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a b s t r a c t

Automatic organizing documents through a hierarchical tree is demanding in many real applications. In
this work, we focus on the problem of content-based document organization through a hierarchical tree
which can be viewed as a classification problem. We proposed a new document representation to
enhance the classification accuracy. We developed a new hybrid neural network model to handle the
new document representation. In our document representation, a document is represented by a tree-
structure that has a superior capability of encoding document characteristics. Compared to traditional
feature representation that encodes only global characteristics of a document, the proposed approach
can encode both global and local characteristics of a document through a hierarchical tree. Unlike tradi-
tional representation, the tree representation reflects the spatial organizations of words through pages
and paragraphs of a document that help to encode better semantics of a document. Processing hierarchi-
cal tree is another challenging task in terms of computational complexity. We developed a hybrid neural
network model, composed of SOM and MLP, for this task. Experimental results corroborate that our
approach is efficient and effective in registering documents into organized tree compared with other
approach.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the current information technology world, we rely vastly on
electronic documents. The way that we search for literature has
changed immensely from the traditional way. A large part of books,
journals, news articles, etc. that are on printed paper, have been
converted to electronic version. Books and documents of a library
are usually indexed in electronically using short descriptions such
as ‘abstract’ and ‘content’, so that users can browse online before
inspecting physically or to decide which book to pick. Massive
growth of the Internet makes the access to these electronic docu-
ments easy. A large community of users requires an easy and effec-
tive access to various domains of electronic documents all over the
world.

Documents can be organized in a flat structure, i.e., in a number
of categories. For example, a system called STRETCH (Appiani et al.,
2001) was developed for high-volume document processing where
documents are read from scanned images, classified to their classes
and indexed for further retrieval operation. However, it is deemed
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essential to organize the document database in a more efficient
way to facilitate effective browsing and retrieval from document
database. Organizing documents in hierarchical tree is such an ap-
proach. For example, a library database has main categories of
Electronic Engineering, Law, etc. Each category has more sub-cate-
gories of its own, and so on. Thus, organizing documents through
such hierarchical layout can help users to easily find his documents
of relevant area. School libraries, online journals and many others
web-based libraries are benefited by such approach of organizing
documents. However, most of these implantations are done by
manually categorizing each document into a specific node of the
tree. Automation of this job can save a lot of human labor. A num-
ber of related applications can be found in Dumais and Chen
(2000), Rauber, Dittenbach, and Merkl (2000), Merkl, He, Ditten-
bach, and Rauber (2003) and Freeman and Yin (2005).

We call the tree ‘database-tree’ that organizes the documents
into hierarchical structure. To associate a given document to the
nodes of a database-tree, there exists two major types of classifier
models, namely flat and hierarchical (Fall & Benzineb, 2002). First
one is the flat model that employs the traditional classifiers (Fuhr,
Hartmanna, Lustig, Schwantner, & Tzeras, 1991; Joachims, 1998;
Schütze, Hull, & Pedersen, 1995; Yang, 1994). In flat-model
approach, each leaf node of the database-tree is treated as inde-
pendent class. Association of a given document take place in
bottom-up manner, i.e., the document is firstly classified to a given
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leaf node, and then the document is further associated to the
parents of the leaf node. The second one is the hierarchical model
(Dumais & Chen, 2000; Koller & Sahami, 1997; Weigend, Wiener, &
Pedersen, 1999) where classification take place in a top-down
manner through the database-tree, i.e., the document is firstly clas-
sified into any of the first level nodes, and the process further goes
down through the database-tree until a leaf node is reached. This
approach involves more complexity because the system is com-
posed a number of classification modules at different levels of
the database-tree. All of the above mentioned models differ from
each other by classifying algorithm, but they rely on same basic
features of word frequency information which is discussed detailed
as follows.

Feature representation plays a vital role on the classification
and organization of document. Vector space model (VSM) has been
most popular and widely used model for document-feature repre-
sentation. In the VSM model, the frequency of each term of a vocab-
ulary is counted for a given document, where vocabulary is a list of
terms/words used for feature description. A term weight vector is
then constructed for a document using this ‘‘term-frequency” to-
gether with ‘‘document-frequency”, where document-frequency
is the number of documents where the term appears. Similarity be-
tween two documents is then carried out using ‘cosine’ similarity
measure or any other distance function (Zobel & Moffat, 1998).
For the VSM model, a lengthy vector is required for describing
the frequency information of terms, because the number of words
involved is usually huge. This causes a significant increase in com-
putational burden making the VSM model impractical for handling
large database. To overcome this limitation, latent semantic index-
ing (LSI) (Deerwester, Dumais, Furnas, Landauer, & Harshman,
1990) was developed to compress the feature vector of the VSM
model into low dimension. In addition to feature compression,
the LSI model has been shown to be a useful method in encoding
the semantics of a document (Berry, Dumais, & O’Brien, 1995;
Papadimitriou, Raghavan, Tamaki, & Vempala, 2000). Beside the
LSI model, self-organizing map (SOM) was employed for docu-
ment-feature projection and dimensionality reduction (Ampazis
& Perantonis, 2004; Honkela, Kaski, Lagus, & Kohonen, 1997). In
Zhao and Grosky (2002), LSI was used to encode the semantic con-
cept to some extent. In spite of the simplicity of the above conven-
tional models, they are unable to provide a detail document
description. Also, it has never been easy to develop an effective
document model to coop with the immense growth if document
collections in various domains. There is a strong need of develop-
ing more accurate feature representation that can improve the
classification accuracy as well as scale up the classifier system to
deal with huge database.

In the above described models, they all use flat feature represen-
tation that is a function of term-frequency of a document. These
flat features are a crude representation of a document. For exam-
ple, two documents containing similar term-frequencies may be
of different contextually when the spatial distribution of terms
are very different, i.e., school, computer, and science means very dif-
ferent when they appear in different parts of a page compared to
school of computer science that appear together. Thus it is important
to account contextual similarity based on the ways how words are
used throughout the document, i.e., sections, and paragraphs. But,
until now, most document models incorporate only term-fre-
quency and do not include such spatial information of words. As
a result, classification accuracy can drops in tacking bigger data-
base and larger sizes of documents.

Self-organizing map (SOM) is a versatile unsupervised neural
network used for generating a topologically ordered map and clus-
tering. It is able to organize documents in a topologically ordered
map, facilitating users to find similar documents that are close to
each other on the SOM map. Other than feature projection SOM
can be used to perform classification, clustering and retrieval of
document (Ampazis & Perantonis, 2004; Freeman & Yin, 2005;
Honkela et al., 1997; Merkl et al., 2003; Rahman, Yang, Chow, &
Wu, 2007). An application of SOM for hierarchical document orga-
nization and browsing can be found in (Freeman & Yin, 2005;
Merkl et al., 2003). The method in (Freeman & Yin, 2005), called
Topological Organization of Content (TOC), hierarchically spans a
set of one-dimensional growing SOMs. This can be seen as hierar-
chical clustering, while maintaining the topology. The method is
computationally effective and scalable for large dataset. However,
all these approaches are still dependent upon typical term fre-
quency information, and are unable to describe a document in de-
tails. In order to efficiently encode a document in a better way, it is
necessary to use structured representation of document contents.
Tree-structured representation is a powerful approach that has
been successfully applied to a number of applications of pattern
recognition (Dumais & Chen, 2000; Hagenbuchner, 2002; Salembi-
er & Garrido, 2000). In the domain of tree-structured representa-
tion, applications of neural network have been proposed using
supervised models (Cho, Chi, Siu, & Tsoi, 2003; Cho & Chi, 2005)
and unsupervised models (Hagenbuchner, 2002; Hagenbuchner &
Tsoi, 2003; Rahman et al., 2007; Wang, Hagenbuchner, Tsoi, Cho,
& Chi, 2002). While supervised models are usually applicable to a
classification task, unsupervised models exhibit good potential
for performing image and document retrieval. In Rahman et al.
(2007), we developed a new SOM model, called MLSOM, for tree-
structured data that was successfully applied to image retrieval
application (Chow, Rahman, & Wu, 2006) and classification prob-
lem in the domain of document and image (Rahman et al., 2007).

In this paper, we propose a tree-structured document represen-
tation together with a hybrid neural network to organize the doc-
uments into a hierarchical database-tree. The tree-structured
representation helps to encode superior description of the docu-
ment contents compared with the tradition flat features. In the
proposed approach a document is partition into pages and pages
are portioned into paragraphs; forming a hierarchical tree ‘docu-
ment ? pages ? paragraph’. Using such three-level tree represen-
tation we are able to encode spatial distribution of words
throughout the pages and paragraphs. Such spatial information,
which is not present in flat feature, is necessary in understanding
the underlying semantics of a document. Thus tree-structured data
can encode richer information resulting in enhanced classification
accuracy. To handle tree-structured data, we employed an ex-
tended MLSOM model (Rahman et al., 2007) called multi-layer hy-
brid network (MLHN). Basically MLHN is build by transforming
MLSOM into a supervised model where we include MLP on its
top layer. In short, to handle three-level document tree data, our
MLHN architecture consists of three layers: two SOM layers and
an MLP layer. The two SOM layers help to compress the feature
space of the document tree into a fixed length vector and thus
facilitate the classification job for MLP. The use of tree-structured
representation and MLHN architecture shows promising results
compared with other conventional approaches.

The rest of this paper is organized as follows. Section 2 presents
the details of document feature representation and feature extrac-
tion procedures. Section 3 provides the details of the MLHN. Exper-
imental results are presented and analyzed in Section 4. The
conclusion is finally drawn in Section 5.
2. Tree-structured document contents

We propose a hierarchical tree-structured representation of
documents that consist of text content only. To extract the tree-
structure, a document is partitioned into pages that are further
partitioned into paragraphs. We have developed a Java code to
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perform such segmentation, and have considered only ‘html’ doc-
uments at this stage. In ‘html’ format document, paragraphs can
be easily identified using html tags. To begin the process, a docu-
ment is firstly segmented into a number of paragraphs. The para-
graphs are then merged into pages using a minimum threshold
value for the number of words of a page. It is noted that any text
appearing within the html tags, which is used for formatting, are
not accounted for word-count or document feature extraction.

The document partitioning process can be summarized as
follows:

1. Partition the document into paragraphs blocks using the html
paragraph tag ‘‘<p>” and new line tag ‘‘<br>”.

2. Merge the subsequent paragraph blocks to form a new page
until the total number of words of the merged blocks exceeds
a page threshold value 1000. There is no minimum threshold
for the last page. The page blocks are formed.

3. Now each page is split into a smaller blocks using more html
tags: ‘‘<p>”, ‘‘<br>”, ‘‘<il>”, ‘‘<td>”, etc. Merge these subsequent
blocks in the same fashion of Step 2 to form a new paragraph
until total number of words of the merged blocks exceeds a
page threshold value 100. The minimum threshold for the last
paragraph of a page is kept 40; otherwise the paragraph is
merged with the previous paragraph.

For html documents, there is neither any definite page bound-
ary/break, nor any rule for minimum/maximum number of words
for paragraphs/pages. But the use of a threshold of word-count still
enables us to form a hierarchical structure containing the charac-
teristics from global to local. Thus, the document contents are
structured in a ‘document ? pages ? paragraph’ tree. This is a
simple way of generating a tree-structure, and it can be further im-
proved by using a form of ‘document ? sections ? paragraph’. But
it demands more complex algorithm for partitioning a document.

Fig. 1 illustrates the tree-structured representation of a docu-
ment. The root node at the first level represents the whole docu-
ment, the second level nodes represent different pages, and the
third level nodes represent the paragraphs of the pages. Thus, a
three-level tree hierarchically represents the document content.
Nodes contain compressed features describing frequency distribu-
tion of different words. It should be noted that nodes at different
levels contains the same word-frequency features, but they are ex-
tracted from different contents of the document. Two documents
having similar word-histograms at root nodes can be completely
different in terms of semantics/context, because different spatial
Pages 
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Fig. 1. Tree-structured feature representation of a document.
distributions of the same set of words can result in different mean-
ings/context. This is what is reflected by the discriminative lower
parts of the tree data (second/third level nodes). Thus, tree-struc-
tured features can provide better analysis of documents.

To extract the features, word histograms are computed for the
nodes at different levels. We then apply PCA, a well known tool
to project higher dimensional data into lower dimensional feature
without losing much statistical information, to the word histogram
vector. The overall procedure of extracting tree-structured feature
can be summarized as follows:

(1) Extract words from all the documents in a database and
apply stemming to each word. Porter stemming algorithm
(Porter, 1980) is used to extract stem of each word, and
stems are used for feature extraction instead of original
words. In this way, ‘work’, ‘works’ and ‘worked’ are all con-
sidered being the same word. Remove the Stop words (set of
common words like ‘‘the”, ‘‘is”, etc.). Store the stemmed
words together with the information of term-frequency fT

(the frequency of a word in all documents) and the docu-
ment-frequency fd (the number of documents where a word
appeared).

(2) Vocabulary construction: Using term-frequency fT and docu-
ment-frequency fd information, calculate the weight of each
word, which is very similar to the term-weighting in the
vector space model (Salton & Buckley, 1996).
Wterm ¼ idf �
ffiffiffiffi
fT

p
; ð1Þ

where the inverse-document-frequency idf ¼ log2
N
fd

� �
, and N

is the total number of documents in the whole database. We
sort the words by using weight value in descending order and
select the first Ns words. Alternatively, one can select words
having a weight value above a threshold. The selected words
construct the vocabulary. The choice of Ns or selection de-
pends on the database.
(3) Partition the document into pages, and pages into para-
graphs. Construct the document tree. The root node contains
the histogram of a whole document, the second level nodes
are used for pages, and the third level nodes are used for
paragraphs.

(4) Calculate word histograms for documents, pages and para-
graphs that represent the features of nodes. Each element
of the histogram indicates the number of times the corre-
sponding word appears in a document, a page, or a para-
graph. Finally, we normalize the histogram using the
follows:
H ¼ ½h1 h2 h3 . . . hT �; ht ¼
TntP

t¼1...T nt
; ð2Þ

where T is the total number of words in the constructed
vocabulary, and nt is the frequency of tth word in the
vocabulary.
(5) Use the normalized histogram to construct the PCA projec-
tion matrix B. To save the computational burden, we con-
struct the matrix B only at the root nodes. We have used
the MATLAB tool (Rasmussen, 2005) to compute the PCA
projection matrix.

(6) Project the node features (normalized histogram) into the
lower dimensional PCA feature by using PCA projection
matrix. Using the projection matrix, the PCA features are
computed.
Fh ¼ H�B; ð3Þ

where B is the projection matrix of dimension T � nF , and nF

is the dimension of the projected feature. Details of the PCA
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projection can be referred to (Rasmussen, 2005). The pro-
jected features in Fh are ordered according to their statistical
importance. In our application, nF was set to 200, but we fur-
ther reduced the number of features used for the root node
and second level nodes. Thus, the new dimensions of the
PCA feature for the first, second and third level nodes are con-
sidered to be 100, 150 and 200, respectively.
(7) Save the vocabulary base and the projection matrix that are
later used to make the features of a new query document.
The tree structured features of a query document are
extracted in the same way but excluding Steps 1, 2 and 5
because these are required to compute only once over the
database.
3. Network architecture and training

We developed a hybrid network model called MLHN by combin-
ing MLP and SOM. MLP has been a very popular supervised model in
classifying patterns. However traditional MLP only supports flat
feature representation of data. The SOM is well-known unsuper-
vised that possess a number of abilities such as data clustering,
topological ordering and dimensionality reduction. These abilities
helped us to develop MLSOM (Rahman et al., 2007) to handle
tree-structured data, where nodes at different levels of the tree
are processed within different layers of SOM. In MLSOM, the top
layer organizes all the tree data, whereas other layers help to com-
press huge dimensional features of a tree data. In our proposed
MLHN architecture, we replace the top SOM layer of MLSOM with
an MLP. Thus, the MLP serves the basic classification task, whereas
other SOM layers help to encode the large dimension tree features
into a short and fixed vector representation. After introducing the
basic mechanism of SOM, the details of the MLHN will be presented.

3.1. Self-organizing map

A basic SOM consists of M neurons located on a regular low
dimensional grid that is usually in two-dimensional. The lattice
of a two-dimensional grid is either hexagonal or rectangular. Each
neuron i has a d-dimensional feature vector wi ¼ ½wi1; . . . ;wid�. The
SOM algorithm is iterative. During the training process the neurons
are updated in a way that their feature vectors finally become rep-
resentative of different data clusters in an orderly fashion. The iter-
ative SOM training algorithm can be stated as follows:

Step 1. Set iteration t = 0.
Step 2. Randomly select a sample data vector x(t) from a training
set.
Step 3. Compute the distances between x(t) and all feature vec-
tors. The winning neuron, denoted by c, is the neuron with the
feature vector closest to x(t)

c ¼ arg max
i
ðSðxðtÞ;wiÞÞ; i 2 f1; . . . ;Mg: ð4Þ

S is a similarity function to compute similarity between x(t) and
wi.
Step 4. Update the winner neuron and its neighbor neurons. The
weight-updating rule in the sequential SOM algorithm can be
written as

wiðt þ 1Þ ¼
wiðtÞ þ gðtÞhicðtÞðxðtÞ �wiðtÞÞ; 8i 2 Nc

wiðtÞ; otherwise

�
; ð5Þ

gðtÞis the learning rate which decreases monotonically with iter-
ation t.

gðtÞ ¼ g0 � exp �a � t
s

� �
; ð6Þ
where g0is the initial learning rate, and a is an exponential decay
constant set to 3 throughout our experiments. Nc is a set of
neighboring neurons of the winning neuron, and hicðtÞ is the
neighborhood kernel function that defines the closeness of a
neighborhood neuron to the winning neuron c at position
ðxc; ycÞ. The neighborhood function hicðtÞ also decreases gradu-
ally during the learning process.

hicðtÞ ¼ exp � ½ðxi � xcÞ2 þ ðyi � ycÞ
2�

2r2ðtÞ

 !
; ð7Þ

where rðtÞ is the width of the neighborhood function that de-
creases with iteration

rðtÞ ¼ r0 � exp � t
s
� logr0

� �
; ð8Þ

where r0 is the initial width, s is a time constant set to the max-
imum number of iterations.
Step 5. Stop when the maximum iteration is reached, or set
t = t + 1 and go to Step 2.

3.2. Multi-layer hybrid network (MLHN)

In general there are as many layers in MLHN as the number of
levels in the tree data. The top layer is an MLP network and others
are SOM. In this application, MLHN consists of three layers to deal
with three-level tree of document. Nodes at different level are pro-
cessed in level-by-level and bottom up fashion; i.e., third level
nodes are processed in layer-3 SOM, then second level nodes are
processed, and finally root nodes are processed in MLP. In MLHN
architecture, input representation for a particular layer is depen-
dant on its immediate lower layer. This is because a node contains
features as well as child nodes’ information. The child nodes’ com-
pressed information is only available after they are processed in
the lower layer. This is illustrated in Fig. 2 where a three-level tree
data is processed within a three-layer MLHN. First, the third level
nodes, which are features of different paragraphs, are mapped to
the layer-3 SOM output. The winner neurons of different nodes
or paragraphs (B, C and D) are represented by their corresponding
position vectors (pB; pC and pDÞ. Thus, the input vector at layer-2 is
made up with the second level node (page) features and the posi-
tion vectors from layer-3. However, a mapping procedure, which is
described later in this section, is essential in combining position
vector with the node’s features. Using the mapping, the position
vectors are mapped from the outputs of the layer-3 SOM into a
structured format forming the input vector of the layer-2. In this
way, we can form a compressed and fixed-dimensional representa-
tion of child nodes. Using the layer-2 input vectors, winner neu-
rons correspond to the second level nodes are found on the
layer-2 SOM. Thus, layer-1 inputs are made up with root node’s
feature and position vectors from layer-2. At last, layer-1 input cor-
responds to root node is feed to the MLP for classification of the
tree datum. It should be noted that the third and second layer
SOMs serve as a feature compression that compress the paragraphs
and pages information, respectively. In this way, the whole tree can
be compactly represented by the root node’s input at layer-1.

3.2.1. Data representation and similarity function
In the tree data, a node Xk at the kth level is represented by

Xk ¼ ½f1x; f2x; . . . ; fmx; p1x; p2x; . . . ; pcmaxx�
T , where fi represents the ith

feature of node Xk; pixð¼ ½xi; yi�; xi 2 ½0;1�; yi 2 ½0;1�Þ is a normalized
two-dimensional position vector of a neuron that compactly repre-
sents ith child node, and cmax is the maximum number of child
nodes of the nodes at the kth level. The position vectors are
mapped in the vector ½p1x; p2x; . . . ; pcmaxx� according to spatial posi-
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tion that will be discussed later in this section. A node may have
less than cmax number of child node, and some of pix may contain
zero vector [0, 0]. The weight vector of a neuron at the third layer
is represented by W3 ¼ ½f1w; f2w; . . . ; fm0w�T , where fiw is the ith
weight. The following similarity function is used to find winner
neuron for a given third level node.

SðX;WÞ ¼
Xm0
i¼1

f1� jfix � fiwjg: ð9Þ

The weight vector of a neuron at the second layer is represented by
W2 ¼ ½f1w; f2w; . . . ; fmw; p1w; p2w; . . . ;pcmaxw�

T , where pixð¼ ½xi; yi�Þ is a
two-dimensional vector. The following function computes the sim-
ilarity between a second level node and a neuron to find the winner
neuron.

SðX;WÞ ¼ 1
m

Pm
i¼1
f1� jfix � fiwjg þ 1Pcmax

j¼1
Sðpx

j
Þ

Pcmax

j¼1
SðpjxÞ � f1� dðpjx;pjwÞg

where; SðpjxÞ ¼
1; if pjx–ð0;0Þ
0 otherwise

�
;

ð10Þ

where d is Euclidean distance function. The first part of the expres-
sion computes the global similarity using the node feature, and the
second part computes the local similarity using position vectors of
child nodes.

3.2.2. Network training
Fig. 3 illustrates the block diagrams of the MLHN training. At

first, the layer-3 SOM is trained with level-3 nodes, where nodes’
features are directly used as data. In the iterative SOM training, a
node is random selected, its compared to all neurons to find its
winner neuron, and finally the winner and its neighborhood neu-
rons are updated using Eqs. (4) and (5). After the layer-3 SOM is
trained, the winner neurons for all level-3 nodes are found, and
their corresponding position vectors are saved. Using all the two-
dimensional position vectors a one-dimensional SOM is then
trained, which is used for mapping of the position vectors into
layer-2 inputs. Thus layer-2 SOM inputs are made up for corre-
sponding level-2 nodes using the nodes’ features and their child’s
position vectors. It should be noted that the number of child nodes
of a node is not fixed. However, the input for a parent node is rep-
resented by a fixed vector, part of which represents the child
nodes. Using a mapping procedure, position vectors are mapped
into the fixed structure of the input vector. Using the above SOM
inputs, layer-2 SOM is then trained in the same way of layer-1
but using similarity function in Eq. (10). The layer-1 inputs corre-
sponding to root nodes are made up in the same way. And finally
an MLP network is trained using the layer-1 inputs. For the MLP
classifier we hired a standard MLP tool but we do not include the
details of the MLP here. Readers are referred to any standard book
such as (Haykin, 1994).
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3.2.3. Mapping of position vectors
The mapping of position vectors is required in making the in-

puts at layer-3 and layer-2. After the mapping, similar type of po-
sition vectors are mapped into a particular position of input vector.
As a result, when two sets of child nodes are compared by Eq. (10),
we are able to compare a child node of the first set with only one
similar child node of another set. Thus, we have a meaningful ‘‘one
to one” matching that is much faster compared with ‘‘many to
many” matching (Chow et al., 2006). In this way, uncertain number
of child nodes can be represented by a fixed and compact vector
which is essential for using any neural network such as SOM and
MLP. For each level-3 and level-2, a one-dimensional SOM is
trained by all the position vectors ðp ¼ fx; ygÞ from that level. After
training the one-dimensional SOM, the following procedure is ap-
plied to map a set of position vectors.
Mapping of position vectors fp1; p2; . . . pcg using 1-d SOM of
cmax neurons:
Set ps
j  ½0;0�; ðNj  0j ¼ 1 . . . cmax

Loop for each pi; i ¼ 1 . . . c
Find three most matched neurons j, k and l for pi

If Nj ¼ 0; ps
j  pi and Nj  Nj þ 1

else if Nk ¼ 0; ps
k  pi and Nj  Nk þ 1

else if Nl ¼ 0; ps
l  pi and Nj  Nk þ 1

else ps
j  

ps
j�Njþpi

Njþ1 and Nj  Nj þ 1

end if
End
Return fps

j g
The above procedures differs from (Chow et al., 2006) in a way that

two or more position vectors in these procedures can be merged to-
gether by averaging. Thus, cmax is set to a value that is lower than the
actual maximum number of child nodes. The length of the input vec-
tor that represents child-nodes is then reduced, which results in a
reduction of the dimension of SOM weight vector. The decrease of
cmax is useful when the maximum number of child nodes in the data-
base is large. In our application, cmax is set to 2

3 SS, where SS is the
length of square SOM at corresponding MLHN layer. The weight vec-
tors of the one-dimensional SOMs are saved together with that of
SOM and MLP, which will be later used to process a query document.

3.2.4. Classification of a query
To classify a given query document by MLHN, firstly the tree-

structured features of the document is extracted. Then the nodes
of the tree are mapped in MLHN in bottom-up fashion. First, le-
vel-3 nodes are mapped into layer-3 SOM and the position vectors
are collected. Using the position vector, the level-2 nodes’ input are
generated and mapped on the layer-2 SOM. Layer-1 input is gener-
ated same the way which is then fed to MLP for classification of the
document. The overall procedure can be summarized as follows:
Procedures of classifying a query document:
1. Extract tree-structured data of the query document.
2. Process level-3 nodes on layer-3 SOM, and get the posi-

tion vectors.
3. Form the layer-2 inputs corresponding to the level-2

nodes. The previously saved one-dimensional SOM is
used to map the position vector into the input.

4. Similarly, map the level-2 nodes into layer-2 SOM and
form the layer-1 input.

5. Present the layer-1 input into the MLP for classification
of the document.
4. Experimental results
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We have used a document collection named ‘‘Html_CityU1”,
which is available at ‘ www.ee.cityu.edu.hk/~twschow/Html_Ci-
tyU1.rar’. Our database consists of 5200 html documents organized
through a three-level hierarchical database-tree as depicted in
Fig. 4. At each level database-tree, the collection is divided into a
number of sub-categories. The total number of sub-categories at
levels 1, 2 and 3 are 7, 12 and 20, respectively. In total, there are
26 categories of documents, which is the number of leaf nodes
(that have no child node) in the tree. Each category contains 200
documents. It should be noted that traditional classification in-
volves a dataset where the training is usually larger or equal to
testing set. However, due to the nature of the current application
it is important that the system can train itself based on a training
set, which is much smaller compared with test set. This is because
the objective of this application is automation of the classification
process, and save human labor such as labeling documents of the
training set. Thus, unlike (Dumais & Chen, 2000) we used a training
set that contains limited number of document, which is much
smaller than the testing set. This makes the classification problem
harder. Our training set consists of 1040 documents, i.e., 40 docu-
ments from each category, and rest 4160 documents made the
testing set.

In this application, the hierarchical classification problem is
implemented by flat classifier. It means we first classify a query
into any leaf node of Fig. 4 (a class out of 26) and then use the tree
to assign the query to hierarchical parent nodes at different level.
For example, a document is classified into the leaf node ‘Java-jsp-
servlet’. The document is then automatically assigned to its parent
node ‘IT-language’ and parent’s parent node ‘IT’.

Node distribution of tree-structured document feature at differ-
ent levels is listed in Table 1. According to the node distribution,
the size of the layer-2 SOM and layer-3 SOM are set at 36 � 36
and 42 � 42, respectively. In training the MLHN, the initial learning
rate was set to 0.3. The initial radius of the neighborhood function
was set to half-length of the square grid at an SOM layer. The num-
ber of total training iterations was set to 4534 and 14,536 (which
are the rounded multiple of the number of data-nodes in the cor-
responding level) for the layer-2 SOM and layer-3 SOM, respec-
tively. To train the MLP the number of hidden neurons, initial
learning rate and training iterations were set to 40, 0.1 and 3120
(which is the rounded multiple of the number of root nodes),
respectively. The values of the above parameters were observed
to be a good choice. All simulations were performed using MATLAB
7 on a PC with Intel 1.8 GHz and 2 GB memory.

We have compared the proposed approach with LSI approach
that is implanted by using LSI features and MLP. We also include
the results from VSM approach using VSM features and MLP. Here
the VSM feature is word histogram (Eq. (2)) using VSM normaliza-
tionðht ¼ nt � logðN=ðfdÞÞÞ. Table 2 summarizes the results from the
three approaches. Classification accuracy is listed separately for
different levels as well as for leaf nodes of database tree. The re-
sults show that the proposed approach can deliver superior results
for overall classification compared with other two approaches. The
results of LSI and VSM approaches are comparatively inferior at le-
vel-3 and level-1, respectively. It should be noted that discriminat-
ing keyword feature among classes are narrow at level-3, whereas
that at level-1 are wide. The LSI features are more global in nature
compared with VSM features because LSI features are compressed
projected information from VSM feature. As a results LSI perform
better on level-1 compared with VSM, whereas VSM comparatively
perform better on level-3 as some information are lost in LSI due to
projection. In overall, considering 26 class/leaf nodes, VSM perform
better than LSI. On the other hand, the results of the proposed ap-
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Fig. 4. Hierarchical organization of the document database.

Table 1
Distribution of nodes in data set

Level 1 2 3 All levels

Max. number of children nodes 277 87 0 277
Total number of nodes in training set 1040 2267 14,536 17,843
Total number of nodes in test set 4160 8865 53,684 66,709

Table 2
Comparative results: proposed approach, LSI, VSM

Proposed approach LSI–MLP VSM–MLP

Level-1 98.1971 97.6202 93.1731
Level-2 95.4167 97.6042 92.7604
Level-3 87.1250 73.9375 85.2188

Overall (leaf nodes) 88.4135 78.4856 85.1923

Table 4
Results against different the number of epochs.

Epochs 1 2 3 4 5

Level-1 97.4760 97.4519 98.1971 97.4519 97.4760
Level-2 95.1563 95.3906 95.4167 95.3125 95.4167
Level-3 87.5000 88.8125 87.1250 88.0938 88.4063

Overall (leaf nodes) 88.6058 89.3750 88.4135 89.0625 89.1587
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proach are consistently good at all levels. The proposed tree-struc-
tured approach encodes the word-frequency information in a
meaningful hierarchical way that encodes the spatial distribution
of words along the document. Such spatial information is essential
in encoding better semantics of the document. As a result, the tree-
structure features, in spite of the use of compressed information
like LSI, can deliver better results compared with both LSI and VSM.

To affirm the stability of the network, we included the results
from different initialization of network weights before the training.
Table 3 lists results from four different initializations that confirm
that the performance of the proposed system is consistent. In Table
4 we included results from using different number of epochs for
MLP, where one epoch consists of iterations equal to the number
of data. We observed no noticeable decline of performance when
the number of epochs is reduced from 5 to 1. Finally, classification
performance is analyzed against hidden number of neurons. Fig. 5
summarizes the overall classification accuracy as well as that at
different level when the number of hidden neurons is increased
Table 3
Stability of the results against different training instances.

Trials 1 2 3 4

Level-1 97.6683 97.1635 97.1394 97.3798
Level-2 95.3385 95.1563 94.9740 95.1302
Level-3 87.9375 88.7500 87.3125 88.7500

Overall (leaf nodes) 88.6298 88.8702 88.1971 89.1346
from 10 to 50. It was noticed a descent performance is achieved
by the system when the number of hidden neurons is equal or
greater than the number of classes (leaf nodes in database-tree).

At last we investigated how the proposed tree-structured fea-
tures perform compared with stand-alone global features or local
features only. Global features are obtained by using only the root
nodes’ feature from our tree-structured representation, and nodes
at the second and third levels are ignored. Thus, the format of glo-
bal features is traditional flat vector type, and an MLP layer is used
for the classification task. For local features, we exclude the fea-
tures from the root nodes, and use the rest of tree-structured rep-
resentation. Thus local features contain the information from pages
and paragraphs that are organized in the hierarchical tree. The
10 15 20 25 30 35 40 45 50
0
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Fig. 5. Classification performance against the number of hidden neurons.



Table 5
Comparing feature types: global, local and hybrid tree.

Feature type Global Local Hybrid-tree

Level-1 93.8221 91.1538 98.1971
Level-2 91.7708 86.1198 95.4167
Level-3 81.7188 75.3438 87.1250

Overall (leaf nodes) 82.9808 74.4231 88.4135
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same MLHN model is used to process the local features. Table 5
summarizes the results from the three types of feature representa-
tions: global, local and hybrid-tree. Compared with the local and
global, the hybrid-tree performs better overall classification as well
as classifications in all levels. These results corroborate the superi-
ority of the tree-structured features, which achieved by combining
global features with local characteristics that contains hierarchical
and spatial information of word-frequencies.

5. Conclusion

In this paper, we propose a tree-structured feature representa-
tion for document classification that is used for automatic organi-
zation/association of documents into the nodes of a database-tree.
Tree-structured representation includes the spatial information of
word distribution throughout the document which is vital in
understanding the underlying semantics of the document content.
Thus, compared with only global characteristics of traditional fea-
ture, tree-structured features hierarchically include both global
and local characteristics of document that helps to enhance the
classification accuracy. For classification of the tree-structure data,
we developed the MLHN model which is an extension of our previ-
ously developed unsupervised MLSOM model. Comparative results
corroborate the superiority of the proposed approach to other
compared approaches. Robustness of the proposed system is also
presented against network parameters.
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