over-
view of PolSOM, ViSOM and a mapping quality measurement named
synthetical cluster density (SCD). Section 3 details the principle of
PPoSOM. In Section 4, six data sets are used to demonstrate the
abilities of PPoSOM and other visualization algorithms. The detailed
comparisons and analyses are given. The conclusion is presented
in Section 5.
Fig. 1. The topology preservation property of PolSOM.
2. Background

2.1. Polar self-organizing map (PolSOM)

The traditional algorithms such as SOM and ViSOM, are only
capable of clustering, but fall short in exhibiting the data character-
istics and the differences among clusters. Polar SOM (PolSOM) [20]
is designed to provide a new kind of visualization and overcome the
above problem. Instead of using Cartesian coordinate, PolSOM is
constructed on 2-D polar coordinates. The projected data points on
the map are expressed by two variables: angle and radius, repre-
senting the data feature and weight, respectively.

The PolSOM map is evenly divided into n angles and p tori, where
n is the dimensionality of data and p is the number of parts from
center to maximum data weight. Each angle stands for an attribute
of the data feature and different torus represents different data
weight value. The n � p neurons are set on the map as benchmarks of
data characteristics. Their weight initializations are determined by
their positions in a way that the significant attribute of a neuron
feature is represented by its angle and the weight value is deter-
mined by its radius.

Define Nr(i) and Na(i) as neuron i’s radius and angle, respectively,
and rx and ax as an output datum x’s radius and angle, respectively.
During each training process, a datum xj ¼ ðxj1,xj2,. . .,xjnÞ

T is ran-
domly chosen from the input space. The winning neuron c is found
according to c¼ argmini:x�wi:, iAf1,. . .,nUpg. Update the
weights of neuron c and its neighborhood set Nc by

wiðtþ1Þ ¼
wiðtÞþZ1ðtÞðxðtÞ�wiðtÞÞ for i¼ c,

wiðtÞþZ2ðtÞðxðtÞ�wiðtÞÞ for iANc :

(
ð1Þ

The polar coordinate of the corresponding selected datum is
updated according to

rxðtþ1Þ ¼ rxðtÞþb1ðtÞðNrðcÞ�rxðtÞÞ,

axðtþ1Þ ¼ axðtÞþb2ðtÞðNaðcÞ�axðtÞÞ,

(
ð2Þ

where Z1, Z2, b1 and b2 are the learning rates that monotonically
decrease with time.

Upon the completion of training process, the visualization map is
created so that each input datum is represented by its radius and
angle on the polar map. Data with similar features are grouped
together, and their characteristics are also reflected by their posi-
tions. Because the data are not projected onto neurons, the dis-
advantage of SOM and ViSOM mentioned above is overcome so that
the data relationships among different clusters and within a single
cluster are well preserved. Since there are the benchmark neurons
representing data characteristics, PolSOM does not require re-com-
putation when new instances are added. This characteristic facilitates
the incremental training process in most practical applications in
which one usually needs to update the map with new data.

In the following, we demonstrate the property of topology
preservation of PolSOM. We use the 2009 Times Higher Education
World’s University Rankings [34] because it is easy for us to
illustrate the topology preservation property through comparing
the characteristics of different well-known universities. More
detailed analyses are described in Section 4. The visualization result
is shown in Fig. 1. Note that the top 10 universities, i.e., Harvard
University, University of Cambridge, Yale University and Imperial
College London are located with large radii and around the angular
01. The similar length of radii implies that these universities carry
the similar overall high scores or the similar magnitudes of the
6-dimensional vectors. They all located around the angular 01 that



Table 1
Part of the 2009 Times High Education World’s University Rankings data set.

Rank Name Peer review Employer review Student/faculty International faculty International student Citation/faculty

1 Harvard 100 100 98 85 78 100

2 CAM 100 100 100 98 96 89

3 Yale 100 99 100 85 77 94

5 Oxford 100 100 100 96 97 80

7 Chicago 100 99 97 77 83 88

24 HKU 96 89 87 100 95 56

35 HKUST 89 86 84 100 99 54

43 Osaka 92 73 90 24 33 68

46 CUHK 87 77 77 97 79 55

92 Nagoya 67 77 89 28 34 61

97 Tohoku 67 58 98 36 32 58

124 CityU 66 58 63 100 60 48
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means they all have the same significant attribute (peer review). In
the PolSOM output map, universities with relatively low overall
scores are clustered with relatively small radii. In Table 1, it is clear
that the four universities of Hong Kong (Rank 24, 35, 46, 124) and
the three universities of Japan (Rank 43, 92, 97) have relative high
scores in the attribute of International Faculty and Student/Faculty,
respectively. Their different strengths are displayed in different
angular coordinates of the output map as shown in Fig. 1, which
reflects that the universities from the same country/city may have
similar characteristics. The visualization result depicted in Fig. 1
demonstrates that PolSOM is able to preserve the topological nature
of the input data. It not only groups the similar data together, it also
reveals the particular strength of the cluster in a way of arranging
them in a particular angular coordinate.

2.2. Visualization-induced SOM (ViSOM)

ViSOM [15–18] is proposed to preserve the inter-neuron dis-
tances as well as the data topology. ViSOM uses the similar map
structure as SOM, but the training of winning neuron’s neighbors is
different. The weight updating formula of ViSOM is defined by

wiðtþ1Þ ¼wiðtÞþeðtÞhicðtÞ xðtÞ�wcðtÞþðwcðtÞ�wiðtÞÞ
dci�Dcil
Dcil

� �� �
,

iANc , ð3Þ

where dci and Dci are the distances between nodes c and i in the
input space and output space, respectively. e(t) is the learning rate
that decrease monotonically with time; hic(t) is the neighborhood
function of winning neuron c. l is a positive pre-specified resolution
parameter.

ViSOM decomposes the updating force Fix¼x(t)�wi(t) into two
forces: Fix¼(x(t)�wc(t))þ(wc(t)�wi(t))¼FcxþFci. Fcx is the updat-
ing force from the winning neuron c to the input data x; Fci is a
lateral contraction force bringing neighboring neuron i to the
winner c. The second force regularizes the inter-neuron distance
in the output space to resemble that in the input space. ViSOM
delivers an excellent visualization result. However, ViSOM has a
drawback that certain input data points are mapped on the same
neuron, making the relationship of these data difficult or even
impossible to be preserved.

2.3. Quality measurement of mapping

In order to compare the visualization performance of PolSOM
and the proposed method PPoSOM, Synthetical Cluster Density
(SCD) proposed in [20] is employed. SCD demonstrates the combi-
nation of the intra cluster density which shows the data compact-
ness within one cluster, and the inter cluster density which
represents the separation between different clusters. Assuming a
data set has c clusters, in which ith cluster is denoted as
Xi ¼ fx1,x2,. . .,xpi

g, where pi is the number of data in the ith cluster.
The intra cluster density is high when the cluster is compact.

The intra density of ith cluster is defined as

Intra_densityðiÞ ¼
1

pi

Xpi

k ¼ 1

f ðxkÞ=stdi
r , xkAXi, ð4Þ

where f ðxkÞ ¼
1 if :xk�Xi:rstdi

d

0 otherwise

(
; stdi

d and stdi
r are the

standard deviations of data and radii in the ith cluster, respectively,

and Xi is the mean weight of the ith cluster. The inter cluster
density is low when two clusters are well separated. Its definition
between ith and jth cluster is given by

Inter_densityði,jÞ ¼
1þ

Ppiþpj

k ¼ 1 gðxkÞ

ðhðri,rjÞþ1ÞðpiþpjÞ
, xkA Xi,Xj

� �
, ð5Þ

where gðxkÞ ¼
1 if :xk�

Xi þXj

2 :r stdi
d
þ stdj

d

2 ,

0 otherwise,

8<
:

hðri,rjÞ ¼
ri�rj

�� �� if ri�stdi
r riþstdi

r � \ ½rj�stdj
r rjþstdj

r

h i
¼ |

0 otherwise

(

and ri is the average radius of the ith cluster.
Overall, the SCD of a data set with c clusters is defined by

SCD¼
Xc

i ¼ 1

Intra_densityðiÞ
.Xc

a ¼ 1

Xc

b¼ 1

baa

Inter_densityða,bÞ: ð6Þ

A larger SCD value implies a better clustering performance for
the given data set.
3. Probabilistic polar self-organizing map (PPoSOM)

In this section, a probabilistic PolSOM (PPoSOM) algorithm is
introduced. The PPoSOM extends the PolSOM algorithm by using a
soft assignment, which assigns an input datum to a neuron with a
certain probability. A subsequent weight updating rule is derived by
optimizing the cost function. It is noted that the nature of soft
assignment on SOM has been widely studied. These include the
investigation on convergence property [24]. More work and theore-
tical analyses on using soft assignment can be found in [19,25,
26,29–31]. The soft topographic vector quantization (STVQ) [25,26]
was derived by applying a deterministic annealing algorithm for
optimizing the cost function of TVQ [27,28]. This process is taken as
a method to avoid local minima of the cost function for clustering.
Instead of using hard assignment, the PPoSOM proposed in this
paper uses the soft assignment to obtain an effective visualization.
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PPoSOM employs the soft assignment so that it is associated
with a cost function. By minimizing the cost function, a principled
rule for updating weight is obtained, which results in a good
mapping effect. First, the noised probabilistic assignment pi(x(t))
of neuron i is introduced as follows, and the term ‘‘noised’’ means
that pi(x(t)) is affected by probabilistic assignments of neighbor-
ing neurons.

piðxðtÞÞ ¼
XN

j ¼ 1

hijPjðxðtÞÞ, ð7Þ

where N is the number of neurons, Pj(x(t)) is the probabilistic
assignment of neuron j for input x(t), and hij is a neighborhood
constant satisfying

PN
i ¼ 1 hij ¼ 1. They can be taken as

PjðxðtÞÞ ¼
1

C

1

:
PN

k ¼ 1 hjkðxðtÞ�wkÞ:
2

 !
ð8Þ

hij ¼

exp �
:Posi�Posj:

2

2s2

� �
PN

k ¼ 1 exp �
:Posi�Posk:

2

2s2

� � , ð9Þ

where C is a normalization constant and the neighborhood radius
s is a constant, Posi is the coordinates of neuron i. Pj(x(t)) is
reversed to the Euclidian distance between input data and the
neuron, that Pj(x(t)) is highest if neuron wj is the nearest to x(t).
The cost function of PPoSOM computes the sum of square errors
between the input data and all the neurons with consideration of
the probabilistic assignment. The cost function is defined as

E¼
1

2

XM
t ¼ 1

����
����XN

i ¼ 1

piðxðtÞÞðxðtÞ�wiÞ

����
����
2

¼
XM
t ¼ 1

EðtÞ, ð10Þ

where EðtÞ ¼ 1
2:
PN

i ¼ 1 piðxðtÞÞðxðtÞ�wiÞ:
2
, M is the number of

input data.
Because E(t) is positive, minimizing E can be simplified to

minimizing every E(t) which gives

@EðtÞ

@wi
¼�piðxðtÞÞ

XN

j ¼ 1

pjðxðtÞÞðxðtÞ�wjÞ ð11Þ

As a result, the principled weight updating rule is

wiðtþ1Þ ¼wiðtÞ�eðtÞ
@EðtÞ

@wi
¼wiðtÞþeðtÞpiðxðtÞÞ

XN

j ¼ 1

pjðxðtÞÞðxðtÞ�wjðtÞÞ:

ð12Þ

In order to avoid or to minimize the influence of sequential
training order, the above updating-weight rule is rewritten for a
batch algorithm of PPoSOM. It gives

wiðkþ1Þ ¼wiðkÞþ
eðtÞ
M

XM
t ¼ 1

piðxðtÞÞ
XN

j ¼ 1

pjðxðtÞÞðxðtÞ�wjðkÞÞ: ð13Þ

The definitions of Nr(i), Na(i), rx and ax are the same as PolSOM.
The executing steps of PPoSOM are as follows:
Step 1.
 Initialize each neuron according to its position. Normalize
the input data, and initialize the polar coordinates of the
data by setting the radii proportional to their weights and
the angles with random values.
Step 2.
 Compute the noised assignment probability of all the
neurons for all input data according to Eq. (7).
Step 3.
 Update the weights of all neurons by batch algorithm
according to Eq. (13).
Step 4.
 Update the polar coordinates of this datum according to
Eq. (2).
Step 5.
 Repeat Steps 2–4 until the map converges.
Upon the completion of training, the visualization map is gener-
ated such that all advantages of PolSOM are preserved. The most
important property of PPoSOM is that it is associated with a cost
function, which gives a principled rule for weight updating and
obtains a good visualization effect. A probabilistic data assignment
instead of a hard assignment makes PPoSOM more flexible in
converging to the final map in accordance with different data
characteristics. This effect will be investigated in later section of
this paper.
4. Simulation results

Six data sets, including two synthetic data sets, Iris data set [32],
Wine data set [33], Wisconsin breast cancer data set [33] and the
Times Higher Education 2009 World University Rankings [34] are
used to illustrate the characteristics of PPoSOM. The visualization
results are compared with SOM and ViSOM. The map size of SOM is
20�20, the number of maximum iterations is 1000 and the learning
rate monotonically decreases from 1 to 0.018 with time. The
neighborhood range also monotonically decreases from 14.78 to 2.
In ViSOM, the map size is the same as that of SOM, and l is set to
0.1. In PPoSOM, Z1 and Z2 are set to 0.05 and 0.1, respectively.
5. Three-dimensional synthetic data sets

In order to demonstrate the characteristics of PPoSOM, two
types of 3-D synthetic data sets are used in this section. Each of
them consists of two clusters named Cluster ‘‘1’’ and Cluster ‘‘2’’,
and each cluster is formed by 100 data points.

In the first data set, the mean weight vectors of two clusters
are [0.45 0.54 0.54]T and [2.48 2.48 2.52]T, respectively. The
data weights in Cluster ‘‘1’’ are smaller than those in Cluster ‘‘2’’.
The simulation results of PPoSOM, SOM and ViSOM are presented
in Fig. 2. As shown in Fig. 2, Cluster ‘‘1’’ and Cluster ‘‘2’’ are well
separated from each other in PPoSOM, SOM and ViSOM. In PPoSOM
map Fig. 2(a), all the radii of the data from Cluster ‘‘1’’ are smaller
than those from Cluster ‘‘2’’. This is in the agreement with the fact
that the average data weight of Cluster ‘‘1’’ is smaller than that of
Cluster ‘‘2’’. Besides, the evenly distributed data angles indicate that
the attributes of every data are similar.

Based on Eq. (4), the intra cluster densities of Cluster ‘‘1’’ and
Cluster ‘‘2’’ are 1.1189 and 1.0191, respectively, which indicate
that these two have almost the same compactness. And according to
Eq. (5), the inter cluster density between Cluster ‘‘1’’ and Cluster ‘‘2’’
is 0.00069. This small value shows that the two clusters are well
separated. From Eq. (6), the clustering criterion SCD of the first
synthetic data set is 3098.55. The SCD is used to compare PPoSOM
and PolSOM. In Table 2, the SCD value of PolSOM is less than that of
PPoSOM, which means PPoSOM provides a better visualization
effect for the studied data set.

In the second data set, the second attributes in Cluster ‘‘1’’ and
the third attributes in Cluster ‘‘2’’ are larger than others. The mean
vectors are [0.48 2.49 0.54]T and [0.44 0.50 2.49]T, respectively. The
visualizations of PPoSOM, SOM and ViSOM are shown in Fig. 3.

Fig. 3 shows that the two clusters are well separated in all the
three algorithms. In PPoSOM, data from Cluster ‘‘1’’ and data from
Cluster ‘‘2’’ are located in the neighborhood of the angular 1201
and 2401, respectively. It is worth noting that the second and the
third attributes of Cluster ‘‘1’’ and Cluster ‘‘2’’ in input space are
more significant. These important characteristics cannot be exhi-
bited in SOM or ViSOM.

The intra cluster densities of Cluster ‘‘1’’ and Cluster ‘‘2’’ are
0.511 and 0.5071, respectively. It shows that the compactnesses
of these two are similar. The inter cluster density between Cluster



Table 2
Comparison of mapping by using SCD.

SCD First 3D data Second 3D data Iris data Wine data Wisconsin

PPoSOM 3098.55 40.724 13.98 8.097 0.7

PolSOM 3015.66 32.60 11.41 7.97 0.6792

Fig. 2. Visualization of the first 3-D synthetic data set: (a) PPoSOM, (b) SOM, and (c) ViSOM.
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‘‘1’’ and Cluster ‘‘2’’ is 0.025. This indicates the two clusters are
well separated. The SCD value is 40.724 which is in agreement
with the visualization of PPoSOM. As shown in Table 2, the
relatively larger SCD value obtained by PPoSOM shows it exhibits
an improved mapping ability.
5.1. Iris data set

Iris data set [32] contains three clusters; each cluster has 50
four-dimensional instances. The mean vectors of these three
clusters after normalization are [0.20 0.59 0.08 0.06]T, [0.45 0.32
0.55 0.51]T and [0.64 0.41 0.77 0.80]T, respectively. The visualiza-
tion results of PPoSOM, SOM and ViSOM are shown in Fig. 4. The
characteristics of Iris data are clearly shown in Fig. 4(a). Cluster ‘‘1’’
is clearly separated from Cluster ‘‘2’’ and Cluster ‘‘3’’. The latter two
are overlapped in some extent and not linearly separable from each
other. The average radius of the Cluster ‘‘1’’ is the smallest, and that
of the Cluster ‘‘3’’ is the largest. In addition, Fig. 4(a) illustrates
different significant attributes in the three clusters: the second
attribute in Cluster ‘‘1’’, the third attribute in Cluster ‘‘2’’ and the
fourth attribute in Cluster ‘‘3’’. The visualization is in agreement
with the Iris data characteristics. It is worth noting that the above
characteristics cannot be shown in SOM or ViSOM.

The intra cluster densities of three clusters are 0.577, 0.4069
and 0.4172. The inter cluster density between Cluster ‘‘1’’ and
Cluster ‘‘2’’, Cluster ‘‘1’’ and Cluster ‘‘3’’, and Cluster ‘‘2’’ and
Cluster ‘‘3’’ are 0.0023, 0.0013 and 0.0966, respectively. This
result is identical with the PPoSOM visualization. In Table 2, the
SCD value of PPoSOM is 13.98, while the SCD value of PolSOM is
11.41. It indicates the PPoSOM is able to deliver improved results.

5.2. Wine data set

The Wine data set [33] consists of 178 13-D data points which
are divided into three clusters. The number of data points in each
cluster is 59, 71 and 48. It is noted that these three clusters are
not well separated.

The visualization results of PPoSOM, SOM and ViSOM are
presented in Fig. 5. The characteristics of Wine data set are clearly
shown in Fig. 5(a). The average radius in Cluster ‘‘1’’ is the largest,
and the average radii in Cluster ‘‘2’’ and Cluster ‘‘3’’ are similar.
This is in agreement with the fact that the data weight of Cluster
‘‘1’’ is larger than the other two clusters. PPoSOM demonstrates
different significant attributes of each cluster along different
corresponding angular coordinates. It is worth pointing out that,
SOM and ViSOM are incapable of exhibiting these data character-
istics as shown in Fig. 5(b) and (c).

The intra cluster densities of three clusters are 0.7806, 0.4933
and 0.5706. The inter cluster density between Cluster ‘‘1’’ and
Cluster ‘‘2’’, Cluster ‘‘1’’ and Cluster ‘‘3’’, and Cluster ‘‘2’’ and
Cluster ‘‘3’’ are 0.0857, 0.0073 and 0.1348, respectively. The SCD
value is 8.097. This result is also in agreement with the PPoSOM
visualization. As shown in Table 2, PPoSOM also has a larger SCD
value compared to PolSOM.

5.3. Wisconsin breast cancer data set

The Wisconsin breast cancer data set [33] consists of 569
instances with 32 attributes (30 real-valued input features). The
data set is divided into two clusters: benign and malignant. The
numbers of benign and malignant are 357 and 212, respectively.
There is no clear separation between the two clusters.

The visualization results of PPoSOM, SOM and ViSOM are
shown in Fig. 6. The characteristics of breast cancer data set are



Fig. 4. Visualization of the Iris data set: (a) PPoSOM, (b) SOM, and (c) ViSOM.

Fig. 3. Visualization of the second 3-D synthetic data set: (a) PPoSOM, (b) SOM, and (c) ViSOM.
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clearly shown in Fig. 6(a). The average radius of benign is smaller
than that of malignant. This is in agreement with the fact that the
data weight of benign is smaller than that of malignant. By
comparing the data along different corresponding angular
coordinates, PPoSOM demonstrates these two clusters have dif-
ferent significant attributes. It is worth noting that SOM and
ViSOM are not capable of exhibiting these data characteristics as
shown in Fig. 6(b) and (c).



Fig. 5. Visualization of the Wine data set: (a) PPoSOM, (b) SOM, and (c) ViSOM.

Fig. 6. Visualization of the Wisconsin breast cancer data set: (a) PPoSOM, (b) SOM, and (c) ViSOM.
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The intra cluster densities of benign and malignant are 0.1824
and 0.1239, respectively. It shows that the compactness of benign
is higher than that of malignant. The inter cluster density
between benign and malignant is 0.4376. The SCD value is 0.7.
From Table 2, the SCD value indicates that PPoSOM delivers the
slightly better mapping result than PolSOM.



Y. Xu et al. / Neurocomputing 74 (2011) 2018–2027 2025
5.4. 2009 World University Rankings data set

The 2009 World University Rankings [34] used in this study is
the one reported by the Times Higher Education. The top two
hundreds institutions from 20 countries are evaluated by six
attributes in the ranking list. This ranking is to present the Times
views on the overall strengths of the world’s universities, including
academic peer review 40%, employer review 10%, faculty student
ratio 20%, proportion of international faculty 5%, proportion of
international students 5% and citations per faculty 20%. The weight
vector of a university is formed by these six attributes, which are the
scores of the six aspects. Their ranking calculation can be considered
as a kind of simple dimension reduction by putting different weights
on the 6 attributes. Under this simple calculation, the final ranking
can be significantly varied by changing the weighting scheme, i.e.,
increase the international faculty from 5% to 20%; there are a
thousand of Hamlets in a thousand people’s eyes. Apparently, this
simple ranking approach cannot reflect the strength and specialty of
certain universities clearly and accurately. In this section, we use
this data set to help illustrating the characteristics of the proposed
algorithm, because readers have a clear idea of the topological
nature of the data (universities). The visualizations by PPoSOM, SOM
and ViSOM are illustrated in Figs. 7 and 8. Note that Fig. 8(a)(d),
(b)(e) and (c)(f) are samples of Fig. 7(a), (b) and (c), respectively.

In Fig. 7(a)–(c), the dots represent the top 100 universities, and
the crosses represent universities ranking from 101 to 200.
In Fig. 7(a), it is clear that the higher ranking universities are located
with larger radii. This is in agreement with the fact that higher
ranking universities have higher scores in most aspects. It is worth
noting that this characteristic is not available in the SOM and
ViSOM; it is clear that PPoSOM provides more data characteristics.
Take certain universities as example, the 20th data ([97 99 84 93 86
65]T) and the 21st data ([97 80 55 100 94 99]T) represent University
of Edinburgh and ETH Zurich, respectively. Both of them are ranked
20 according to the Times Higher Education, but their features are
Fig. 7. Visualization of the 2009 Times High Education World’s Univ
significantly different in a way that the former one has a good
response from employer, whilst the latter one owns more interna-
tional faculty. In their corresponding output map shown in Fig. 8(a),
it shows different significant attributes in the 20th data (the second
attribute) and the 21st data (the fourth attribute). The same
observations can also be perceived in the remaining data, like the
177th data (University of Antwerp [47 36 99 59 56 37]T) and the
178th data (University of Athens [46 44 65 0 91 76]T). They are both
at the same 177th ranking, but exhibit different specialties. It is also
worth noting that one can easily identify the universities with
similar features via visualizing the data located with similar angles.
In Fig. 8(d), the 12th data (University of Pennsylvania [96 99 85 82
60 98]T), the 91st data (University of Nottingham [70 99 61 84 86
48]T) and the 131st data (Ohio State University [69 77 40 69 46 64]T)
are all located around the same angle, which indicates they all have
relatively high scores in the attribute of employer review. In
Fig. 8(e) and (f), it is clear that SOM and ViSOM are unable to reflect
these characteristics compared with Fig. 8(d).

The results show that the PPoSOM not only can group similar
data, it can also make use of the data positions to reflect the data
characteristics. In other words, PPoSOM is capable of preserving
data topology and exhibiting data characteristics. Compared with
SOM and ViSOM, which map data on Cartesian coordinates by
using Euclidian distance as the only variable, PPoSOM can
manifest more data characteristics. In addition, by applying the
probabilistic mechanism, PPoSOM delivers improved perfor-
mance compared with PolSOM according to the SCD analysis.
6. Conclusions

In this paper, a new self-organizing map called Probabilistic
Polar SOM (PPoSOM) is developed for providing a new type of
visualization. PPoSOM introduces a soft assignment to obtain a
cost function, which gives the principled rule for weight-updating
ersity Rankings data set: (a) PPoSOM, (b) SOM, and (c) ViSOM.



Fig. 8. Visualization of the 2009 Times High Education World’s University Rankings data set: (a) PPoSOM (Sample 1), (b) SOM (Sample 1), (c) ViSOM (Sample 1),

(d) PPoSOM (Sample 2), (e) SOM (Sample 2), and (f) ViSOM (Sample 2).
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to the recently developed Polar SOM. The probabilistic function of
a neuron for an input datum in the soft assignment is reversely
proportional to the difference between the input datum and the
neuron. This enables a more flexible convergence of the output map
in accordance with the characteristic of the input data. Combining
with the excellent characteristic of PolSOM, the proposed PPoSOM is
able to exhibit improved visualization performance. This is demon-
strated in the presented results and the synthetical cluster density
(SCD). This study shows that the PPoSOM is effective for multi-
dimensional data visualization.
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