
1482 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 9, SEPTEMBER 2010

Self-Organizing Potential Field Network: A New
Optimization Algorithm

Lu Xu and Tommy Wai Shing Chow, Senior Member, IEEE

Abstract—This paper presents a novel optimization algorithm
called self-organizing potential field network (SOPFN). The
SOPFN algorithm is derived from the idea of the vector potential
field. In the proposed network, the neuron with the best weight
is considered as the target with the attractive force, while the
neuron with the worst weight is considered as the obstacle with
the repulsive force. The competitive and cooperative behaviors
of SOPFN provide a remarkable ability to escape from the local
optimum. Simulations were performed, compared, and analyzed
on eight benchmark functions. The results presented illustrate
that the SOPFN algorithm achieves a significant performance
improvement on multimodal problems compared with other
evolutionary optimization algorithms.

Index Terms—Neural network, self-organizing map, stochastic
optimization, vector potential field.

I. Introduction

OPTIMIZATION refers to the study of problems in which
one seeks to minimize or maximize a function by

efficiently choosing the values of floating-point or integer
variables within a space limit. The function can be defined
according to different problems, e.g., complex networks,
telecommunications, traveling salesman problems, and path
planning of mobile robots. In practice, it is impossible to find
the optimal solution by sampling every value in a search space
within a finite computational time.

The stochastic optimization technique, which has become
increasingly important in solving optimization problems, in-
cludes local strategies such as simulated annealing (SA) [13],
and population-based strategies such as genetic algorithm
(GA), differential evolution (DE), particle swarm optimiza-
tion (PSO), and self-organizing migrating algorithm (SOMA).
These algorithms are all designed to emulate different physical
or biological behaviors to provide optimization characteristics.
Traditional GA [15], [19], [29] works iteratively by applying
three operators—selection, crossover, and mutation—for each
individual. This characteristic of GA is prone to yielding the
premature convergence and reducing the convergence rate. The
basic DE [8], [12], [16] generates new individuals by adding
the distance between two randomly selected individuals to

Manuscript received August 2, 2008; revised February 1, 2010, March 17,
2010, and March 19, 2010; accepted March 22, 2010. Date of publication
June 21, 2010; date of current version September 1, 2010.

The authors are with the Department of Electronic Engineering,
City University of Hong Kong, Kowloon, Hong Kong (e-mail:
xulu22@student.cityu.edu.hk; eetchow@cityu.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2010.2047264

a third one. The DE method self-adjusts as the perturbation
gradually decreases from the distance between the individuals
in the population. Although the mechanism of DE increases
the diversity, the convergence rate is slow because of its over-
stochastic characteristic. PSO [5], [11], [26], which emulates
the swarm behavior in a collaborative manner, lets every
particle go toward the direction of the best position of all
particles, as well as the direction of its own best position
found so far. PSO performs effectively on most optimization
problems except multimodal problems. SOMA [25], [34], [35]
updates every individual by a “migration loop” to generate a
series of candidate solutions. The migration strategy makes
SOMA require less training iteration.

Besides the above algorithms, there are other population-
based optimization algorithms such as evolution strategies [3],
memetic algorithm [7], ant colony system [4], and tabu search
[10]. Compared with local strategies, population-based strate-
gies replace the single search with the population search and
generate more opportunities to find the optimal solution. And
because of the availability of parallel computation, population-
based strategies are efficient at solving complex optimization
problems.

Recently, some evolutionary algorithms (EAs) combined
with the mechanism of a neural network have been devel-
oped. Self-organizing and self-evolving neurons (SOSEN) [31]
embed the self-organizing behavior [2], [14], [28] in SA
to improve the convergence rate. In SOSENs, each neuron
evolves using SA and cooperates with other neurons by a
self-organizing operator. Since the search space is enlarged
by multiple neurons, the performance of SOSENs has proven
to be better than that of SA. A new evolution strategy with
neighborhood attraction (EN), neuron gas attraction EN (NG-
EN) [9], which uses a neural gas approach to dynamically
adapt the neighborhood structure, defines that the neighbor-
hood radius of each individual is determined by its average
Euclidean distance to all other individuals. This method en-
hances the convergence rate to find the optimum. The neural
gas self-organizing net (NG-ES) [23], a modification of the NG
learning algorithm, generates an additional adaptation term to
avoid premature convergence.

In [1], Bergh et al. discuss the issue of “two steps forward,
one step back” in most optimization algorithms. This means
that some components of an individual vector may move
close to the optimum, while others may move away from
the optimum when the vector learns from the best candidate
solution. This mechanism makes the probability of generating

1045-9227/$26.00 c© 2010 IEEE

XU AND CHOW: SELF-ORGANIZING POTENTIAL FIELD NETWORK: NEW OPTIMIZATION ALGORITHM 1483

an individual inside the optimal region exponentially decrease
as the dimensionality increases. Another issue for most opti-
mization algorithms is that individuals in the population only
learn from the best candidate solution even though this solution
is far from the global optimum. This mechanism makes
individuals more susceptible to being trapped in the local
optimum, especially when the search space is multimodal. To
solve these problems, Potter and De Jong [24] suggest that
every vector in GA can be split into several parts forming
multiple populations instead of a single population. Bergh
et al. propose the cooperative PSO (CPSO) algorithm [1],
which partitions an n-dimensional individual vector into n
swarms of 1-D vector. In the CPSO algorithm, a high-
dimensional problem is transformed into a 1-D problem. It
significantly improves the diversity, but increases the number
of function evaluations. The comprehensive learning PSO
(CLPSO) [17], [18] is introduced by Liang et al. to improve
the performance of PSO. In CLPSO, the best positions of all
particles are used to update the velocity of one particle. In
such a way, CLPSO explores a larger search space, but at the
expense of convergence rate.

In this paper, a new optimization algorithm called the self-
organizing potential field network (SOPFN) is developed. The
SOPFN is an evolutionary algorithm that models the search
space as a self-organizing potential field similar to the vector
potential field (VPF) [22]. The VPF proposed by Masoud
and Bayoumi is designed for constructing navigation controls.
VPF prevents a robot from entering an undesired region
and guarantees convergence to a target. The VPF algorithm
consists of two parts. The first part controls the robot to drive
the motion toward the destination in an obstacle-free space.
The second part deflects the motion away from the obstacles.
In the SOPFN algorithm, the neurons with the best and
worst candidate solutions are considered as the target with
the attractive force and the obstacle with the repulsive force,
respectively. The self-organizing interactions of neurons in
the search space are motivated by potential functions, which
control neurons to move toward the target and to avoid
the obstacle. Compared with other evolutionary optimization
algorithms, the operator of repulsive force provides SOPFN
with better ability to escape from the local optimum, and
the SOPFN algorithm exhibits significant performance im-
provement in terms of accuracy in multimodal optimization
problems.

Section II presents an overview of self-organizing map
(SOM) and some traditional optimization algorithms. Sec-
tion III describes the principle, architecture, and implemen-
tation of the SOPFN. Section IV shows the simulation results
of seven algorithms on eight benchmark functions. Lastly, the
algorithm analysis of SOPFN and conclusion are given in
Sections V and VI, respectively.

II. Background

A. SOM

The SOM [2], [14], [28], [32], [33] proposed by Kohonen
is an unsupervised learning neural network with the ability
to visualize high-dimensional data in a low-dimensional map.

The map consists of a number of neurons, each of which has
a feature vector with the same dimensionality as the input
data. By assigning each input datum to a neuron with the
closest feature vector, SOM is able to display the topology of
input data. As a result, data with close proximity are mapped
together due to the neighborhood neurons.

Denote input data x ∈ �D, and neurons with weight vectors
w = [w1, w2, . . . , wD]T . At each training step, a sample datum
x is randomly chosen from the input dataset. Find the winning
neuron c whose vector is the closest to x in a 2-D map (M×N)
according to

c = arg min
i

‖x − wi‖ , i ∈ {1, 2, . . . , M × N}. (1)

The updating formula for every neuron is

wi =

{−2pcwi + α · ηic · [x − wi],
wi,

if i ∈ NC

otherwise
(2)

where α is the learning rate that monotonically decreases
with time, NC and ηic are the neighborhood set and the
neighborhood function of winner neuron c, and

ηic = exp

(
−‖Pi − Pc‖2

2σ2

)
(3)

where Pi and Pc are coordinates of neuron i and neuron c in
the map, σ is the neighborhood radius.

B. SOMA

SOMA [25], [34], [35] is a population-based evolutionary
algorithm. SOMA generates a series of new candidate solu-
tions for the optimization function from an individual at each
iteration.

The ith individual vector xi is expressed as xi =
[xi1, xi2, . . . , xiD]T in a population. SOMA assigns perturba-
tions to some components of xi by a PRT parameter

vij =

{
1,

0,

if randj ≤ PRT

if randj > PRT
j = 1, 2, . . . , D (4)

where randj ∈ [0, 1] is the random number of the jth
component, and PRT ∈ [0, 1] is the given constant. Then,
use the following rule:

x
′
i = xi + vi · t · (xG − xi) (5)

where xG is the best solution and t ∈ {�, 2�, . . . , k�}. � is
the step size and k is the step number. A number of x

′
i are

produced over different values of t, and the best solution is
chosen as the new xi.

C. PSO

PSO [1], [5], [11], [17], [18], [26] proposed by Kennedy
and Eberhart is derived by emulating the behaviors of flocks
of birds, schools of fish, and herds of animals, which live in a
collaborative manner. At each time step, every particle moves
toward the direction of the best position among all particles’
previous positions, as well as the direction of its own best
position found so far. Each particle has two features, position

1484 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 9, SEPTEMBER 2010

and velocity. The position of ith particle is denoted as xi with
D dimensions in a swarm, and vi is the velocity of ith particle
vi = [vi1, vi2, . . . , viD]T . The updating rule is formalized by

vij = ω · vij + c1 · rand1
j · (xgj − xij)

+c2 · rand2
j · (xpj−xij), j=1, 2, . . . , D (6)

xij = xij + vij, j = 1, 2, . . . , D (7)

where xg is the best position yielded so far among all particles’
historical positions, xp is the best position found so far by
particle i, ω is the inertia weight, c1 and c2 are positive
constants, rand1

j and rand2
j ∈ [0, 1] are random numbers.

D. SOSEN

The SOSEN [31] is a neural network algorithm running SA
for each neuron. SOSENs can be considered as a combination
of self-evolving behavior and self-organizing behavior, which
are similar to the crossover and mutation operators of GA.

In the case of SOSENs, the weight of a neuron is updated
by SOM after running SA. Results obtained by SOSENs can
be better than those obtained by running a single SA because
the input space is largely searched using multiple neurons.

At each training step, SOSENs finds the winning neuron c
with the best solution, and updates all neurons by

wi =

{
wc,

wi + α · ηic · (wc − wi),
if i = c

otherwise
(8)

where α is the learning rate, and ηic is the neighborhood
function.

The distance between a neuron and the winning neuron
determines the magnitude of the neuron being updated toward
the winner in the solution space. That is, if the neuron is the
one nearest to the winner, the magnitude of updating is the
largest.

III. Self-Organizing Potential Field Network

A. Self-Organizing Potential Field Strategy

The proposed SOPFN algorithm uses a similar network
structure of SOM [2], [14], [28]. In SOM, the learning
rule is used to adjust the weights of neurons for a given
dataset. As a result, neurons represent a data topology. In
SOPFN, the learning rule is developed to tune the weights of
neurons toward the optimum solution of the given optimization
function. Each weight of neuron is considered as a candidate
solution.

The network of SOPFN consists of an array of neurons
located at 2-D rectangular grids. The neuron whose weight
is the best solution is the winner among all neurons. Fig. 1
shows an example of the SOPFN network with 5×5 neurons.

Each neuron in the SOPFN network has two learning
mechanisms, cooperation and competition. The cooperation
behavior is a self-organizing procedure that the neurons sub-
jected to the winning neuron’s neighborhood are trained. The
competition behavior models the network as a potential field
similar to the vector potential field used in mobile robots [20],
[21], [27]. The neuron with the best solution is considered as

Fig. 1. Network structure of SOPFN with 5 × 5 neurons.

Fig. 2. Potential field with attractive and repulsive forces.

the target attracting other neurons, while the neuron with the
worst solution is considered as the obstacle repelling other
neurons. The potential forces of neurons are shown in Fig. 2.
Every neuron is operated by two forces, attractive force Fatt

and repulsive force Frep. The potential field organizes neurons
to move toward the target by the attractive force and away
from the obstacle by the repulsive force.

The SOPFN network can be expressed by a M ×N neuron
map with the weight w ∈ �D, w = [w1, w2, . . . , wD]T . The
potential forces acting on the ith neuron are formalized by the
following rules:

Fi
att = α1 · η1 · [wc − wi] i ∈ {1, 2, . . . , M × N} (9)

where wc is the weight of target neuron c, α1 is the attractive
learning rate, η1 is the attractive neighborhood function, and

η1 = exp

(
‖Pi − Pc‖2

2σ2

)
(10)

where Pi and Pc are coordinates of neuron i and neuron c
respectively in the map, σ is the neighborhood radius. And

Fi
rep = α2 · η2 · [wr − wi] i ∈ {1, 2, . . . , M × N} (11)

where wr is the weight of obstacle neuron r, α2 is the repulsive
learning rate, η2 is the repulsive neighborhood function, and

η2 = exp

(
−‖Pi − Pr‖2

2σ2

)
(12)

where Pi and Pr are coordinates of neuron i and neuron r
respectively in the map.

The Euclidean distance between the neuron and the target
or obstacle neuron has a significant effect on potential forces.
In (10), the attractive force increases as the distance increases.
On the contrary, (12) shows that the repulsive force decreases
as the distance increases.

XU AND CHOW: SELF-ORGANIZING POTENTIAL FIELD NETWORK: NEW OPTIMIZATION ALGORITHM 1485

Fig. 3. 10-D function optimization example by SOPFN with a 4 × 4 network. (a) Initialization state. (b) 50th generation state. (c) 100th generation state.

Fig. 4. 1-D search space with target and obstacle neurons. (a) Case I: xg <

xc < xr . (b) Case II: xg < xr < xc. (c) Case III: xc < xg < xr . xc denotes
best candidate value, xr denotes worst candidate value, and xg denotes global
optimum.

B. Self-Organizing Potential Field Network Algorithm

An optimization problem can be expressed in a form of
finding the vector x, where x ∈ �D, through minimizing the
cost function f (x) with constraints of g(x) ≤ 0 and xl ≤
x ≤ xu. In this paper, we assume that function variables are
continuous and are floating points. The detailed optimization
procedures of the SOPFN algorithm are as follows.

1) Initialization: Randomize the initial weights of M × N

neurons. The weights satisfy the uniform distribution
and optimization constraints.

2) Construction of the Potential Field: Find the target
neuron c with the best solution and the obstacle neuron
r with the worst solution according to

c = arg min
i

(f (wi)) i ∈ {1, 2, . . . , M × N} (13)

r = arg max
i

(f (wi)) i ∈ {1, 2, . . . , M × N}. (14)

3) 1-D Weight Updating: For every neuron i, randomly
choose an integer k ∈ [1, D].

a) Update the kth component of the weight vector of
neuron i toward the target neuron c. Generate a set
of weights w′

i according to the following rule:

w′
ij =

{
wij + ζ · F

ij
att,

wij,

if j = k and i ∈ Nset

otherwise

j=1, 2, . . . , D (15)

where ζ ∈ {�, 2�, . . . , m�}, � is the step size,
m is the step number, and Nset is the neighborhood
set of neuron c.

b) Update the kth component of each weight vector
of w′

i away from the obstacle neuron r. Generate
another set of weights w′′

i according to the follow-
ing rule:

w′′
ij =

{
w′

ij − Fij
rep,

w′
ij,

if j = k&i ∈ Nset

otherwise

j = 1, 2, . . . , D. (16)

c) Find the best solution between w′
i and w′′

i , and de-
note it as the new weight of neuron i as following:

wi = arg min
[w′

i
, w′′

i
]
{f (w′

i), f (w′′
i)}. (17)

4) Self-adaptation: Compare function values to reassign
the target neuron c and obstacle neuron r among all
neurons.

5) If the specified maximum number of iteration is reached
or the stopping criteria are satisfied, stop running.
Otherwise, go to step 3.

Step 2, which finds the target neuron and obstacle neuron,
represents the competitive behavior of SOPFN. Step 3, which
generates new weights of neurons, represents the cooperative
behavior of SOPFN. The step size � defines the sample
granularity of the attractive force in the search space. A large
value of � can speed up the search, while a small value of
� can increase the diversity. The step number m, which is
larger than 1, defines the maximum updating boundary. When
m increases, the diversity is increased as well. But m cannot be

1486 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 9, SEPTEMBER 2010

Fig. 5. Landscape maps of four 2-D functions. (a) Rastrigin’s function. (b) Stretched V sine wave function. (c) Ackley’s function. (d) Pathological function.

too large because of the subsequent increase of computational
complexity. The learning rates α1 and α2 range from 0 to 1.
For the attractive learning rate α1, it has an effect on the
convergence rate. The neighborhood radius σ is the integer
ranged from one to the map size. The number of neurons
M × N is determined by the nature of the problem. Usually
a small value is used for a low-dimensional or unimodal
problem, and a large value is used for a high-dimensional or
multimodal problem.

Fig. 3 illustrates a 4 × 4 SOPFN network working
on optimizing the function f (x) =

∑D
i=1 |xi| (d = 10)

whose optimum value is 0. The initial 16 neuron weights are
randomized in the range of [−100 100], and the corresponding
function values are shown in Fig. 3(a). The average function
value is 355.39. After 50 iterations, all the neuron weights
are optimized by SOPFN, and the average function value
decreases to 0.18 as shown in Fig. 3(b). After 100 iterations,
the function values of all neurons are shown in Fig. 3(c) with
the average value 1.17 × 10−4.

C. Cooperative and Competitive Behaviors of SOPFN

This section studies the cooperative and competitive behav-
iors of the SOPFN algorithm. In the cooperative behavior,
since the parameter ζ spreads over a range of values, SOPFN
generates a series of candidate solutions for a neuron. As a
result, the diversity is increased. The competitive behavior of
SOPFN enables neurons not only to move toward the best so-
lution, but also away from the worst solution. This mechanism
is able to prevent SOPFN from premature convergence to a
great extent and make neurons escape from the local optimum
with a larger probability. The results presented in Section IV
corroborate the contribution of SOPFN.

To compare the traditional evolutionary algorithm with
SOPFN, we use an example of 1-D search space related to
one component of a neuron weight vector. Three cases are
illustrated in Fig. 4, where xc, xr, and xg are the component
values of the best candidate solution, the worst candidate
solution, and the global optimum solution, respectively. In
each case, there are four possible regions labeled as L1, L2, L3,
and L4 that the corresponding component value of a neuron
xp can be subjected to.

Table I demonstrates the effects of the potential forces. In
the traditional EA algorithm, only one force, the attractive
force Fatt, makes xp move toward xc. In the SOPFN algorithm,
in addition to the attractive force Fatt, the repulsive force Frep

pulls xp away from xr. For example, in case I for EA, Fatt

pushes xp away from the optimum xg, when xp is subjected
to L2. But for SOPFN, Frep pushes xp toward xg, making the
distance between xg and xp smaller than that of EA. When
xp is subjected to L3, Fatt, and Frep of SOPFN both push
xp toward xg. So xp is closer to xg in SOPFN. When xp is
subjected to L1 or L4, Frep pulls xp away from xg. According
to step 3(c) of the SOPFN algorithm, only the attractive force
is considered, which means Frep = 0. Overall, Table I shows
that the repulsive force pushes the weight of the neuron closer
to the global optimum value in the four shaded regions out of
the total 12 regions. This operation can reduce the searching
time required by neurons to reach the optimum value.

IV. Simulations and Results

The performance of SOPFN is compared with the SA,
SOSENs, PSO, CLPSO, CPSO-SK, and SOMA algorithms on
eight benchmark functions. These studied functions include

XU AND CHOW: SELF-ORGANIZING POTENTIAL FIELD NETWORK: NEW OPTIMIZATION ALGORITHM 1487

TABLE I

Comparisons Between Traditional EA and SOPFN in 1-D Search Space

Case I Case II Case III
Traditional EA SOPFN Traditional EA SOPFN Traditional EA SOPFN

L1 Fatt(+) Fatt(+) Fatt(+) Fatt(+) Fatt(+) Fatt(+)
L2 Fatt(−) Fatt(−)+Frep(+) Fatt(−) Fatt(−)+Frep(+) Fatt(−) Fatt(−)
L3 Fatt(+) Fatt(+)+Frep(+) Fatt(−) Fatt(−) Fatt(+) Fatt(+)+Frep(+)
L4 Fatt(+) Fatt(+) Fatt(+) Fatt(+) Fatt(+) Fatt(+)

“(+)” means that the neuron moves toward the optimum value by the force.
“(−)” means that the neuron moves away from the optimum value by the force.

unimodal (the first four functions) and multimodal (the last
four functions) problems that are widely used for measuring
the optimization performance. The formulas of functions are
shown as follows.

1) Sphere function

f1(x) =
D∑
i=1

x2
i . (18)

2) Rosenbrock’s function

f2(x) =
D−1∑
i=1

(100(x2
i − xi+1)2 + (1 − xi)

2). (19)

3) Third De Jong function

f3(x) =
D∑
i=1

|xi| . (20)

4) Fourth De Jong function

f4(x) =
D∑
i=1

ix4
i . (21)

5) Rastrigin’s function

f5(x) =
D∑
i=1

(x2
i − 10 cos(2πxi) + 10). (22)

6) Stretched V sine wave function

f6(x) =
D−1∑
i=1

(x2
i +x2

i+1)0.25(1+sin(50(x2
i +x2

i+1)0.1)2). (23)

7) Ackley’s function

f7(x) =
D−1∑
i=1

(20+e−20e−0.2
√

0.5(x2
i
+x2

i+1)−e0.5(cos(2πxi)+cos(2πxi+1))).

(24)
8) Pathological function

f8(x) =
D−1∑
i=1

⎛
⎜⎜⎜⎝0.5 +

sin

(√
100x2

i + x2
i+1

)2

− 0.5

1 + 0.001(x2
i − 2xixi+1 + x2

i+1)2

⎞
⎟⎟⎟⎠ .

(25)

The landscape maps of Rastrigin, Stretched V sine wave,
Ackley and Pathological functions with two variables are
shown in Fig. 5. All eight functions are studied on 30 and

100 dimensions respectively. In this paper, we use MATLAB
to conduct all simulations, and each of them is conducted 20
times. Table II lists the optimum solution x∗, the optimum
function value f (x∗), the initialization range, the threshold
(experimental optimum function value) and the maximum
number of iteration for each function.

The population size is set to 25 in PSO, CLPSO, CPSO-SK,
and SOMA. The network size is set to 5 × 5 in SOSENs and
SOPFN. In SOMA, PRT is set to 0.3, � and k are set to 0.11
and 27, respectively. In PSO, ω is set to 0.72, c1 and c2 are
set to 1.49 [6]. In CLPSO, the refreshing gap is set to 7. In
CPSO-SK, the split factor K is set to 5. In SA, the temperature
decreases by T := ε·T , where ε is set to 0.99. In SOSENs, α is
set to 1. In SOPFN, � and m are set to 1 and 3, respectively,
α1 and α2 are set to 0.3, and σ is set to 3.

To illustrate the effects of these parameters in SOPFN, we
examine the comparative performance on the 30-D 4th De
Jong function f4. Fig. 6 shows the optimization results with
different values of α1, α2, σ, �, and m. Fig. 6(b) indicates
that α2 is the less sensitive parameter due to the characteristic
that there is no significant difference of the function value in
different values of α2. Also, Fig. 6(c) and (e) demonstrates
that σ and m are less sensitive when they are large.

A. Simulation Results of 30-D Functions

The performances of the seven algorithms with minimum
function values, mean function values, and the numbers of suc-
cessful runs out of 20 runs on eight test functions are presented
in Table III. The best results among the seven algorithms
are shown in bold. Fig. 7 illustrates the mean function value
at every generation for each algorithm. The results indicate
that the numbers of the aforementioned functions that SA,
SOSENs, PSO, CLPSO, CPSO-S5, SOMA, and SOPFN can
reach the thresholds are 0, 3, 1, 1, 4, 2, and 6, respectively.

Among these seven algorithms, SOPFN evidently surpasses
the other six algorithms on f5, f6, and f7. These functions
are multimodal with numerous local minima as shown in
Fig. 5. The results indicate that SOPFN is able to deliver better
performance by avoiding being trapped in local minima. For
the unimodal functions f1, f3, and f4, SOPFN obtains the
experimental optimum values, but it does not have the fastest
convergence rate as shown in Fig. 7. For the Rosenbrock’s
function f2 whose global minimum is inside a long, narrow,
parabolic shaped flat valley, SOPFN does not attain the opti-
mum value. And all the other algorithms do not perform well
except CPSO-S5. In [30], it states that an algorithm may not
produce the same high level of result on all different classes

1488 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 9, SEPTEMBER 2010

TABLE II

Experimental Parameters of Eight Benchmark Functions

f x∗ f (x∗) Initialization Space Threshold
Maximum
Number of

Iteration
30-D 100-D

f1 [0, 0, . . . , 0] 0 [−5.12, 5.11]D 10−50 10−20 3000

f2 [1, 1, . . . , 1] 0 [−2.048, 2.047]D 10−2 100 3000

f3 [0, 0, . . . , 0] 0 [−2.048, 2.047]D 10−20 10−10 3000

f4 [0, 0, . . . , 0] 0 [−1.28, 1.27]D 10−20 10−10 3000

f5 [0, 0, . . . , 0] 0 [−5.12, 5.11]D 10+1 10+2 3000

f6 [0, 0, . . . , 0] 0 [−10, 10]D 10−2 100 3000

f7 [0, 0, . . . , 0] −8.88 × 10−16 [−30, 30]D 10−2 100 3000

f8

[
kπ√
101

, kπ√
101

, . . . , kπ√
101

]
0 [−100, 100]D 100 10+1 3000

−320 < k < 320, k is an integer

Fig. 6. Parameter comparisons of SOPFN on f4. (a) α1. (b) α2. (c) σ. (d) �. (e) m.

XU AND CHOW: SELF-ORGANIZING POTENTIAL FIELD NETWORK: NEW OPTIMIZATION ALGORITHM 1489

Fig. 7. Mean function value profiles on 30-D functions. (a) Sphere function. (b) Rosenbrock’s function. (c) Third De Jong function. (d) Fourth De Jong
function. (e) Rastrigin’s function. (f) Stretched V sine wave function. (g) Ackley’s function. (h) Pathological function.

1490 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 9, SEPTEMBER 2010

TABLE III

Comparative Performances of Seven Algorithms on 30-D Functions

Function 1 SA SOSENs PSO CLPSO CPSO-S5 SOMA SOPFN
Mean 4.01e−013 6.42e−066 5.23e−049 3.65e−009 6.36e−199 5.83e−168 4.65e−109
Minimum 1.60e−013 2.62e−067 1.71e−058 1.32e−009 7.07e−201 1.54e−174 2.02e−113
Number of successful runs 0 20 18 0 20 20 20
Function 2
Mean 28.75 28.57 17.38 24.27 0.40 14.55 23.91
Minimum 27.22 26.12 1.85 21.14 4.57e−004 12.66 18.57
Number of successful runs 0 0 0 0 17 0 0
Function 3
Mean 6.48e−012 9.85e−035 7.02e−012 1.45e−005 2.04e−102 1.63e−004 5.26e−057
Minimum 4.82e−012 4.13e−035 5.74e−024 8.24e−006 2.77e−104 1.41e−057 4.03e−058
Number of successful runs 0 20 1 0 20 8 20
Function 4
Mean 3.92e−015 1.20e−121 6.46e−082 3.01e−016 6.68e−201 4.42e−190 4.13e−201
Minimum 7.97e−018 4.21e−124 1.04e−090 6.26e−017 2.45e−202 1.17e−198 6.70e−203
Number of successful runs 0 20 20 0 20 20 20
Function 5
Mean 189.62 83.32 56.86 14.57 9.20 22.44 0
Minimum 119.27 50.44 35.82 9.08 3.98 8.95 0
Number of successful runs 0 0 0 1 13 1 20
Function 6
Mean 69.46 46.43 24.10 1.43 0.33 14.54 1.90e−023
Minimum 55.05 40.11 13.27 1.03 4.27e−050 5.92 1.12e−025
Number of successful runs 0 0 0 0 8 0 20
Function 7
Mean 469.47 276.26 64.72 0.0027 0.26 43.86 −8.88e−016
Minimum 407.63 246.28 30.13 0.0019 −8.88e−016 5.16 −8.88e−016
Number of successful runs 0 0 0 20 19 0 20
Function 8
Mean 12.32 11.23 7.17 8.76 4.05 4.24 3.91
Minimum 11.71 10.56 5.02 8.14 2.52 3.11 2.79
Number of successful runs 0 0 0 0 0 0 0

of problems. In this paper, we also find the SOPFN algorithm
more suitable to the complex multimodal problems, especially
with numerous local minima.

B. Simulation Results of 100-D Functions

The performances of the seven algorithms on 100-D test
functions are presented in Table IV and Fig. 8. The results
show that SA, SOSENs, PSO, CLPSO, CPSO-S5, SOMA,
and SOPFN can reach the thresholds in 1, 3, 0, 0, 3, 0,
and 6 function cases, respectively. The results demonstrate
that SOPFN achieves the best results on all the multimodal
functions f5, f6, f7, and f8 among the seven algorithms.
The conclusion, which is identical with that of 30-D function,
indicates that the SOPFN algorithm is more effective on the
multimodal problems.

V. Analysis of SOPFN Algorithm

The performance of an algorithm is evaluated in terms
of three criteria—accuracy, convergence rate, and robustness
[34]. The accuracy is measured by how close it is between
the algorithm’s mean function value and the global optimum.
According to the results listed in Table III, SOPFN delivers the
closest values to the global optima in five functions. Among
these five solutions, three of them are found to be superior

to those by the other algorithms. The convergence rate of an
algorithm is evaluated by the number of generations required
to reach the global optimum. Fig. 7(e)–(g) shows that SOPFN
has the distinctly fastest convergence rate compared with other
algorithms. The results also indicate that SOPFN exhibits the
best convergence characteristic on multimodal functions. The
robustness is evaluated by the number of successful runs out
of the total runs. A successful run means that its optimization
result is less than the given threshold. The larger the number of
successful runs is, the more robust the algorithm is. The results
summarized in Table III indicate that SOPFN can always reach
the thresholds in the total 20 runs on f1, f3, f4, f5, f6, and
f7. Among all the studied algorithms, we can conclude that
SOPFN is the most robust algorithm.

It is interesting to study the effect of omitting step 3(b),
i.e., there is no repulsive force. Fig. 9 and Table V show the
comparative results between SOPFN and SOPFN-R (without
the repulsive force) on eight 30-D functions. The results show
that SOPFN outperforms SOPFN-R on all functions except the
Ackley’s function f7, in which SOPFN and SOPFN-R deliver
the same result.

Another interesting study is to investigate the effect of
the 1 − d weight updating strategy of the SOPFN algorithm
which is used to solve the problem of “two steps forward,
one step back.” Fig. 10 and Table VI show the results of

XU AND CHOW: SELF-ORGANIZING POTENTIAL FIELD NETWORK: NEW OPTIMIZATION ALGORITHM 1491

TABLE IV

Comparative Performances of Seven Algorithms on 100-D Functions

Function 1 SA SOSENs PSO CLPSO CPSO-S5 SOMA SOPFN
Mean 2.28e−012 9.45e−036 0.17 0.02 4.36e−086 0.05 1.13e−027
Minimum 1.49e−012 3.10e−036 1.95e−005 0.01 7.39e−089 1.31e−012 6.84e−029
Number of successful runs 0 20 0 0 20 0 20
Function 2
Mean 98.18 97.92 148.38 111.53 85.90 97.28 95.23
Minimum 95.74 95.34 93.37 99.50 44.85 88.09 92.87
Number of successful runs 0 0 0 0 0 0 0
Function 3
Mean 2.48e−010 2.46e−019 0.97 0.15 4.47e−025 1.31 1.35e−014
Minimum 1.54e−010 1.69e−019 0.08 0.12 6.24e−035 0.38 5.22e−015
Number of successful runs 0 20 0 0 20 0 20
Function 4
Mean 5.63e−014 1.49e−062 3.10e−008 1.27e−004 3.81e−139 3.18e−005 1.24e−050
Minimum 1.20e−015 1.53e−063 4.11e−011 5.30e−005 1.84e−144 6.48e−043 6.43e−054
Number of successful runs 20 20 1 0 20 16 20
Function 5
Mean 823.70 388.69 280.20 405.49 137.95 130.32 0
Minimum 683.74 271.62 213.92 352.89 111.44 97.51 0
Number of successful runs 0 0 0 0 0 2 20
Function 6
Mean 269.87 180.74 161.30 53.98 45.64 106.92 0.015
Minimum 245.32 168.84 133.87 48.62 32.16 95.22 0.0057
Number of successful runs 0 0 0 0 0 0 20
Function 7
Mean 1683.90 783.30 726.53 23.41 99.70 537.71 1.94e−012
Minimum 1510.90 672.00 542.54 15.59 25.80 402.07 8.77e−013
Number of successful runs 0 0 0 0 0 0 20
Function 8
Mean 46.01 43.99 34.49 41.83 22.12 26.81 15.97
Minimum 44.83 42.73 30.56 41.32 19.76 23.99 13.69
Number of successful runs 0 0 0 0 0 0 0

TABLE V

Comparative Performances Between SOPFN and SOPFN-R

on 30-D Functions

Algorithm SOPFN v1 SOPFN-R v2 Ratio v2/v1
Function

Function 1 4.65e−109 1.42e−086 3.05 × 1022

Function 2 23.91 27.13 1.13

Function 3 5.26e−057 1.34e−045 2.54 × 1011

Function 4 4.13e−201 2.48e−167 6.00 × 1033

Function 5 0 0.10 ∞
Function 6 1.90e−023 1.08e−019 5.69 × 103

Function 7 −8.88e−016 −8.88e−016 1
Function 8 3.91 5.04 1.29

SOPFN with different numbers of updated components d on
four 30-D functions. On Rosenbrock’s function f2 and 4th
De Jong function f4, SOPFN achieves the best values when
d = 1. On Sphere function f1 and Pathological function
f8, SOPFN obtains the best values when d = 5 and d = 2,
respectively. It is also noticed that using a larger number of
updated components has no significant effect on improving
the accuracy, but increases the computational cost. Thus, the
1 − d updating strategy appears to be the optimal choice for
SOPFN.

For comparing the convergence performance among
population-based algorithms, Table VII demonstrates the num-
bers of generations required to reach the specified stopping
criteria of eight 100-D functions for the SOSENs, PSO,
CLPSO, CPSO-S5, SOMA, and SOPFN algorithms. The re-
sults show that SOPFN can reach all eight stopping criteria
within 100 000 generations, while other algorithms fail to
converge on some functions. The average computational time
per 100 generations for each algorithm is also detailed in
Table VII. The results show that the first three algorithms
with the fastest computational time per generation are CLPSO,
PSO, and SOPFN with 0.16 s, 0.17 s, and 0.96 s, respectively.
The SOMA algorithm, which requires 4.38 s, is found to be the
most computationally demanding algorithm. Although SOPFN
is relatively more computationally complex than CLPSO and
PSO in each generation, SOPFN exhibits the best convergence
performance in terms of reaching the stopping criterion. In
the case of f5, the converged values of CLPSO and PSO are
97.41 and 280.20, respectively, which are much larger than
the converged value 0.001 obtained by SOPFN. Table VII
illustrates that SOPFN delivers superior optimization values
on the eight functions.

The computational complexity of a population-based algo-
rithm can be defined as O(P · D · M), where P is the number
of neurons, M is the number of new generated weights for

1492 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 9, SEPTEMBER 2010

Fig. 8. Mean function value profiles on 100-D functions. (a) Sphere function. (b) Rosenbrock’s function. (c) Third De Jong function. (d) Fourth De Jong
function. (e) Rastrigin’s function. (f) Stretched V sine wave function. (g) Ackley’s function. (h) Pathological function.

TABLE VI

Comparative Performances of SOPFN With Different Numbers of Updated Components on 30-D Functions

Algorithm SOPFN d = 1 SOPFN d = 2 SOPFN d = 5 SOPFN d = 10 SOPFN d = 30
Function
Function 1 4.65e−109 8.57e−111 4.89e−122 1.68e−115 5.39
Function 2 23.91 25.49 26.72 35.33 105.07
Function 4 4.13e−201 1.32e−183 7.29e−142 4.01e−154 0.12
Function 8 3.91 2.83 3.65 5.62 12.25

XU AND CHOW: SELF-ORGANIZING POTENTIAL FIELD NETWORK: NEW OPTIMIZATION ALGORITHM 1493

Fig. 9. Mean 30-D function value profiles of SOPFN and SOPFN-R. (a) Sphere function. (b) Rosenbrock’s function. (c) Third De Jong function. (d) Fourth
De Jong function. (e) Rastrigin’s function. (f) Stretched V sine wave function. (g) Ackley’s function. (h) Pathological function.

1494 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 9, SEPTEMBER 2010

Fig. 10. Mean 30-D function profiles of SOPFN with different numbers of updated components. (a) Sphere function. (b) Rosenbrock’s function. (c) Fourth
De Jong function. (d) Pathological function.

TABLE VII

Comparative Performances of Convergence for Six Population-Based Algorithms on 100-D Functions

Algorithm Stopping Number of Generations Required to Reach the Stopping Criterion
Criterion

Function
SOSENs PSO CLPSO CPSO-S5 SOMA SOPFN

f1 10−20 1778 14 019 16 507 799 × 2364

f2 102 219 19 475 4592 1253 819 1440

f3 10−20 3223 39 200 25 779 1928 × 4051

f4 10−20 1004 8205 11 641 499 4587 1310

f5 10−3 × × × × × 1157

f6 100 × × 9530 × × 1916

f7 10−10 × × 17 288 × × 2608
f8 20 × × × × × 696

Average computational time per 100 1.15 0.17 0.16 1.98 4.38 0.96
generations (s)

“×” means the optimization result cannot reach the stopping criterion at 100 000 generations.

a neuron at each generation, and D is the number of updated
components in the weight vector. Because of the 1−d updating
strategy, SOPFN has the less computational complexity, when
the function dimensionality is large.

VI. Conclusion

SOPFN is a new evolutionary algorithm that models the
search space as a self-organizing potential field. In SOPFN,
the neuron with the best solution is considered as the target
with the attractive force, while the neuron with the worst
solution is considered as the obstacle with the repulsive force.

SOPFN can be considered as a combination of two behaviors,
competitive and cooperative. In the competitive behavior, the
target and obstacle neurons are found for neuron training.
This mechanism speeds up the convergence rate and increases
the probability of escaping from the local optimum. In the
cooperative behavior, the winner’s neighboring neurons are
updated to generate new weights at each generation. This
mechanism increases the diversity.

The presented results and analysis demonstrate that SOPFN
has remarkable performance on multimodal problems, espe-
cially for those with numerous local optima. For the case of
unimodal problems, SOPFN is not superior in the convergence

XU AND CHOW: SELF-ORGANIZING POTENTIAL FIELD NETWORK: NEW OPTIMIZATION ALGORITHM 1495

rate. Lastly, based on the algorithm evaluation, SOPFN is an
effective and robust optimization algorithm.

Acknowledgment

The authors would like to thank the editors and anonymous
reviewers for providing valuable comments and suggestions.

References

[1] F. V. D. Bergh and A. P. Engelbrecht, “A cooperative approach to particle
swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 225–
239, Jun. 2004.

[2] E. Berglund and J. Sitte, “The parameterless self-organizing map algo-
rithm,” IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 305–316, Mar.
2006.

[3] H. G. Beyer, The Theory of Evolution Strategies. Berlin, Germany:
Springer-Verlag, 2001.

[4] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[5] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Human Sci., Nagoya, Japan,
Oct. 1995, pp. 39–43.

[6] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proc. Congr. Evol. Comput.,
San Diego, CA, Jul. 2000, pp. 84–89.

[7] F. G. Guimaraes, F. Campelo, H. Igarashi, D. A. Lowther, and J. A.
Ramirez, “Optimization of cost functions using evolutionary algorithms
with local learning and local search,” IEEE Trans. Magn., vol. 43,
no. 4, pp. 1641–1644, Apr. 2007.

[8] Z. Hao, G. Guo, and H. Huang, “A particle swarm optimization
algorithm with differential evolution,” in Proc. 6th Int. Conf. Mach.
Learn. Cybern., vol. 2. Hong Kong, Aug. 2007, pp. 1031–1035.

[9] J. Huhse, T. Villmann, P. Merz, and A. Zell, “Evolution strategy with
neighborhood attraction using a neural gas approach,” in Proc. 7th Int.
Conf. Parallel Problem Solving Nature, LNCS 2439. Jan. 2002, pp. 391–
400.

[10] T. Kaji, “Approach by ant tabu agents for traveling salesman problem,”
in Proc. IEEE Int. Conf. Systems, Man, Cybern., Tucson, AZ, Oct. 2001,
pp. 3429–3434.

[11] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., Perth, Australia, Nov. 1995, pp. 1942–
1948.

[12] H. K. Kim, J. K. Chong, K. Y. Park, and D. A. Lowther, “Differential
evolution strategy for constrained global optimization and application
to practical engineering problems,” IEEE Trans. Magn., vol. 43, no. 4,
pp. 1565–1568, Apr. 2007.

[13] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[14] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer-Verlag,
1997.

[15] R. Kumar and P. Rockett, “Multiobjective genetic algorithm partitioning
for hierarchical learning of high-dimensional pattern spaces: A learning-
follows-decomposition strategy,” IEEE Trans. Neural Netw., vol. 9, no. 5,
pp. 822–830, Sep. 1998.

[16] J. Lampinen and R. Storn, “Differential evolution,” in New Optimization
Techniques in Engineering, G. C. Onwubolu and B. V. Babu, Eds. Berlin,
Germany: Springer-Verlag, 2004, pp. 123–166.

[17] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295, Jun.
2006.

[18] J. J. Liang and P. N. Suganthan, “Adaptive comprehensive learning
particle swarm optimizer with history learning,” in Proc. 6th Int. Conf.
Simul. Evol. Learn., LNCS 4247. Oct. 2006, pp. 213–220.

[19] T. Maruyama and H. Igarashi, “An effective robust optimization based
on genetic algorithm,” IEEE Trans. Magn., vol. 44, no. 6, pp. 990–993,
Jun. 2008.

[20] A. A. Masoud, “Decentralized self-organizing, potential field-based con-
trol for individually motivated mobile agents in a cluttered environment:
A vector-harmonic potential field approach,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 37, no. 3, pp. 372–390, May 2007.

[21] A. A. Masoud and M. M. Bayoumi, “Robot navigation using the vector
potential approach,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 1.
Atlanta, GA, May 1993, pp. 805–811.

[22] S. A. Masoud and A. A. Masoud, “Constrained motion control using
vector potential fields,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 30, no. 3, pp. 251–272, May 2000.

[23] M. Milano, P. Koumoutsakos, and J. Schmidhuber, “Self-organizing nets
for optimization,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 758–765,
May 2004.

[24] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Proc. 3rd Conf. Parallel Problem Solving
Nature, LNCS 866. 1994, pp. 249–257.

[25] R. Senkerik, I. Zelinka, and D. Davendra, “Comparison of evolutionary
algorithms in the task of chaos control optimization,” in Proc. IEEE
Congr. Evolut. Comput., Singapore, Sep. 2007, pp. 3952–3958.

[26] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
Proc. IEEE Int. Conf. Evolut. Comput., Anchorage, AK, May 1998,
pp. 69–73.

[27] N. C. Tsourveloudis, K. P. Valavanis, and T. Hebert, “Autonomous
vehicle navigation utilizing electrostatic potential fields and fuzzy logic,”
IEEE Trans. Robot. Autom., vol. 17, no. 4, pp. 490–497, Aug. 2001.

[28] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 586–600, May 2000.

[29] M. D. Vose, Simple Genetic Algorithm: Foundation and Theory.
Cambridge, MA: MIT Press, 1999.

[30] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[31] S. Wu and T. W. S. Chow, “Self-organizing and self-evolving neurons:
A new neural network for optimization,” IEEE Trans. Neural Netw.,
vol. 18, no. 2, pp. 385–396, Mar. 2007.

[32] S. Wu and T. W. S. Chow, “PRSOM: A new visualization method by
hybridizing multi-dimensional scaling and self-organizing map,” IEEE
Trans. Neural Netw., vol. 16, no. 6, pp. 1362–1380, Nov. 2005.

[33] H. Yin, “ViSOM: A novel method for multivariate data projection
and structure visualization,” IEEE Trans. Neural Netw., vol. 13, no. 1,
pp. 237–243, Jan. 2002.

[34] I. Zelinka, “SOMA: Self-organizing migrating algorithm,” in New Op-
timization Techniques in Engineering, G. C. Onwubolu and B. V. Babu,
Eds. Berlin, Germany: Springer-Verlag, 2004, pp. 167–218.

[35] I. Zelinka, R. Senkerik, and E. Navratil, “Optimization of chaos con-
trol by means of evolutionary algorithms,” in Proc. 18th Int. Conf.
Database Expert Syst. Applicat., Regensburg, Germany, Sep. 2007,
pp. 163–167.

Lu Xu received the B.Eng. and M.S. degrees in
electronic engineering from Beijing University of
Technology, Beijing, China, in 2004 and 2007, re-
spectively. She is currently working toward the Ph.D.
degree from the Department of Electronic Engineer-
ing, City University of Hong Kong, Kowloon, Hong
Kong.

Her early interests were about robotics and ar-
tificial intelligence. Her current research interests
include data clustering, optimization, and network
routing.

Tommy Wai Shing Chow (M’94–SM’03) received
the B.S. (First Hons.) and Ph.D. degrees from the
University of Sunderland, Sunderland, U.K., in 1984
and 1988, respectively.

Since 1988, he has been with the City University
of Hong Kong, Kowloon, Hong Kong, where he
is currently a Professor with the Department of
Electronic Engineering. He is an author and co-
author of numerous published works, including book
chapters, and over 140 journal articles related to his
research. His early research projects were mainly

focused on supervised network problems. A number of fast training algorithms
and weight initialization methods were developed. Recently he has focused
on machine learning, neural network, and pattern recognition.

Dr. Chow received the Best Paper Award in the 2002 IEEE Industrial
Electronics Society Annual Meeting, Seville, Spain. From 1997 to 1998,
he was the Chairman of the Hong Kong Institute of Engineers, Control
Automation and Instrumentation Division.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

