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A novel dual wing harmonium model that integrates multiple features including term frequency features
and 2-D wavelet transform features into a low dimensional semantic space is proposed for the applica-
tions of document classification and retrieval. Terms are extracted from the graph representation of doc-
ument by employing weighted feature extraction method. 2-D wavelet transform is used to compress the
graph due to its sparseness while preserving the basic document structure. After transform, low-pass
subbands are stacked to represent the term associations in a document. We then develop a new dual
wing harmonium model projecting these multiple features into low dimensional latent topics with dif-
ferent probability distributions assumption. Contrastive divergence algorithm is used for efficient learn-
ing and inference. We perform extensive experimental verification in document classification and
retrieval, and comparative results suggest that the proposed method delivers better performance than
other methods.
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1. Introduction

In this paper, we consider the problem of modeling document
data using multiple features. The evolution of human languages
leads to a growing demand of extracting more features from docu-
ments to express rich information and different meanings of term
combinations. Another demand is to find low dimensional seman-
tic expressions of documents with integrating multiple features
while preserving the essential statistical relationships between
terms and documents, which is useful for facilitating processing
of large corpora and dealing with data mining tasks such as classi-
fication, retrieval, summarization and plagiarism detection.

Vector space model (VSM) (Salton & McGill, 1983), the most
popular and widely used tf–idf scheme, uses a basic vocabulary
of ‘‘words” or ‘‘terms” for feature description. The term frequency
(tf) is the number of occurrences of each term, and the inverse-doc-
ument-frequency (idf) is a function of the number of document
where a term took place. A term weighted vector is then con-
structed for each document using tf and idf. Similarity between
two documents is then measured using ‘cosine’ distance or any
other distance functions (Zobel & Moffat, 1998). Thus, the VSM
scheme reduces arbitrary length of term vector in each document
to fixed length. But a lengthy vector is required for describing
the frequency information of terms, because the number of words
ll rights reserved.
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involved is usually huge. This causes a significant increase of com-
putational burden making the VSM model impractical for large
corpus. In addition, VSM scheme reveals little statistical structure
about a document because of only using low level document fea-
tures (i.e. term frequency). Latent semantic indexing (LSI) (Deer-
wester & Dumais, 1990), an extension from VSM model, maps
the documents and terms to a latent space representation by per-
forming a linear projection to compress the feature vector of the
VSM model into low dimension. Singular value decomposition
(SVD) is employed to find the hidden semantic association be-
tween term and document for conceptual indexing. In addition to
feature compression, LSI model is useful in encoding the semantics
(Berry, Dumais, & O’Brien, 1995). A step forward in probabilistic
models is probabilistic latent semantic indexing (PLSI) (Hofmann
et al., 1999) that defines a proper generative model of data to mod-
el each word in a document as a sample from a mixture distribu-
tion and develop factor representations for mixture components.
Chien and Wu (2008) further developed an adaptive Bayesian PLSI
for incremental learning and corrective training that was designed
to retrieve relevant documents in the presence of changing domain
or topics. By realizing overfitting problems and the lack of descrip-
tion at the level of documents in PLSI, Blei, Ng, and Jordan (2003)
introduced an extension in this regard, latent Dirichlet allocation
(LDA). LDA is viewed as a three-level hierarchical Bayesian model,
in which each document is modeled as a finite mixture over an
underlying set of topics. Using probabilistic approach is able to
provide an explicit representation of a document. Compared with
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Fig. 1. Three-scale 2-D wavelet graph decomposition.
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LDA, exponential family harmonium (EFH) model (Welling, Rosen-
Zvi, & Hinton, 2004) is an alternative two-layer model using expo-
nential family distributions and the semantics of undirected mod-
els for document retrieval. EFH is able to reduce the feature
dimension significantly using a few latent topics (or hidden units)
to represent a document. But EFH is only practical for term obser-
vations with very few states (e.g. binary). By following the general
architecture of EFH, Gehler, Holub, and Welling (2006) then devel-
oped a rate adapting Poisson (RAP) model that couples latent top-
ics to term counts using a conditional Poisson distribution for
observed count data and conditional binomial distribution for la-
tent topics involving a weight matrix, respectively. Xing, Yan, and
Hauptmann (2005) and Yang et al. (2008) developed dual wing
harmonium (DWH) and hierarchical harmonium (HH) to model
associated data from multiple sources jointly for the special appli-
cations in video classification. In their DWH model, the authors di-
rectly treated the term counts via Bernoulli distribution whose
rates are determined by the combination of latent topics and the
whole image color histogram via a multivariate Gaussian distribu-
tion whose mean is determined in the same way.

These approaches only use independent word as feature unit,
and these feature extraction schemes are a rough representation
of a document. However, in real applications, it is important to
consider the document structure and term associations in each
document. For example, two documents containing similar term
frequencies may be contextually different when the spatial distri-
bution of terms are very different, i.e., school, computer, and science
means very different when they appear in different parts of a doc-
ument compared to the case of school of computer science that ap-
pear together. Thus, using only term frequency information from
the ‘‘bag of words” model is not the most effective way to account
contextual similarity that includes the word inter-connections and
spatial distribution of words throughout the document. By realiz-
ing this problem, Chow and Rahman (2009) introduced a tree
structure and used multilayer self-organizing map (SOM) for doc-
ument retrieval and plagiarism detection with promising results.
In this paper, we try to use graph, wavelet compression and statis-
tical data reduction with multiple features to improve document
data mining performance. First, we introduce undirected graph
for document representation that results in more semantic infor-
mation to be included. Terms are extracted by using weighted fea-
ture extraction method. Each document graph is then compressed
by employing 2-D wavelet transform. We use stacked low-pass
subbands with preserving document structure as term associations
features. Motivated by ideas in reference (Xing et al., 2005), we
then develop a novel dual wing harmonium (DWH) to generate
distributed latent representations of documents with modeling
multiple features jointly. We model term counts (term frequency,
TF) with a conditional Poisson distribution and wavelet transform
(WT) features with a conditional multivariate Gaussian distribu-
tion, respectively. Latent topics are treated as a conditional bino-
mial distribution involving weighted matrixes and multiple
features. DWH in this paper is an extension of RAP (Gehler et al.,
2006) model with combining multiple features into document la-
tent representation framework. The performance of DWH model
is investigated in the applications of document classification and
retrieval. We report accuracy results comparing with RAP model
and traditional LSI. We also investigate the influence of the number
of latent topics, different inference methods and normalization
parameter for balancing weights of TF feature and WT feature.
Therefore, the contribution of this paper is twofold. First, we pro-
pose a multiple feature extraction framework for representing a
document combined with traditional TF feature and WT feature ex-
tracted from graph compression using 2-D wavelet transform.
Multiple features are able to express more semantic information
of the terms associations and spatial distribution throughout doc-
ument. Second, a new DWH model is developed to project multiple
features to low dimensional latent representations capturing the
semantics hidden in documents. These latent topics are then ap-
plied to document classification and retrieval with promising
results.

The remaining sessions of this paper are organized as follows.
Multiple features extraction framework is introduced in Section
2. In Section 3, a new DWH model is described in details with brief
introduction to EFH and RAP models. Section 4 introduces contras-
tive divergence algorithm for DWH learning and inference. Appli-
cation results together with discussions are presented in Section
5. The paper ends with conclusions and future work propositions
in Section 6.
2. Multiple features extraction framework

2.1. TF feature

First, extract all the words from all documents except for stop
words (set of common words such as ‘‘in”, ‘‘the”, ‘‘are”, etc.) which
deliver little discriminate information in a database and apply
stemming algorithm to each word. Here, Porter stemming algo-
rithm (Porter, 1980) is applied to extract stem of each word, and
stems are used as basic features instead of original words. Thus,
‘‘send”, ‘‘sent” and ‘‘sending” are all considered the same word.
Store the stemmed words together with the information of term
frequency ft (the number of times that a term appears in one doc-
ument) and the document-frequency f t

d (the number of documents
where a term appears). Then, construct the vocabulary based on TF
features. We use a term-weighting measure in calculating the
weight of each word, which is similar to VSM (Salton & Buckley,
1988)

Wt ¼
ffiffiffi
ft

p
� idf ; ð1Þ

where the inverse-document-frequency idf ¼ log2
N
f t
d

� �
, and N is the

total number of documents in the corpus. Then, the words are
sorted in descending order according to the weights and the first
n words are selected to construct the vocabulary. The choice of n de-
pends on the database.
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2.2. Term graph

In our work, we use above extracted terms to construct undi-
rected graph to represent the term associations in each document.
It is worth mentioning that graph representation for document is
not new. An interesting application of graph representation
describing words links with a perspective of evolving complex net-
work for human language study can be found in Dorogovtsev and
Mendes (2001) and I Cancho and Sole (2001). In Schenker, Last,
Bunke, and Kandel (2003, 2004), different directed graphs with a
few most frequent terms as nodes were defined to represent a doc-
ument, k-Nearest Neighbor algorithm (k-NN) with different graph
matching distances based on maximum common subgraph was
applied to web document classification. Graph matching can be
accomplished in polynomial time making it impractical for large
data sets. Apart from the computation time limitation, there may
be difficulties in finding maximum common subgraph (subgraph
isomorphism) between two documents. Although it is quite
straightforward to apply directed graph to express the semantics
Fig. 2. One-scale complete wa
using terms in sequence appearing in the document, in many cases
the sequence of terms is convertible with conveying the same
semantics for human language. For example, ‘‘computer science”
can be expressed as ‘‘science of computer”, which delivers the same
meaning. Thus, in this paper we use undirected graph for represen-
tation of each document.

An undirected graph G for a document is denoted by
G ¼ ðV ; E;/; hÞ, where, V represents a set of vertices (i.e. terms), E
is a set of edges or associations between terms, / : V ! LV assigns
an attribute (i.e. term frequency) to each vertex of V, similarly,
h : E! LE assigns an attribute (i.e. term association frequency) to
each edge of E. Note that we use only a single vertex for each term
even if a term appears more than once in the document. Each ver-
tex is labeled with term frequency measure that indicates how
many times the related term appears in the document. Similarly,
each edge is labeled with term association frequency measure that
indicates how many times the connected terms appear together in
the document. Here, ‘‘connected” means that two terms are
adjacent to each other without distinguishing the term sequence.
velet transform process.
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Actually, two terms also can be treated as ‘‘connected” if they ap-
pear together in a sentence, a paragraph or even a page, which de-
pends on the applications or the datasets.

2.3. 2-D wavelet transform and WT feature

2-D wavelet transform, an effective tool for signal multiresolu-
tion analysis, has been widely used in image processing (Lewis &
Knowles, 1992; Mallat, 1989; Ouhsain & Ben Hamza, 2009; Sengur,
2008) and complex network analysis (Fan & Wang, 2005). To per-
form wavelet transform of documents, we first build the adjacent
matrix for the term graph of each document. The adjacent matrix
Al ðl ¼ 1;2; . . . ;NÞ for term graph Gl is denoted by Al ¼ ½al

ij�n�n

where al
ij represents the term association frequency between term

i and term j in document l. Then, we use the hierarchical wavelet
decomposition (Mallat, 1989) for Al. A high-pass filter (H) and a
low-pass filter (L) are applied to the adjacent matrix Al in both
the horizontal and vertical directions, and the filter outputs sub-
sampled by a factor of two, generating three orientation selective
high-pass subbands, i.e. HH, HL, and LH, and a low-pass subband
LL. The process is then repeated on the LL subband to generate
the next level of the decomposition, etc. (Fan & Wang, 2005; Lewis
& Knowles, 1992). Fig. 1 illustrates the block diagram of the
decomposition in this way. As seen in Fig. 1, three levels of decom-
position lead to ten subbands. Because wavelet transform has good
energy compaction property, i.e. most of the system energy is usu-
ally concentrated in the lowest frequency subband while with pre-
serving little or no energy in the high frequency subbands, it is
efficient to use it to transform these sparse adjacent matrixes into
more compact ones whilst preserving the basic graph structures.
By performing the recursive filtering process, we are able to com-
plete graph compression with multiresolution analysis.

To perform the 2-D wavelet transform, we here use Haar wave-
lets functions that consist of a short positive pulse followed by a
short negative pulse. The multiresolution version of the Haar
wavelet transform is an averaging and difference process for the
graph. The first level of the multiresolution analysis splits the ori-
ginal matrix up into a low frequency part (averaging process) and
three high frequency parts (difference process), which are horizon-
tal, vertical, and diagonal details (Fan & Wang, 2005; Lewis &
Knowles, 1992). The high frequency parts are also called the Haar
wavelet coefficients. This process can be repeated as many times as
desired. We will now provide a simple example of how we can use
the Haar wavelet that has scaling function (low-pass filter)
[1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

] and wavelet coefficients (high-pass filter) [1=
ffiffiffi
2
p
�

1=
ffiffiffi
2
p

] to compress the adjacent matrix while providing us with
the different levels of resolution of a graph. For example, if the
adjacent matrix is Al ¼ ½0210; 2001; 1000; 0100� that illustrates
the associations among four terms, we first use the Haar wavelet
transform for each rows of Al and we obtain the wavelet decompo-
sition in horizontal direction eAl=[2=

ffiffiffi
2
p

1=
ffiffiffi
2
p
� 2=

ffiffiffi
2
p

1=
ffiffiffi
2
p

; 2=
ffiffiffi
2
p

1=
ffiffiffi
2
p

2=
ffiffiffi
2
p
� 1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p

01=
ffiffiffi
2
p

0; 1=
ffiffiffi
2
p

0 � 1=
ffiffiffi
2
p

0]. We then
use the Haar wavelet transform for each columns of eAl and we
get the wavelet decomposition in vertical direction Al

1 ¼ ½2100;

1000; 00 � 21; 0010� whose low-pass subband LL = [21;10] can
be as the input of next level decomposition. The one-scale com-
plete wavelet transform process is summarized in Fig. 2. The mul-
tiscale wavelet decomposition provides a natural way to compress
the term graph. After the multiscale transform, we process the low
frequency parts as WT features which preserve the basic graph
structure and qualitatively include most of the system energy.

By performing a r-scale wavelet transform of Al, we denote the
lowest resolution subband as Gr;LL ¼ Al

r ¼ ½al
r;ij�nr�nr

ðnr ¼ n=2rÞ.
Without loss of generality, we assume that 2r is a factor of n. Then
we denote Y ¼ ðy1; . . . ; ynr

Þ as WT features of the document and
yj 2 Rnr is a nr-dimensional vector that represents the j-th row of
Al
r . So Y is a stacked vector constructed by Al

r . By performing the
2-D wavelet transform, the compression rate of the original adja-
cent matrix is 4r . The choice of r depends on the database. In this
way, we achieve high computational efficiency.

3. DWH model for document data

The original harmonium model based on harmonium theory
(Smolensky, 1986) refers to a family of bipartite undirected graph-
ical models. Fig. 3(a) illustrates the bipartite topology of a harmo-
nium that consists of two layers of nodes. Nodes X ¼ fXig at the
bottom layer represent the observed data and nodes H ¼ fHkg at
the top layer denote the latent topics (or hidden units) of the data.
For document data, X can represent TF feature (i.e. term counts) of
each document, and H represent resultant discriminator by pro-
jecting higher dimensional TF feature into low dimensional seman-
tic space. One of advantages of harmonium model is that the nodes
within the same layer are conditionally independent given the
nodes in the other layer, which facilitates the generation of harmo-
nium distribution based on two between-layer conditional distri-
butions pðxjhÞðpðxjhÞ ¼

Q
iðxijhÞÞ and pðhjxÞðpðhjxÞ ¼

Q
jpðhjjxÞÞ.

3.1. EFH model and RAP model

EFH model introduced by Welling et al. (2004), a special class of
harmonium models in exponential family, can be understood as an
undirected probability model that combines latent topics in the
log-probability domain. The conditional distributions at two layers
and the joint distribution (harmonium random field) are in the fol-
lowing way (Welling et al., 2004; Yang et al., 2008).

pðxjhÞ ¼
Y

i

ðxijhÞ /
Y

i

exp hi þ
X

j

WijgðhjÞ
 !

f ðxiÞ
( )

ð2Þ

pðhjxÞ ¼
Y

j

pðhjjxÞ /
Y

j

exp gj þ
X

i

Wijf ðxiÞ
 !

gðhjÞ
( )

ð3Þ

pðx; hÞ / exp
X

i

hif ðxiÞ þ
X

j

gjgðhjÞ þ
X

ij

Wijf ðxiÞgðhjÞ
( )

ð4Þ

where ff ðxiÞg and fgðhjÞg are the sufficient statistics of node fxig
and fhjg. fhig; fgjg and fWijg are the parameters, they can be
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identified by learning algorithm. In above distributions the global
partition function are not explicitly shown, which makes the har-
monium learning more difficult. From the distributions, we can
see that the data nodes the term fWijg couples the data nodes x
to the latent topics h. Through learning and inference, latent topics
h will be harmonized with the observed data x so that h capture the
semantics in x.

To generate a component-wise nonlinear projection from input
space to output latent space, Gehler et al. (2006) extended the EFH
model to RAP model that is a more general topology of the expo-
nential family harmonium. RAP model couples latent topics to
term counts using a conditional Poisson distribution involving a
single weight matrix. They used conditional Poisson distribution
for the TF feature and conditional binomial distribution for the
latent topics as follows (Gehler et al., 2006):

pðxjhÞ ¼
Y

i

Poissonxi
ai þ

X
k

Wikhk

 ! !
ð5Þ

pðhjxÞ ¼
Y

k

Binomialhk
r sk þ

X
i

Wikxi

 !
;Mk

 ! !
ð6Þ

where rð�Þ is the sigmoid function, ai is the log mean rate of the
conditional Poisson distribution for term i; sk ¼ logðpk=ð1� pkÞÞ
(pk is the probability of success), and Mk is the total number of sam-
ples for the conditional binomial distribution for topic k. The joint
distribution over ðx; hÞ can be expressed as

pðx;hÞ / exp
X

i

ðaixi � logðCðxiÞÞÞ
(

þ
X

k

ðskhk � logðCðhkÞÞ

� logðCðMk � hkÞÞÞ þ
X

ik

Wikxihk

)
ð7Þ

where Cð�Þ is the Gamma function. The marginal probability of
nodes x is given by

pðxÞ / exp
X

i

ðaixi � logðCðxiÞÞÞ
(

þ
X

k

Mk log 1þ exp
X

i

Wikxi þ sk

 ! ! !)
ð8Þ

RAP models the behavior that the values of the variables at the
opposite layer shift the canonical parameters of the variables at
the corresponding layer. The variation of skf g decides the impact
on the Poisson rate aif g with rate adapting property.

3.2. DWH model

Motivated by reference Xing et al. (2005) using DWH modeling
the video data, we will present a new DWH model for document
data in this section. Fig. 3(b) shows the architecture of DWH for
document data that consists of two wings at the bottom layer.
One wing represents the observed TF features fXig, and the other
denotes the sampled WT features fYig. Note that WT features
fYig are linearly normalized corresponding to the TF features with
normalization weight C that is used to balance the contributions
between both types of features. The normalization is performed
as follows:

YiðsÞ ¼ C � WTFðsÞPnr�nr
v¼1 WTFðvÞ

�
Xn

q¼1

TFðqÞ ð9Þ

where WTFð�Þ represents the original WT feature units of one docu-
ment and TFð�Þ denotes the TF feature units of one document. Thus
DWH integrates TF and WT features as low level features into latent
topics as high level features to represent document semantics.
These two types of features interact with each other through with
the weighted matrixes.

In our DWH, we use conditional Poisson distribution for the TF
feature like RAP model as follows:

pðxijhÞ ¼ Poisson xijai þ
X

k

Wikhk

 !
ð10Þ

For WT feature, the WT feature yj of the jth row of the lowest fre-
quency subbands admits a conditional multivariate Gaussian distri-
bution as follows:

pðyjjhÞ ¼ Gaussian yjjKjðbj þ
X

k

UjkhkÞ;Kj

 !
ð11Þ

where both bj and fUjkg are nr-dimensional vectors, and so
b ¼ ðb1; . . . ;bnr

Þ is a stacked vector with dimension ðnrÞ2 and
U ¼ ½Ujk�, a matrix of size ðnrÞ2 � K where K is the total number of
the latent topics, represents the weighted matrix coupling the WT
features to the latent topics. Note that Kj is a covariance matrix with
size nr � nr , which, for simplicity, is set to identity matrix. Finally,
the latent topics fHkg follow the conditional binomial distribution
depending on a weighted combination of the TF features x and
WT features Y in the following way:

pðhkjx; YÞ ¼ Binomial hkjrðsk þ
X

i

Wikxi þ
X

j

UjkyjÞ;Mk

 !
ð12Þ

We then define the following joint distribution to be consistent
with above conditional distributions

pðx; Y; hÞ / exp
X

i

aixi � log CðxiÞð Þð Þ
(

þ
X

j

bjyj

�
X

j

y2
j

2
þ
X

k

skhk � log CðhkÞð Þ � log CðMk � hkÞð Þð Þ

þ
X

ik

Wikxihk þ
X

jk

Ujkyjhk

)
ð13Þ

The marginal distribution over ðx; YÞ can be expressed as follows by
marginalizing out the latent topics h in Eq. (13)

pðx; YÞ / exp
X

i

ðaixi � logðCðxiÞÞÞ þ
X

j

bjyj �
X

j

y2
j

2

(

þ
X

k

Mk log 1þ exp
X

i

Wikxi þ
X

j

Ujkyj þ sk

 ! ! !)
ð14Þ

The detailed derivation of Eq. (14) can be found in the Appendix.
Likewise, in Eqs. (13) and (14) the global partition function is not
explicitly shown.

From above probability distributions, we see that DWH model
in this paper is an extension of RAP model. It inherits rate adapting
property that is not only determined by TF features but also influ-
enced by WT features. Thus the learned latent topics will capture
more semantic information from documents to perform document
data mining tasks.

3.3. Learning and inference

The parameters of DWH model including aif g; bj

� �
; skf g;

Wikf g and Ujk

� �
can be learned by maximizing the likelihood of

the document data according to Eq. (14). Due to the complexity
of the model, it is extremely difficult to obtain closed-form solution
to the optimization problem. Thus we have to perform stochastic
gradient ascent on the log-likelihood of data in iteration. The learn-
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ing rules can be derived from log-likelihood of Eq. (14) in the fol-
lowing way:

dai ¼ xih i~p � xih ip ð15Þ
dbj ¼ yj

� �
~p
� yj

� �
p

ð16Þ

dsk ¼ Mk r �hk þ sk

	 
� �
~p � r �hk þ sk

	 
� �
p

� �
ð17Þ

dWik ¼ Mk xir �hk þ sk
	 
� �

~p � xir �hk þ sk
	 
� �

p

� �
ð18Þ

dUjk ¼ Mk zjr �hk þ sk

	 
� �
~p � zjr �hk þ sk

	 
� �
p

� �
ð19Þ

where �hk ¼
P

iWikxi þ
P

jUjkyj; �h i~p represents expectation under
empirical distribution (i.e. data average), and �h ip denotes the expec-
tation under model distribution of the harmonium at the current
values of the parameters. However, due to the presence of global
partition function in the log-likelihood of Eq. (14), it is hard to di-
rectly estimate the model expectation �h ip. There are many approx-
imate inference methods to estimate this expectation such as
contrastive divergence (CD) learning (Hinton, 2002; Welling & Hin-
ton, 2002), mean field (MF) approximation (Xing, Jordan, & Russell,
2003), and Langevin method (Murray & Ghahramani, 2004). CD
learning algorithm is proposed to approximate exact gradient as-
cent search. MF is an alternative method that approximates the
model distribution through a factorized form as a product of mar-
ginal distributions over clusters of variables (Xing et al., 2003; Xing
et al., 2005). With inheriting all the proposal moves of Langevin
Monte Carlo method, the Langevin approach uses noisy steepest as-
cent to avoid local optima as well as taking advantage of the gradi-
ent information (Murray & Ghahramani, 2004). In this section we
only introduce the details how to use CD learning algorithm for
DWH training. We also compare the performance of different algo-
rithms for learning and inference in application examples.

In each step of gradient ascent, CD starts from a separate Gibbs
sampler defined by Eqs. (10)–(12) at a data-case, runs it for only a
few steps and then uses these samples to approximate the model
expectation �h ip together with computing the gradient through
Eqs. (15)–(19). It has been proved that the parameters through this
learning process will converge to the maximum likelihood estima-
tion (Welling & Hinton, 2002). The whole learning procedures are
described as follows.
CD learning procedure for DWH model:
Initialize the parameters aif g; bj

� �
; skf g; Wikf g and Ujk

� �
Loop until convergence (by setting thresholds)

(1) Sample the latent topics given the input data using
Eq. (12)

(2) Resample the corresponding TF data-case given the
sampled values of the latent topics using Eq. (10)

(3) Resample the corresponding WT data-case given the
sampled values of the latent topics using Eq. (11)

(4) Compute the data averages and sample averages in
Eqs. (15)–(19)

(5) Update the parameters using the gradient ascent rules
in Eqs. (15)–(19)

End Loop
Return aif g; bj

� �
; skf g; Wikf g; Ujk

� �
1 http://www.dmoz.org/.
2 http://www.di.uniba.it/~malerba/software/webclass/WebClassIII.htm.
3 http://www.informedia.cs.cmu.edu/yanrong/MATLABArsenal/MATLABArsenal.

zip.
After learning and inference, all the document data can be
mapped to low dimensional latent representations, and then DWH
model is ready to perform various document data mining tasks.
4. Relationship to video DWH

Building on the early work of Welling et al. (2004), Xing et al.
(2005) and Yang et al. (2008) developed the DWH models for video
data (VDWH) with applications to classification, retrieval, image
annotation and video classification tasks by projecting two types
of features in video shot, text and image, into low dimensional la-
tent space and with promising results. In fact, our DWH model for
document data (DDWH) is an analogy to VDWH, and there is a
deep connection between DDWH and VDWH. The TF features in
DDWH are analogous to the text features in VDWH, and the WT
features in DDWH can be seen as the color histogram features in
the keyframe of each video shot in VDWH. In the video shot, each
keyframe is evenly divided into a grid of fixed size rectangular re-
gions, and each region is represented by the color histogram vec-
tor. Likewise, for document data, the term graph also can be
treated as an image that describes the associations among the
terms in the document. The low frequency subbands generated
from the 2-D wavelet transform are histograms of the compressed
regions of the document. Therefore, DDWH and VDWH are able to
be handled in a union frame because of their deep connections.

5. Applications

In this section, we evaluate DWH-WTF model on different data-
sets and for different data mining tasks, including classification and
retrieval. Here, we use the name DWH-WTF to denote our algo-
rithm since the DWH is aided by wavelet transform features.

5.1. Document classification

For document classification, we compiled the documents refer-
enced by the Open Directory Project1 on health conditions and dis-
eases. Knowing more details, readers are referred to the website.2

The original collection contained 5916 documents in 21 top-level
classes. For each top-level class, we first moved all the documents
in its sub-class to the top-level class and removed all the sub-classes.
We then removed all the short documents with the size less than 50
terms. Thus, 4527 documents were left with us in 19 classes that had
more than 60 files. The details of this dataset were summarized in
Table 1. The parameters of DWH-WTF algorithm in the simulation
were set as follows. The number of selected termsn was equal to
2048. The number of wavelet transform scalesr was set to 6, so the
length of WT feature vector was 1024. The normalization weightC
was set to 0.2. The learning rate and the momentum term to speed
up the convergence in DWH-WTF model were set to 0.01 and 0.95,
respectively. The DWH-WTF based on 200,000 learning iterations
using gradient ascent on mini-batches of 100 random training sam-
ples per iteration. To perform classification task, we use DWH-WTF
to project each data point into a lower dimensional latent space.
We then held out 90% of the entire data corpora for training purpose
and 10% for testing the performance. We used MATLABArsenal3 tool-
box to learn a KNN classifier on the training data.

In order to investigate the performance of harmonium model
using multiple features, we first compared the DWH-WTF model
with the RAP model (Gehler et al., 2006) using single features
(i.e. term counts). Table 2 summarized the accuracy performance
of DWH-WTF and RAP model with the number of latent topics
from 5 unto 25 at increments of 5. It is observed that both methods
perform better and better with the increase of the number of latent
topics from 5 to 15, and the accuracy results of them deteriorate in

http://www.dmoz.org/
http://www.di.uniba.it/~malerba/software/webclass/WebClassIII.htm
http://www.informedia.cs.cmu.edu/yanrong/MATLABArsenal/MATLABArsenal.zip
http://www.informedia.cs.cmu.edu/yanrong/MATLABArsenal/MATLABArsenal.zip


Table 2
Classification accuracy of different models (%).

Method Number of latent topics

5 10 15 20 25

DWH-WTF 45.35 50.89 63.27 50.44 52.21
RAP 38.27 50.22 55.31 43.36 45.35

Table 3
Classification accuracy of different models.

Method DWH-WTF RAP LSI

Accuracy (%) 63.27 55.31 58.62
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Fig. 4. Classification results of DWH-WTF using different learning methods.

Table 4
Classification accuracy of DWH-WTF using different learning methods (%).

Method Number of latent topics learning

5 10 15 20 25

CD 45.35 50.89 63.27 50.44 52.21
MF 35.62 43.36 56.86 49.56 25.22
Langevin 39.38 31.64 42.70 39.60 46.02

Table 1
Details of data set for document classification.

Class Number of articles Topic

1 89 Allergies
2 661 Cancer
3 499 Cardiovascular disorders
4 101 Communication disorders
5 163 Digestive disorders
6 218 Endocrine disorders
7 76 Wounds and injuries
8 136 Sleep disorders
9 110 Skin disorders

10 198 Respiratory disorders
11 62 Nutrition and metabolism disorders
12 998 Neurological disorders
13 322 Musculoskeletal disorders
14 311 Infectious diseases
15 186 Immune disorders
16 85 Genitourinary disorders
17 91 Genetic disorders
18 98 Food and water borne
19 123 Eye disorders
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a small significant rate when continuing to increase the number of
latent topics. Thus, using 15 latent topics seems to be a good choice
of the number of latent topics that delivers superior performance
for both DWH-WTF and RAP. DWH-WTF consistently performs
better than RAP, which is believed that by including WT features
to harmoniums indeed captures additional discriminate factors
for the classification task. We then compared the accuracy results
of harmonium models with that of LSI model (Deerwester & Dum-
ais, 1990) under 15 latent topics summarized in Table 3. It is also
noted that DWH-WTF delivers about 5% improvement of classifica-
tion accuracy compared with LSI.

We also studied the effect of different learning approaches for
DWH-WTF inference based on classification results. Fig. 4 together
with Table 4 shows the accuracy results of DWH-WTF model
implemented using different approximate inference methods with
different numbers of latent topics. From Fig. 4, it is observed that
Langevin learning method performs worst compared with other
two approaches when the number of latent topics is between 10
and 20. Contrastive divergence (CD) learning delivers significantly
better results than Langevin and mean field (MF) sampling with 10
latent topics and 15 latent topics. In Table 4, it is observed that CD
learning provides at least 6% improvement of accuracy compared
with MF, and provides about 20% improvement of accuracy com-
pared with Langevin with 15 latent topics. Therefore, in our study
CD appears to be the best choice for the learning and inference of
DWH-WTF model in terms of classification performance.
5.2. Document retrieval

Document retrieval refers to finding similar documents for a gi-
ven user’s query. A user’s query can be ranged from a full descrip-
tion of a document to a few keywords. Most of the extensively used
retrieval approaches are keywords based searching methods, e.g.,
www.google.com, in which users provide a few keywords to the
search engine finding the relevant documents in a returned list.
Another type of document retrieval is to use a query document
to search similar ones. Using an entire document as a query per-
forms well in improving retrieval accuracy, but it is more compu-
tationally demanding compared with the keywords based method.
In this study, we used an entire document as a query.

To perform document retrieval, the document database,
‘‘Html_CityU1”, which consists of 26 categories (Chow & Rahman,
2009), was used in this application example. Each category in-
cludes 400 documents making a total number of 10,400 docu-
ments. The corpus was split into a training set and a test set that
was used for queries. 1040 test documents were randomly selected
from the 26 categories, i.e. 26 � 40. The remaining 9360 docu-
ments were used for training. In order to provide a more real-life
testing platform, we established this database consisting of docu-
ments with size ranged from few hundred words to over 20 thou-
sand words. For each category, 400 documents were retrieved from
‘‘Google” using a set of keywords. Some of the keywords are shared
among different categories, but the set of keywords for a category
is different from that of other categories. The details of this
dataset were summarized in Table 5. The database can be found
online at www.ee.cityu.edu.hk/~twschow/Html_CityU1.rar for
other researchers.

The parameters of DWH-WTF algorithm in this section were set
as follows. The number of selected termsn was equal to 4096. The
number of wavelet transform scalesr was set to 7, so the length of
WT feature vector was 1024. The normalization weightC was set to

http://www.google.com
http://www.ee.cityu.edu.hk/~twschow/Html_CityU1.rar


Table 5
Details of data set for document retrieval.

Category Number of articles Keywords

1 400 Bank + Money + Transfer
2 400 Bush + Iraq + War + Saddam
3 400 Cook + Food + Instruction
4 400 Cosmetic + Beauty + Fashion
5 400 Cricket + Batsman + Bowler
6 400 Dog + Pet + Home + Guard
7 400 Face + Image + Recognition
8 400 Garden + Flower
9 400 Hitler + Germany + Nazis
10 400 Html + Syntax + Tag
11 400 Java + Jsp + Servlet
12 400 Law + Thermodynamics
13 400 Middle + East + Crisis
14 400 Mongolian + Invasion
15 400 Mountain + Hiking + Trail
16 400 Mountain + Skating + Ice
17 400 Nuclear + Energy + Physics
18 400 Plant + Care + Cultivation
19 400 River + Dam + Hydropower
20 400 River + Water + Irrigation
21 400 Second + Two + World + War
22 400 Sleep + Medical + Problem
23 400 Sports + Football + News
24 400 Visual + Basic
25 400 Visual + c++
26 400 Web + Search + Engine

Table 6
AUC values of different models.

Method Number of latent topics

5 10 15 20 25

DWH-WTF 0.33 0.42 0.40 0.32 0.30
RAP 0.35 0.41 0.36 0.29 0.26
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Fig. 5. Performance of different models based on retrieval results.
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0.3. The learning rate and the momentum term to speed up the
convergence in DWH-WTF model were set to 0.01 and 0.95,
respectively. The DWH-WTF based on 200,000 learning iterations
using gradient ascent on mini-batches of 200 random training
samples per iteration. To quantify the retrieval results, we used
averaged precision and recall values for each query document from
the test set. The precision and recall measure are defined as
follows:

Precision ¼ No: of correctly retrieved documents
No: of total retrieved documents

ð20Þ

Recall ¼ No: of correctly retrieved documents
No: of total documents in relevant category

ð21Þ

Based on above precision and recall measures, to evaluate the effect
of different numbers of latent topics, a measure named ‘‘area under
the precision-recall curve” (AUC) as a function of the number of la-
tent topics can be simply defined as follows:

AUCðLÞ ¼
Xnmax

iA¼2

ðPLðiAÞ þ PLðiA � 1ÞÞ � ðRLðiAÞ � RLðiA � 1ÞÞ
2

ð22Þ

where L represents the number of latent topics, nmax denotes the
maximum number of retrieved documents, PLðiAÞ and RLðiAÞ repre-
sent the precision and recall values with iA documents retrieved
corresponding to the number of latent topics L.

Table 6 summarized the AUC values of DWH-WTF and RAP
model with the number of latent topics from 5 unto 25 at incre-
ments of 5 in order to evaluate the performance of harmonium
model using multiple features. It is observed that both methods
perform better and better with the increase of the number of latent
topics from 5 to 10, and the AUC results of them deteriorate in a
small significant rate when continuing to increase the number of
latent topics. Based on this observation, using 10 latent topics
seems to be a good choice of the number of latent topics that deliv-
ers superior performance for both DWH-WTF and RAP. DWH-WTF
performs better than RAP except for the case of using 5 latent top-
ics. We then compared the performance of different models under
10 latent topics. Fig. 5(a) shows the precision results when the re-
trieved documents, the most similar training documents from the
dataset for every query, vary from 1 to 360. It is observed that
DWH-WTF delivers the best precision results than other models,
and RAP model (Gehler et al., 2006) performs better than LSI model
(Deerwester & Dumais, 1990). As shown in Fig. 5(b) for the sketch
of the relationship between precision and recall, DWH-WTF exhib-
its significantly superior performance compared with other models
when the recall value is smaller than about 0.65. While the recall
value being in the range from 0.65 to 1.0, LSI and RAP performs
better than DWH-WTF in a small rate. This interesting observation
is caused by the overlapping of topics combinations and adding
terms associations is not helpful for enhancing the performance
when retrieving so many documents. In Table 7, we quantitatively
listed the precision and recall results of different models under 10



Table 7
Retrieval results of different models.

Method Number of retrieved documents

1 10 40 360 1 10 40 360

Precision (%) Recall (%)

DWH-WTF 82.60 77.37 72.36 48.69 0.23 2.15 8.04 48.69
RAP 81.06 74.62 69.19 47.61 0.23 2.07 7.69 47.61
LSI 68.94 63.07 59.38 46.32 0.19 1.75 6.60 46.32
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latent topics with the number of retrieved documents from 1 to
360. DWH-WTF provides about 3% improvement of the precision
in average compared with RAP model with only TF features. It is
also believed that the improvement is resulted by including the
WT features to harmoniums. Harmonium models are able to deli-
ver at least 10% improvement of the precision compared with LSI
model. Similar results are also shown in the recall results among
different models.

We also studied the effect of different learning approaches for
DWH-WTF inference based on AUC results. Fig. 6 together with Ta-
ble 8 shows the AUC values of DWH-WTF model using different
approximate inference methods with different numbers of latent
topics. From Fig. 6, it is observed that Contrastive divergence
(CD) learning delivers better results than Langevin and mean field
(MF) methods. MF method performs better and better with the in-
crease of the number of latent topics. In Table 8, it is observed that
CD and Langevin obtain similar AUC values under 10 latent topics,
whilst MF and CD deliver similar AUC results under 25 latent top-
ics. Therefore, CD appears to be the best choice for the learning and
inference of DWH-WTF model in terms of AUC results based on our
dataset.
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Fig. 6. AUC results of DWH-WTF using different learning methods.

Table 8
AUC values of DWH-WTF using different learning methods.

Learning method Number of latent topics

5 10 15 20 25

CD 0.33 0.42 0.40 0.32 0.30
MF 0.06 0.13 0.21 0.20 0.29
Langevin 0.16 0.42 0.18 0.06 0.17
6. Conclusions

A novel dual wing harmonium (DWH) model using multiple
features is proposed for modeling the document data with applica-
tions to classification and retrieval tasks. This DWH model inte-
grates multiple document features into low dimensional
semantic space with few latent topics for document representa-
tion. First, TF features are extracted from documents by using
weighted feature extraction method. We then formed an undi-
rected graph to represent each document based on extracted terms
as nodes. In order to improve the computational efficiency, term
graph compression is conducted by employing 2-D wavelet trans-
form. Thus, the term graph becomes more compact while preserv-
ing the basic graph structure. Multiple features that consist of TF
features and WT features constructed by stacked low-pass sub-
bands are then as inputs of DWH model. DWH model extends
the basic RAP model to two wings by using different conditional
probability distributions. It does not only include the properties
of RAP, but also contains capability to capture terms associations
information. Two application examples corroborate the efficiency
of our method. Our future work will include enriching our database
to support the assumption on terms associations and further
studying the stability of inference algorithms of harmonium
models.
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Appendix A

This is to the derivation of the marginal distribution over ðx;YÞ
in DWH model. We defined the joint distribution over ðx;Y ;hÞ as
mentioned in Section 3.2 in the following way,

pðx; Y; hÞ / exp
X

i

aixi � log CðxiÞð Þð Þ
(
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X
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j
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j
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On the other hand, the latent topics fHkg follow the conditional
binomial distribution depending on a weighted combination of
the TF x and binary TCF Y as follows,

pðhkjx; YÞ ¼ Binomial hkjr sk þ
X

i

Wikxi þ
X

j

Ujkyj

 !
;Mk

 !

¼ Mkhkð Þ r sk þ
X

i

Wikxi þ
X

j

Ujkyj

 ! !hk

� r sk þ
X

i

Wikxi þ
X

j

Ujkyj

 ! !ðMk�hkÞ

where,

Mk

hk

� �
¼ C Mkð Þ

C hkð ÞC Mk � hkð Þ ¼
Mk!

hk! Mk � hkð Þ!

According to the definition of conditional probability distribution,
we are ready to derive the marginal distribution over ðx;YÞ as
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which is exactly consistent with Eq. (14).
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