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A clonal selection programming (CSP)-based fault detection system is developed for performing induc-
tion machine fault detection and analysis. Four feature vectors are extracted from power spectra of
machine vibration signals. The extracted features are inputs of an CSP-based classifier for fault identifi-
cation and classification. In this paper, the proposed CSP-based machine fault diagnostic system has been
intensively tested with unbalanced electrical faults and mechanical faults operating at different rotating
speeds. The proposed system is not only able to detect electrical and mechanical faults correctly, but the
rules generated is also very simple and compact and is easy for people to understand, This will be proved
to be extremely useful for practical industrial applications.
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1. Introduction

In general, induction machines are important and expensive de-
vices in certain industries, such as manufacture, transportation.
They play the essential role for industrial success so that the main-
tenance of them is essential and profitable to most electrical indus-
trial processes. If the lifetime of induction machines was extended,
and efficiency of manufacturing lines was improved, it would lead
to smaller production expenses and lower prices for the end user.
In order to keep machines in good condition, some techniques i.e.,
fault monitoring, fault detection, and fault diagnosis have become
increasingly essential (Isermann, 1997; Leohardt & Ayoubi, 1997;
Patton, Frank, & Clark, 1989). Although there are different types
of methods used for detecting machine faults (Ye & Wu, 2000),
the use of vibration signals for fault detection and diagnostic anal-
ysis has widely recognized as a reliable approach.

Most signal processing techniques applied to machine fault
diagnostic analysis are in either the time domain or the frequency
domain. Although the information about the rotating machine con-
ditions can be obtained through the vibration signal transmitted
through the machine casing, it is still a difficult task to determine
the machine conditions from the measured vibration signals.
Although there are a number of different approaches reported for
performing machine fault diagnostic analysis, such as time-domain
analysis (Lipovszky et al., 1990; Ragulskis & Yurkauskas, 1989),
probabilistic analysis (Lipovszky et al., 1990; Ragulskis & Yurkaus-
kas, 1989), and finite-element analysis (Donley, Stokes, Jeong, Suh,
& Jung, 1996), frequency-domain analysis appears to be the most
popular and computational non demanding approach for providing
ll rights reserved.
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the required information, which is totally attributed to the more
salient characteristic features in the frequency domain.

Machine fault detection is classified invasive and noninvasive
methods (Chow & Methedologies, 1997; Chow, Sharpe, & Hung,
1993). The noninvasive methods are more preferable than the
invasive methods because they are based on easily accessible and
cheap measurements to diagnose the machine conditions without
disintegrating the machine structure. The common types of ma-
chine fault diagnostic in the frequency domain include bearing
defect frequency analysis (Collacott, 1979; Dimarogonas, 1996),
high-frequency shock pulse and friction forces methods (Collacott,
1979; Dimarogonas, 1996), enveloped spectrum methods (Colla-
cott, 1979; Dimarogonas, 1996), high-order-spectrum (HOS) meth-
ods (Chow, 2000; Chow & Fei, 1995), and wavelet methods (Tse,
Peng, & Yam, 2001; Wang, 2001) etc. Recently, artificial intelli-
gence (AI) techniques have been proposed for the noninvasive ma-
chine fault detection (Chow & Methedologies, 1997; Filippetti,
Franceschini, Tassoni, & Vas, 2000). They have several advantages
over the traditional model-based techniques (Chow & Methedolo-
gies, 1997; Filippetti et al., 2000). They require no detailed analysis
of the different kinds of faults or modeling of the system. These AI-
based techniques include expert systems, neural network, and fuz-
zy logic etc. An expert system is able to manage knowledge-based
production rules that model the physical system (Filippetti et al.
2000). Neural network approaches can be considered as ‘‘black-
box” methods as they do not provide heuristic reasoning about
the fault detection process (Chow & Methedologies, 1997; Chow
et al., 1993). Fuzzy logic systems can heuristically implement fault
detection principles and heuristically interpret and analyze their
results (Chow & Methedologies, 1997). There are a few papers
reporting unsupervised neural network as diagnostic preprocessor
for classification purpose (Penman & Yin, 1994; Schlang, Habetler,
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& Lin, 1997), while supervised neural network approaches (Alguin-
digue, Buczak, & Uhrig, 1993; Chow & Mangum, 1991; Filippetti,
Franceschini, & Tassoni, 1995) can be used for fault and fault sever-
ity classification. The supervised neural networks in Alguindigue et
al. (1993), Chow and Mangum (1991), Filippetti et al. (1995) are
multilayered networks (MLNs). Coupled with the backpropagation
(BP) algorithm, the MLNs fall short for their slow convergence rate
and local minimum problem (Er, Wu, Lu, & Toh, 2002). On the
other hand, RBF neural networks have drawn extensive interest be-
cause of its well-known classification performance compared with
MLNs (Er et al., 2002). But it requires the many trial tests to deter-
mine the appropriate network architecture, which is not user
friendly for general industrial applications. Sitao Wu et al. pre-
sented a self-organizing-map (SOM)-based radial-basis-function
(RBF) network (Wu & Chow, 2004) for fault diagnostic classifica-
tion. It can automatically select the centers and the number of hid-
den neurons of the RBF networks to determine the appropriate
network architecture so that machine fault detection accuracy is
higher. A great deal of references has proven the success of these
neural networks for machine fault detection. But, the generations
of these classifiers are difficult for layman to understand and
implement. This prevents classifiers from being widely used in
most machine fault detection applications.

Genetic Programming (GP), first introduced by Koza (1992), is
derived from GA. In the short period of its development, GP has
been successfully applied in many fields, including condition mon-
itoring (Kojima, Kubota, & Hashimoto 2001; Helmer et al., 2002;
Cheng & Chiu, 2005). In fact, the GP based classifier is a kind of
the rule-based classifiers, which can build a set of IF-THEN rules
according to a training dataset S whose instance has some attri-
butes and a unique target class label so that the target accuracy
for new unseen data can be predicted. So when it is applied into
fault detection, it can generate some rules to discriminate whether
machine exists fault or not, which will make people analyse and
understand the reason of the fault. Liang Zhang et al. applied GP
into roller bearing fault detection successfully (Zhang & Lindsay,
2005; Zhang & Nandi, 2006), the experimental results show that
the classification rules derived are easily understood and capable
of independent verification on other data. However, it is not re-
ported that GP is applied into induction machine fault detection.

Due to the tree type structure, GP can express complex relation-
ship between the observed data using any combinations of logical,
mathematical functions of input attributes. Thus, GP can provide a
better solution structure adaption to the data compared with GA.
Therefore, GP can find more accurate and complex classification
rules than GA. But compared with GA, GP has much larger search-
ing space, so it consume more time than GA. In additional, GP can-
not keep syntax closure property during evolution. Moreover, GP’s
tree-based individuals typically result in bloating (Zhang & Muh-
lenbein, 1995).

The classifier based on GP for two class problems has been suc-
cessfully elaborated and applied into classification of medical data
(Dounias et al., 2002; Falco et al., 2002; Stanhope & Daida, 1998).
Although many researchers use genetic algorithm to design classi-
fiers for multi class problems, only a few GP methods have been
made to solve multi class problem (Bojarczuk, Lopes, & Freitas,
2000; Chien, Lin, & Hong, 2002; Dounias et al., 2002; Kishore,
2000; Lim, Loh, & Shih, 2000; Mendes, Voznika, Freitas, & Nievola,
2001). Usually, people consider a c class problem as a set of c two-
class problems (Kishore, 2000), which is called ‘‘binary decomposi-
tion” (Brodley & Danyluk, 2001) or ‘‘one-against-all learning”
(Loveard & Ciesielski, 1983). For a c class problem, the system is
run c times, so, the efficiency of the system is not high. For a c class
pattern classification problem, another method for designing clas-
sifiers is just using a single run of GP. A multi tree classifier having
c trees is constructed, where each tree represents a classifier for a
particular class. The performance of a multi tree classifier depends
on the performance of its corresponding trees. Compared with
‘‘one-against-all learning” method, it is direct and demonstrates
more high efficient. Muni et al. (2004) have designed a multi tree
classifier using GP solve this question successfully.

Artificial immune system is a kind of methodology inspired by
the human immune system. Research on artificial immune system
(de Castro & Timmis, 2002; Wierzchon, 2002) has become increas-
ingly popular in the area of evolutionary computing. New models
of artificial immune system are proposed, and more applied re-
search have been explored, such as computer security, data mining,
clustering, pattern recognition and function optimization etc
(Cutello, Nicosia, Pavone, & Timmis, 2007; de Castro & Von Zuben,
2000; Watkins, Timmis, & Boggess, 2004). Despite the flourishing
of artificial immune system in some areas, there is only a handful
of papers (Sahan, Kodaz, Günes�, & Polat, 2004; Watkins et al., 2004)
focused on the design of classifier using artificial immune system.
The research on immune programming is even fewer, and until
now the rule-based classifier using artificial immune system has
not been reported in literature.

We have proposed a new programming method, called clone
selection programming (CSP) (Gan et al., 2008) based on the
theories of the immune system to enhance the effectiveness of pro-
grams encoding and search engine. The newly proposed CSP can
become a powerful tool applied widely into artificial intelligence
and machine learning etc. field. Compared with other approaches
based on artificial immune system, clone selection programming
(Gan et al., 2008) based method can significantly improve the
program performance. In this paper, we extend clone selection pro-
gramming to the design of classifier for machine fault detection. A
kind of master/slave-style parallel computing multi thread model
was proposed to improve the performance of evolutionary search
of CSP. After the vibration signals are transformed into the fre-
quency domain, four characteristic features vectors are extracted
from the power spectra in the frequency domain as inputs of the
proposed clone selection programming based classifier. The advan-
tages of the proposed CSP-based classifier are twofold. First, the
classifying rules established by using our proposed method are
comprehensible and capable of independent verification on other
data. In addition, these fault detection rules are more compact than
ones established by GP classifier. Second, CSP-based classifier is
very easy to implement and does not require the many trial tests
to determine the appropriate parameters. This feature is user
friendly for general industrial applications.

The experimental results demonstrate that our CSP-based ap-
proach is promising for detecting machine faults via monitoring
the vibration signals.

The presentation of this paper is organized as follows. In Section
2, we briefly describe how the four characteristic features are ex-
tracted from the power spectra after the signals are transformed
into the frequency domain. In Section 3, clone selection program-
ming and our proposed classification strategy are detailed. In Sec-
tion 4, two types of machine faults including ‘‘electrical faults,” and
‘‘mechanical faults” were used for system validation. Finally, con-
clusions are drawn in Section 5.

2. Preprocessing of vibration signals

Vibration is the best indicator of overall mechanical condition
and the earliest indicator of defects developing. Vibration analysis
is based on the principle that faults can be detected in characteris-
tic frequencies associated with particular type of faults in the fre-
quency domain. The basic fault detection system in the frequency
domain is briefly shown in Fig. 1. First vibration signals are col-
lected from transducer based data acquisition systems. Then the
signals are transformed by fast Fourier transform (FFT) into signals
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Fig. 1. Flowchart of fault detection system in frequency domain.
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in the frequency domain, which can be analyzed and processed
easier than those in the time domain. Then some features are ex-
tracted from the frequency-domain signals as inputs of classifiers.
Through supervised training with inputs and outputs, the learned
classifiers can detect different types of faults. As the spectra in-
clude many frequency components, usually we need to reduce fre-
quency components into fewer useful features. One method is to
extract feature components at characteristic frequencies associ-
ated with certain types of faults (Li, Chow, & Tipsuwan, 2000). An-
other type is to compress the spectrum while nearly maintaining
the shape of the spectrum (Alguindigue et al., 1993). The first
method requires knowledge of the characteristic frequencies in
the type of machine faults involved. But in practical situations,
many unexpected conditions can degrade the expected results
and make theoretic analysis difficult and inconsistent. The second
method attempts to use the shape of the spectra of the vibration
signals. But the compression of the spectrum in Alguindigue et
al. (1993) is too complicated and time consuming. In our proposed
CSP-based classifier approach, we use four features extracted from
the power spectra of the vibration signals. When the machines are
in faults, the shapes of the frequency distribution of energy drift
from the normal condition. The spread (dispersion) of distribution
about central value (central moment) gives information about
shape or dispersion of the power spectra about its average fre-
quency. The dispersion indices used in this study include normal-
ized second and third-order central moments (Thomas, 1971). By
extracting the total power, average frequency, and dispersion indi-
ces of the power spectra of vibration signals, we can detect differ-
ent types of faults. The fundamental definitions of the four features
are given as follows:

(1) Total power

TP ¼
Z 1

0
Pðf Þdf : ð1Þ

(2) Average frequency

f
�
¼
R1

0 fpðf Þdf
TP

: ð2Þ

(3) Normalized second-order central moment

NU2 ¼
R1

0 ðf � f
�
Þ2pðf Þdf

TP
: ð3Þ

(4) Normalized third-order central moment

NU3 ¼
R1

0 ðf � f
�
Þ3pðf Þdf

TP
: ð4Þ

Therefore, the complete input vector of the CSP classifier is

X ¼ TP; f
�
;NU2;NU3

h i
: ð5Þ
3. Clone selection programming and its application in
classification

The immune system of human body, which consists of an innate
and an adaptive immune system, is a very complex, rapid, and
effective defense mechanism against disease. The innate and adap-
tive immune systems both depend on the activity of a great variety
of molecules, cells, and organs spread throughout the body. Vari-
ous distributed elements incorporate immune functions that do
not need central control. The cells of the innate immune system
are in-born and exist throughout our body. Once a wide variety
of bacteria occur in the body, these cells are immediately available
to fight against them. The response produced by an antibody com-
bating a determined infectious agent is called adaptive immune re-
sponse. The presence of antibodies reflects the kind of infection
that our body has already been exposed. Cells of the adaptive sys-
tem can extinguish the same antigenic stimulus when these anti-
gens attack the body again. The capability of adaptive immune
system is called immune memory which enables diseases within
human organism be rapidly destroyed. The adaptive immune sys-
tem is mainly made up of lymphocytes which are responsible for
the recognition and elimination of the pathogenic agents. The main
function of the immune system is to protect human organism
against pathogens and to eliminate malfunctioning self cells. This
self-defense function is largely relied on the ability of recognition.
The immune system not only recognizes pathogens and malfunc-
tioning cells, it is also able to recognize the organism’s own prop-
erly functioning cells and tissues in order to prevent them from
inadvertent destruction. All elements, pathogens, malfunctioning
cells, and healthy cells etc recognized by the immune system are
called antigens. The cells which belong to the organism and are
harmless to its functioning are termed self, while the harm-causing
elements are termed non-self. The immune system has the ability
to distinguish which element is self or non-self. In immunology,
this process is named self/non-self discrimination. When the im-
mune system finds an antigen and recognizes it as non-self, it gen-
erates a response to eliminate the pathogen. But the process of
antigen recognition and elimination is not enough on their own
to deactivate various pathogens. In order to be better to recognize
new pathogens and to improve response to pathogens already
encountered, the immune system is provided with memory and
an ability to learn from the processes of pattern recognition, clone
selection, negative selection, and affinity maturation.

3.1. Antibody encoding

3.1.1. Biological structure of antibody
An antibody, or immunoglobulin (Ig) has four polypeptide

chains: two identical light (L) and two identical heavy (H) chain
(Tonegawa, 1983) composed of an amino terminal region that is
highly variable (variable region) and a carboxi terminal region that
can be assumed as one of a few types (constant region). The vari-
able region, or V-region, is responsible for the antigenic recogni-
tion. They contain some special variable sub-regions whose
composition is a consequence of the contact with an antigen.
Moreover, a number of effector functions, such as complement fix-
ation and ligation to other cell receptors of the immune system, are
developed by the constant region, or C-region.

Multiple gene segments scattered along a chromosome of a
genome consists of a polypeptide chain of an antibody molecule
which means that genes located in several different gene libraries
are concatenated to form the heavy and light chains of the anti-
body molecules. For example, the V-region of heavy and light
chains of the antibody molecules is coded by two separated gene
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segments named V (for variable) and J (for junction). Beyond the V
and J segments, the area between the segments V and J of the hea-
vy chain is the third segment named D which is for diversity.
Therefore, antibody population diversity, which is due to the ran-
dom recombination of gene fragments, is contained in several li-
braries. The process of somatic hypermutation is used to increase
the Ag–Ab (antigen–antibody) affinity so that the immune diver-
sity and capacity of response are improved. The affinity can be
understood as the strength of binding between two binding sites,
such as a cell receptor and an epitope. Thus, the above two mech-
anisms of generation and diversification of antibodies makes the
immune system capable of synthesizing an almost infinite number
of cell receptors from a finite genome.

3.1.2. Expression tree and antibody encoding
In contrast to its analogous antibody structure expression,

antibody in CSP consists of a linear, symbolic string of fixed
length that composes of one or more genes. Expression of anti-
body is rather simple. It has two main components: the antibody
encoding and the expression trees. The latter is an expression of
the immune information encoded in the former. The process of
information decoding (from the antibody to the expression tree)
is called translation. The immune code is very simple: a one to
one relationship between the symbols of the antibody and pro-
gram or problem they represent. The spatial organization of the
function and terminals in the expression trees is determined by
the corresponding rules. Therefore, there exist two languages in
CSP: the language of the antibodies and the language of the
expression trees. It is noted that the two languages are sufficient
to infer exactly the other. For example, the algebraic expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinðxyÞ þ yþ ex
p

can also be used for representing an expression
tree (ET), where Q represents the square-root function, E repre-
sents the exponential function, and S represents the sinusoidal
function. The gene can be represented by the expression tree
shown in Fig. 2a.

The expression tree as shown in Fig. 2a is, in fact, the phenotype
of an antibody gene. An expression string of the above algebraic
expression can be translated from the expression tree as follows:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

SQ+ x y E+ y x* xy x x y y yx x xy

Variable Region Constant Region

For each sub-tree in the ET, the root must be read out firstly, and
then the left child node, the right child node is read out lastly. To
complete the translation of the whole expression string to an
expression tree, the following rules are used.

(i) The start of expression string corresponds to the root node of
the ET as in Fig. 2a.

(ii) If the root node is a terminal, the mapping stops. Or its child
branches are processed from left to right. All of the children
branches are read from the antibody encoding one by one. If
a node is a function having only one argument, only one
symbol in the encoding is placed as its child node.If the func-
tion has more arguments, add a symbol from the left of the
start node. Some symbols in encoding are placed as its child
nodes hierarchically until the end is leaf node. The number
of child branches is determined by the number of arguments
of their parent node. After the left of node has been con-
structed, the right part of node will be constructed by the
same method.
(iii) From left to right, and from top to bottom, new nodes are
filled consecutively with the elements of the expression
string. This process continues in a way of layer-by-layer
until all leaf nodes in the ET are composed of elements from
the terminal set.

After mapping an antibody encoding into an ET, the affinity of
the antibody encoding can be calculated by decoding the ET
through traversal. Through various operations, there is no invalid
expression or computer program. This encoding scheme makes all
programs evolved by CSP syntactically correct. Thus, in CSP, syntac-
tic closure is the intrinsic nature making evolution more efficient.
Indeed, this is the paramount difference between other immune
programming and other types of GP implementations, which either
limit themselves to inefficient genetic operators or checking all the
newly created programs exhaustively for syntactic errors.

3.1.3. Structure and functional organization of antibody encoding
The encoding scheme is similar to gene expression encoding in

GEP (Ferreira, 2006). The structure of antibody genes composes of
two different domains which exhibit different properties and func-
tions. They are a variable region and a constant region. The variable
region is used mainly to express the functions chosen for the specific
problem, whereas the constant region works as a buffer or reservoir
of terminals in order to guarantee the formation of only valid struc-
tures. Thus, the variable region contains symbols representing both
functions and terminals, whereas the constant region composes of
only terminals. For a given problem, the length of the variable region
V is chosen, whereas the length of the constant region C is a function
of V and the number of arguments of the function with more argu-
ments nmax (also called maximum arity). It is evaluated by:

C ¼ V � ðn� 1Þ þ 1: ð6Þ
Consider a gene, a set of functions F = {Q, *, /, �, +}, and a set of ter-
minals T = {a, b} are given. Thus, it gives nmax = 2, and if we chose an
V = 11, then C = 11 � (2 � 1) + 1 = 12, the length of the gene is
11 + 12 = 23. A typical gene is shown below, in which the constant
region is shown in bold:

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1

*Q + b a b- / aQ ba a a b b ba a ab

Variable Region Constant Region

+ a

The antibodies usually consist of several genes of equal length. The
interaction between the genes is specified by a linking function. An
example of a four-gene antibody linked by addition is shown in
Fig. 2b.

3.2. Clone selection algorithm

Based on the concept of the clone selection in immune system
(Nossal, 1993), the algorithm of CSP is developed. At the initializa-
tion stage, antibodies, which are the candidate solutions to a given
problem, are randomly generated as an initial population. The clon-
ing and hypermutation operation of the antibody make the popula-
tion evolve so that the diversity of the population is maintained and
the search space for solutions is expanded. Evaluation of the quality
of each antibody is based on the affinity value. The higher-affinity
antibodies are selected for cloning or hypermutation, while the
antibodies with lower affinity are replaced. This selection process
finishes through one of the operations of replacement, cloning or
mutation to form a new population. The whole process repeats until
the stopping criteria or maximal generation number is reached. The
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final result of search process is then decoded to the program space
becoming an implementation of the solution to the given problem.
The procedures of CSP can be briefly described as follows:

3.2.1. Initialization
The initial population of antibodies is randomly generated. The

encoding structure is introduced in the above section. These N indi-
viduals compose of an initial population (P) of candidate solutions
which include a subset of memory cell (M);

3.2.2. Evaluation
An antigen (Ag) representing the problem to be solved appears

at the initial stage of programming. Different expression forms of
antigen depend on the specific problem. Here, we assume that
the antigen is taken the form of an arithmetic expression, say,
Ag = x2 + y2 + x + y. To evaluate the affinity of the antibodies, par-
ticular values of variable(s) have to be placed on the expression
and the programs have to be executed. Since the problem is de-
scribed in a symbolic form, no numerical argument values are
explicitly prescribed and they must be generated. For the antigen
used as an example, this corresponds to generation of x and y val-
ues. Here, we randomly generate x and y in the range of [0, 255].
Five sets of values x and y are generated to execute each antibody
and to compare the execution results to the antigens behavior. The

affinity of ith antibody with antigen fi ¼ 1
1
n

Pn

i¼1
ðAbi�AgiÞ2þ1

, where

Agi ¼ x2
i þ y2

i þ xi þ yi. Abi ¼ f ðxi; yiÞ. n = 5. Thus, the affinity of anti-
body with antigen is in the range of [0, 1]. The whole antibodies are
sorted in descending order according to the affinity of all antibod-
ies in the population P with antigen.

3.2.3. Cloning
Before a new antibody has been generated, an antibody Abi

from the current population is considered for cloning. The antibod-
ies are selected for cloning according to the affinities with antigen.
The antibodies in population are sorted in descending order. The n
(n < N) highest affinity antibodies will be cloned. The number of
clones (given by Eq. (7)) reproduced for each individual is propor-
tional to its affinity.

Nc ¼ round
b � N

i

� �
; ð7Þ

where for each individual, b is a multiplying factor, Nc is the number
of clones generated, N is the total number of individuals, i is the in-
dex of current individual in the population, and round (�) is the
function that rounds its variable toward the closest integer. After
these n best individuals are cloned, a temporary clone population
(PC) is generated.

3.2.4. Hypermutation
The individuals in the population PC of the previous step are

submitted to a hypermutation procedure. Suppose an antibody
has J genes, while a gene has K bit symbol string,
Abi ¼ hS1; S2; . . . Sji, the mutation process is implemented by replac-
ing some bit symbols of each gene with some new randomly-gen-
erated symbols belonging to the defined function set or terminal
set. The symbols in variable region may be replaced as function
or terminal symbol, whereas the symbols in constant region are
only mutated as terminal symbol. The probability of mutation Pm

determines this process. To illustrate the process of hypermuta-
tion, let us assume that there is an antibody containing three
genes, the size of variable region of gene is five, the argument num-
ber is two, and the size of constant region of gene is six. This anti-
body is shown as follow in which the constant regions are shown
in bold:

012345678900123456789001234567890
*x+xyyxxxyx+**xyxyxyxx+y*+xxxyxyy

The corresponding arithmetic expression is f ðx; yÞ ¼ 3x2 þ x2yþ
xyþ 2y; and its corresponding expression tree is shown in Fig. 3a.
From the first symbol of antibody, a random positive floating num-
ber (less than one) is generated. If the number is less than the prob-
ability of mutation, Pm, the symbol will mutate. The new symbol
that replaces the old one is randomly selected from the function
or terminal set. This process repeats until the last symbol of the last
gene. The Pseudocode of mutation is shown in Fig. 4. In our exam-
ple, mutation points of each gene of antibody are highlighted in
underline. The mutated antibody is shown as follows:

012345678900123456789001234567890
*x+x+yyxxyx+*xxyxyxyxx+y*++xyyxxy

The corresponding arithmetic expression is f ðx; yÞ ¼ 3x2 þ 4xyþ 2y;
and the corresponding expression tree is shown in Fig. 3b. Owing to
the hypermutation operator, the algorithm is able to provide new
gene material into the antibody population. This can enhance the
diversity of antibody population and expand the search space for
finding the solution. After hypermutation, an antibody population
(PM) based on clone population (PC) is generated.

3.2.5. Re-selection
After hypermutation is finished, the individuals in the popula-

tion PM are evaluated again so that the individuals with higher
affinity are chosen to form the memory cell set M.

3.2.6. Replacement
After the above phases are complete, the algorithm proceeds

with generation of new individuals. The new randomly generated
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individuals will be put into population directly so that the lower
affinity individuals will be replaced with higher probabilities.

Steps (ii)–(vi) iteratively proceed until the stopping criterion is
reached. The criterion used in this study takes two forms: maxi-
mal number of generations and affinity threshold. At last, the fi-
nal attribute string is presented and translated into solution of
specified problem. The Pseudocode of the whole algorithm is de-
picted in Fig. 5.

3.3. Classification through clone selection programming

Based on its encoding and powerful global searching ability, this
paper shows how clone selection programming CSP [49] is used for
induction machine fault detection. In fact, this is a classifier prob-
lem, which indicates the potential of CSP in solving complex
problems.

In mathematical sense, we define classifier C is a mapping, C: Rn

——L, where Rn is the n-dimensional real space and L is the class la-
bel vector. For a c class classification problem, given a set of train-
ing pattern vector X ¼ fx1; x2; . . . ; xng 3 Rn and its corresponding
class label vector Y ¼ fy1; y2; . . . ; ycg 3 L, the classification task is
to discover some rules make function C(x) became a c-dimension
vector whose component has only one 1 and all others as 0.

In this paper, our objective is to design a classifier using clone
selection programming (CSP). Not like ‘‘one-against-all learning”
method, the CSP-based classifier just needs only one run to get
Fig. 4. Pseudocode of m
multi class results. This method improves greatly classification
efficiency, which totally attributes to encoding scheme in the
CSP-based Classifier.

The most current rule-based evolutionary classifiers use tree
type structure to represent a classification rule. For a two class
problem, only a single tree (T) is enough to classify a pattern thor-
oughly. For a pattern x,

if TðxÞP 0; x 2 class 1;
else; x 2 class 2:

This scheme can be extended to a multi category classification
problem. In our classifier design, every antibody or individual of
CSP consists of c genes which correspond to c class. It means that
a gene tree takes charge of classifying a class problem. So, for a c
class classification problem, the ith antibody will have c gene trees,
and these will be denoted by GTi

k; k ¼ 1;2; . . . ; c. The ith individual
of CSP, namely, a possible solution of classification rules is repre-
sented by c gene trees ðGTi

1;GTi
2; . . . ;GTi

cÞ.
For a pattern x,

if GTiðxÞP 0 and GTjðxÞ < 0 for all j–i; i; j 2 f1;2; . . . ; cg;
then x 2 class i

else; x R any one class

Suppose more than one gene tree of an antibody have positive re-
sponses to the training pattern x or all gene trees have negative re-
sponses to the training pattern x, then it shows that the rule can not
find which class the pattern x belong to, so the rule is not the best
one, it needs further training. When we use the rule discovered after
training to predict the accuracy of unseen data, if more than one
gene tree of the classification rule show positive responses for a pat-
tern, it is necessary to use post-processing methodologies assign a
class to the pattern. If no one gene tree of the classification rule
has positive response for any pattern, then we can say we do not
know the pattern belongs to which class. The following subsections
are the steps achieving our goal.

3.3.1. Initialization
Each of the c gene trees of each individual of CSP classifier is ini-

tialized randomly using the function set and the terminal set. The
function set may consist of many kinds of arithmetic functions, and
the terminal set contains all attribute variables of data and con-
stants. The function set F and terminal set T used here are as fol-
lows: F ¼ fþ;�;�;�; sin; cosg and T = {attribute variables,
constant}, where constants are randomly generated in the range
of [0, 1.0]. We have initialized gene trees using the method which
combines the randomly selected function and terminal together.

3.3.2. Affinity measure and training
We use a set of training samples to train CSP-based classifier.

While training, the response of a gene tree GTi for a pattern x is ex-
pected to be as follows:
utation operation.



 
 

  
 

 

 
  

 
 

 

 
  
  

 
 

Fig. 5. Pseudocode of clonal selection programming.
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if GTiðxÞP 0 x 2 class i

if GTiðxÞ < 0 x R class i

In other words, a classifier with c genes is said to correctly clas-
sify a sample x, if and only if all of its gene trees correctly classify
that sample. We emphasize that if a training sample is from class i,
then we say that gene tree GTi correctly classifies x, if GTiðxÞP 0.
On the other hand, the gene trees GTj;j–i is said to correctly classify
X , if GTj (x) < 0.

During the training of gene tree GTi, the class label of each sam-
ple are all known. Suppose in gene tree GTi, if a pattern x belongs to
class i, then the pattern x is defined as positive sample, else it is de-
fined as negative sample. For any gene tree GTi, we always expect it
classify a sample as follows:

GTiðxÞP 0; if x is a positive sample
GTiðxÞ < 0; if x is a negative sample:

Suppose p and n are the number of positive and negative exam-
ples classified by an antibody (rule), respectively, N is the total
number of samples in the training set. Then the classification accu-
racy of a rule to samples in training dataset is defined as follows:

AccuracyðGTiÞ ¼
pþ n

N
:

The higher training classification accuracy is, the better the rule is.
Thus, it can be regarded as a measure of whether the classification
rule is good or bad. Here, we define the affinity function of an anti-
body as

AffinityðGTiÞ ¼
pþ n

N
: ð8Þ

Since most of the processing time is used on evolutionary
search for classification rules of each gene tree, which are indepen-
dent of one another (within a generation), it is quite obvious that
we can focus on searching each gene tree in each parallel program.
Thus, better solution can be determined if we search the classifica-
tion rules of each gene tree in parallel. We use the master/slave-
style parallel model implement parallel CSP on a single computer.
The whole system is described in Fig. 6. Suppose the dataset has c
classes, then all antibody individuals consist of c gene trees,
namely, Antibody ¼ fGT1;GT2; . . . ;GTcg. The whole system will
have a master thread and c slave threads. A controlling host com-
puter program, called master thread, performs whole search of
classification rules which are encoded by antibody including c gene
trees. Moreover, c slave threads respectively run CSP algorithm to
find c best classification gene trees, where the affinity function in
slave thread is defined by Eq. (8). The ith slave thread does its best
discover the best classification gene tree which can classify cor-
rectly the ith class pattern and non ith class pattern. In each slave
thread, after running a generation, if the best classification gene
tree in current generation is better than that of last generation,
the best classification gene tree is chosen and sent to master thread
replace the corresponding gene tree in antibody, else the gene trees
in antibody will keep unchangeable. After master thread gets some
new genes, these genes will construct a new antibody, the affinity
of the new antibody will be calculated, then compared with that of
old one, if the new antibody has higher affinity, it will kept down
and gradually become the best classification rule, else it will be
put away. The rule of calculating the affinity of antibody in master
thread is as follows:

For a pattern x whose class label is i,

if GTiðxÞP 0 and GTjðxÞ < 0 for all j–i; i; j 2 f1;2; . . . ; cg;
then the antibody correctly classify the pattern; the score
will increase by 1;
else the score will not be increased:

So, suppose the number of correctly classified pattern is n, the
affinity value of an antibody in master thread is calculated
by

Affinity ¼ n
N

ð9Þ

where N is the total number of training pattern.
The multi thread of the whole system runs in parallel making

each slave thread concentrate on finding the best classification
gene tree of each class. Compared with single thread method, it
can enhance the efficiency of searching and improve the classifica-
tion accuracy.
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Fig. 6. Multi thread model for CSP-based classifier.
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3.3.3. Termination of training of CSP classifier
The training procedures of CSP-based classifier is terminated if

all training samples are classified correctly by a classifier or a pre-
defined number of generations are completed. If all of the training
samples are correctly classified by the CSP-based classifier, the best
individual of the master thread is the required optimal classifica-
tion rule. Otherwise, if CSP algorithm is terminated after comple-
tion of predefined generations, the best J individual of the
population in each slave thread is passed through post-processing
operation to get the optimal classification rule. The best J individ-
ual(s) in each slave thread are selected as follows:

Based on the accuracy of correctly classified training samples,
we sort all individuals in population from high to low, the J highest
accuracy of classifiers are chosen to pass through post-processing
operation for further selecting the optimal classifier.

3.3.4. Post-processing operation to CSP-based classifier
After completion of training of CSP-based classifier, c best gene

trees, say, fGT1;GT2; . . . ;GTcg are generated respectively from c
slave threads. The gene tree GT1 performs its best in distinguishing
the first class data from other class data, GT2 does its best in distin-
guishing the second class data from other class data, and so on. GTc

can distinguish the cth class data from other class data. Although
these c best gene trees can classify c class data correctly, their com-
bination, antibody which represents a classifier, is possible not
obtaining the highest classification accuracy. Suppose a slave
thread has J better gene trees, GT1

i ;GT2
i ; . . . ;GTj

i;GT1
i is good for a

particular segment of the feature space, while GTj
i models well an-

other segment of the feature space. The overall performance, in
terms of misclassification, of GT1

i and GTj
i could be comparable or

different. In this case, combining GT1
i and GTj

i into an antibody
may result in a much better classifier. This is the principle behind
this post-processing operation. If the best individual of the CSP-
based classifier run is unable to classify correctly all training sam-
ples, then J best gene trees from each thread will be kept down and
combined, selecting the best performing (in terms of number of
misclassifications) from these combination so that the classifica-
tion accuracy is further strengthened by this operation. Next, we
explain how the combination is obtained.

Suppose having c class data in dataset, there are c slave threads
in our system. In the ith slave thread, firstly we randomly choose J
individuals as the best J individuals in evolution, namely, J gene
trees GT1

i ;GT2
i ; . . . ;GTj

i. After completion of each generation, if the
classification accuracy of the best gene tree GTi in current popula-
tion is better than the one of the last population, then compare the
classification accuracy of gene tree GTi with the maximal value of J
gene trees GT1

i ;GT2
i ; . . . ;GTj

i. If GTi is greater than the maximal va-
lue, then GTi will replace the minimal value of J gene trees
GT1

i ;GT2
i ; . . . ;GTj

i, else value of J gene trees GT1
i ;GT2

i ; . . . ;GTj
i will

keep unchangeable. The procedure continues until the completion
of training, the best J individuals, GT1

ibest;GT2
ibest; . . . ;GTj

ibest in train-
ing procedure of ith thread will be chosen. Using this method,
we can obtain the best J gene trees GT1

i ;GT2
i ; . . . ;GTj

i of C threads.
Here, i = 1, 2, . . . ,c, we select a gene tree randomly from J best indi-
viduals of each thread to construct an antibody. Thus, we can ob-
tain total Jc combinations. Using the N training samples, we can
calculate the affinity of Jc antibodies. The antibody having the high-
est affinity is chosen as final trained classifier.

3.3.5. Conflict resolution with weighting scheme
After we have obtained the final trained classifier,

Antibody ¼ fGT1;GT2; . . . ;GTcg, we now focus on the test phase.
For a test pattern x, whose class label is i, if GTiðxÞP 0 and
GTjðxÞ < 0 for all j–i; i; j 2 f1;2; . . . ; cg, then we are easy to judge
if x belong to class i or not. When more than one gene trees show
positive responses for the pattern x, we must use additional meth-
od to estimate the class label of pattern x. Here, we use weighting
scheme to solve the problem. For the ith gene tree GTi of the clas-
sifier, we define its classification weight

wi ¼
pþ n

N
; ð10Þ

where N is the total number of training samples, p is the total num-
ber of cases such that the instances is from class i, and the ith gene
tree of classifier shows a positive response, n is the total number of
cases such that the instances is not from class i, and the ith gene
tree of classifier shows a negative response. In fact, the weight of
ith gene tree is its classification accuracy to training patterns. This
provides the relative importance of the gene tree in making a cor-
rect prediction. After completion of training, we can calculate
weights of c gene trees. For a test pattern x, if a classifier finds a con-
flict between classes i and j, which means that GTi and GTj all give
positive responses, then x is assigned to class i, if wi > wj; other-
wise, x is assigned to class j.

4. Fault detection and results

The above CSP-based classifier is used in this study to verify its
effectiveness. Two types of faults are considered. The first are elec-
trical faults, and second are mechanical faults. In the following ob-
tained results, they show that both types of faults can be detected
and distinguished. Also, it is worth noting that the classifying rules
for machine fault can be understood easier.

We often select different function sets and terminal sets for CSP
to solve different classification problems. But general speaking, the
chosen function set is the mathematical function, terminal set is
the attributes of patterns and some constants. In all the following
experiments, we used the function set F ¼ fþ;�;�;�; sin; cosg. All
input attributes of each problem and constants randomly gener-
ated in the range of [0, 1.0] were included in the terminal set.
According to different datasets, we chose different the CSP param-
eters, e.g., antibody size, population size, probability of mutation.
The listed parameters in Tables 1 and 2 are also the best setup
for establishing the best classification rules. In our simulations,
we used 100 for population size and 0.2 for mutation rate on all
the databases. Other parameters, e.g., the antibody size, the maxi-
mum number of iterations to run, or the length of the variable re-
gion V depend on the characteristics of classification problems
such as feature distribution. For each class learning, the CSP algo-
rithm stops when the number of generation reaches or the affinity
measure reaches 1.0, which means it correctly classifies all positive
and negative examples. The number of chosen individuals for post-
processing in each slave thread for electrical and mechanical fault
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were set to 5, 10, respectively. The common parameters used for all
dataset in CSP are listed in Table 3. In order to avoid bias, the pre-
sented results are the statistics of 10 different trials.

4.1. Electrical faults

Unbalance fault of a three-phase machine system is used in this
section to demonstrate the effectiveness of the proposed CSP-
based classifier. In order to simulate the electrical unbalance faults
in a three-phase induction motor, a noninvasive test rig as shown
in Fig. 7 is used in this study. As faults associated with the unbal-
anced phase alter the electromagnetic flux, the electromagnetic
force acting upon the stator core changes. Therefore, the detection
of machine electrical unbalance faults in this paper is based on the
stator core vibration signals. The data acquisition system is shown
in Fig. 8. The rated power and speed of the induction machine are
1100 W and 1440 r/min. The stator winding are connected in Y.
The cases of running at different rotating speeds are studied. This
is obtained by feeding the machine with different supply frequency
ranged from 35 to 50 Hz. In order to simulate unbalanced electrical
faults, the ‘‘C” phase is serially connected through a variable resis-
tor ranging from 0 to 40 X to introduce unbalanced electrical
faults. The machine is driven under different asymmetrical faults
by different values of the resistor from 10 to 40 X under different
supply frequencies from 35 to 50 Hz. The vibration signal is mea-
sured by an accelerometer mounted on the induction machine as
shown in Figs. 8 and 9. The sensitivity and upper frequency limit
of the accelerometer is 1 pC/ms2 and 12 kHz, respectively. A charge
amplifier (Bruel & Kjar, type 2635) with the gain of 316 mV/unit
amplifies the signal picked up by the accelerometer. The acquired
data are fed into a low-pass filter with bandwidth of 3 kHz. The
amplified and filtered signal is sampled and inputted into a Pen-
tium PC. The sampling rate is 10 kHz, and 1024 samples for each
data frame, which are transformed into frequency-domain signals
and used for feature vectors as the inputs of the CSP-based
classifier.

4.2. Mechanical faults

Mechanical faults of machine rotors are the most common in
industry since rotors are essential components of rotating machine
systems. For simplicity, in this study only rotor fault situation was
used to represent a general type of mechanical fault. The experi-
mental test rig shown in Fig. 10a shows two identical 10-hp
three-phase induction machines operating at 380 V/50 Hz which
were used. To obtain different rotating speeds, a three phase con-
Table 1
Different parameters used for dataset composed of normal and electrical fault at all frequ

Frequency (Hz) No. of population Mutation rate Length of th

35 100 0.2 10
40 100 0.2 10
45 100 0.2 10
50 100 0.2 10

Table 2
Different parameters used for dataset composed of normal and mechanical fault at all fre

Frequency (Hz) No. of population Mutation rate Length of th

35 100 0.2 8
40 100 0.2 8
45 100 0.2 8
50 100 0.2 8
verter was used to vary the supply frequency from 35 to 50 Hz. One
normal machine state was used as a reference, while another state
with a synthetic rotor fault was used for diagnostic analysis. The
synthetic rotor fault was obtained by drilling a small hole of 3-
mm diameter and 4-mm depth on the rotor bar, as shown in
Fig. 10b. In order to distinguish the different conditions of the
mechanical unbalanced faults, two operating states were used in
this investigation. The vibration signals were measured from an
accelerometer mounted on the cage of the monitored machine.
The sensitivity and upper frequency limit of the accelerometer
are 1 pC/ms2 and 12 kHz, respectively. The vibration data was
amplified by a charge amplifier (Bruel & Kjar, type 2635) with
the gain of 316 mV/unit. The amplified signals were sampled and
interfaced to a 586 PC by an AT-MIO-16 D data A/D card and DAQ-
Ware 4.5 (National Instruments Corporation) software.

4.3. Results using the CSP-based classifier

First, the power supply frequency was varied in the range from
35 to 50 Hz. There are four frequencies investigated in this paper:
50, 45, 40, and 35 Hz. The number of training and testing data at
different conditions and frequencies are listed in Table 4. In electri-
cal fault test, for training the CSP-based classifier, 500 � 1024
time-series data were collected from the accelerometer:
100 � 1024 data for normal condition, 400 � 1024 data for differ-
ent extents of electrical faults. After computation by 1024-point
FFT and feature extraction, we obtained 100 feature vectors for
normal condition, 400 for electrical condition. The testing data un-
der certain supply frequency include 100 feature vectors for nor-
mal condition, 400 for four different extents of electrical fault. In
mechanical fault test, using the same preprocessing method, we
obtained 100 feature vectors of normal condition and 100 of
mechanical fault condition for training CSP-based classifier. The
testing data under certain supply frequency include 100 feature
vectors for normal condition, 100 for mechanical fault. As the four
features are in different scales, the four extracted features are nor-
malized by zero-mean normalization: subtracting the mean and
dividing by the standard deviation of each feature in turn.

We define the accuracy as the number of correctly diagnostic
data over that of total data. The results of the machine operating
at different frequencies and conditions are listed in Tables 5 and
6, respectively. From Table 5, it is shown that the proposed method
is able to identify the types of faults investigated in this study. The
maximal and minimal accuracy of detecting electrical faults is
100% and 85.64% for the training data, respectively, and 99.98%
and 84.36% for the testing data. The maximal and minimal accu-
ency in CSP.

e variable region V No. of generation No. of selected individual J

500 5
300 5
200 5
500 5

quency in CSP.

e variable region V No. of generation No of selected individual J

100 10
300 10
300 10
300 10



Table 3
Common parameters for all frequency in CSP.

Parameter Value

Population size N 100
Number of antibodies selected n 20
Clone factor b 2
Number of antibodies replaced r 80
Number of new antibodies d 40
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racy of detecting the normal condition is 100% and 98.14% for the
training data, and 99.98% and 85.1%for the testing data. From Table
6, we can find that the maximal and minimal accuracy of detecting
mechanical faults is 98.8% and 89.3% for the training data, respec-
tively, and 96.9% and 87.05% for the testing data. The maximal and
minimal accuracy of detecting the normal condition is 98.55% and
88.25%, respectively for the training data, and 96.85% and 86.2% for
the testing data. The detail performance of our proposed method is
listed in Tables 5 and 6. From these results, we also can find that
our proposed method only needs a few training data can explore
better fault detection rulers.

After Normal and Electrical fault signals are processed, these
Datasets are composed of four features which are average fre-
quency, normalized second-order central moment, normalized
third-order central moment and total power respectively. Here,
we use x1, x2, x3, x4 represent them, respectively. The expressions
of a classifier (five gene trees) for electrical fault detection are
shown as follows:
3 phase
frequency

driver

a

b

c
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380volt

A

A

A

National instrume
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board (AT-MIO-
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Fig. 7. Testing rig of thr
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Fig. 8. Real-time vibration si
� Gene tree 1: (/ cos � x2 x2 � / x1 4.788971 � x2 x1)
� Gene tree 2: (sin + 3.927002 � � x3 x2 sin x3)
� Gene tree 3: (/ sin x1 � / x1 x2 � 1.483307 x2)
� Gene tree 4: (� / x3 � x2 x1 + / 0.440369 x1 2.237396)
� Gene tree 5: (� sin + x1 x3 + cos x1 x1)

x1, x2, x3, and x4 represent four features of vibration signal in fre-
quency domain. After transforming the above expressions into if-
then rule, we can get the following classification rules:

For a pattern x = (x1, x2, x3, x4),

� Rule 1: IF cosðx2�x2Þ
x1

4:788971�x1�x2

� �
> 0; THEN Class = Normal;

� Rule 2: IF sinð3:927002þ x3� x2� sinðx3ÞÞ > 0; THEN
Class = 10 X Electrical Fault;

� Rule 3: IF sinðx1Þ
x1
x2�1:483307�x2

� �
> 0, THEN Class = 20 XElectrical Fault;

� Rule 4: IF x3
x2�x1� 0:440369

x1 þ 2:237396
� �� �

> 0; THEN
Class = 30 XElectrical Fault;

� Rule 5: IF ðsinðx1þ x3Þ � ðcosðx1Þ þ x1ÞÞ > 0; THEN
Class = 40 XElectrical Fault

In additional, normal and mechanical fault signals are also pro-
cessed by the same method, these Datasets are also composed of
four features which are average frequency, normalized second-or-
der central moment, normalized third-order central moment and
total power respectively. Here, we still use x1, x2, x3, x4 represent
them, respectively. These signals are classified normal and
M
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Fig. 10. Experimental rig for detecting mechanical faults (a) by vibration analysis of induction motors under different speeds; (b) a rotor with a 3 mm hole and (c) a normal
rotor.

Table 4
The number of training and testing data at different conditions and frequencies.

50 Hz/45 Hz/40 Hz/35 Hz

Number of training data Normal 100
Mechanical fault 100
Electrical fault 10 X 100

20 X 100
30 X 100
40 X 100

Number of testing data Normal 100
Mechanical fault 100
Electrical fault 10 X 100

20 X 100
30 X 100
40 X 100

Table 5
Accuracy of training and testing data for electrical fault at different frequencies.

35 Hz 40 Hz 45 Hz 50 Hz

Accuracy of training data Normal 100% ± 0 100% ± 0 100% ± 0 98.14% ± 0.1
10 X 99.66% ± 0.35 99.36% ± 1.28 100% ± 0 85.64% ± 3.96
20 X 99.98% ± 0.06 99.92% ± 0.17 100% ± 0 93.5% ± 1.46
30 X 89.66% ± 2.21 100% ± 0 100% ± 0 98.4% ± 0.49
40 X 88.42% ± 1.71 88.56% ± 5.79 100% ± 0 99.92% ± 0.1

Accuracy of testing data Normal 94.04% ± 6.27 99.98% ± 0.06 85.1% ± 4.18 92.46% ± 4.41
10 X 85.22% ± 5.74 99.3% ± 0.84 96.9% ± 4.58 84.36% ± 3.64
20 X 93.96% ± 4.58 99.22% ± 1.48 86.32% ± 1.73 92.18% ± 1.66
30 X 85.56% ± 8.42 99.88% ± 0.38 97.24% ± 5.85 95.46% ± 0.97
40 X 84.54% ± 3.5 84.62% ± 5.51 99.9% ± 0.25 99.3% ± 0.34

Accelerometer

Experimental 
induction motor 

Fig. 9. Accelerometer mounted on the induction motor.
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Table 6
Accuracy of training and testing data for mechanical fault at different frequencies.

35 Hz 40 Hz 45 Hz 50 Hz

Accuracy of raining data Normal 96.15% ± 2.8 88.25% ± 1.29 98.55% ± 3.91 98% ± 1.68
Mechanical
fault

97.6% ± 1.15 89.3% ± 2.45 98.8% ± 3.62 95.6% ± 0.94

Accuracy of testing data Normal 90.3% ± 8.67 86.2% ± 2.8 96.85% ± 3.95 94.1% ± 4.29
Mechanical
fault

95.3% ± 4.48 87.05% ± 1.8 96.9% ± 3.94 92% ± 2.69
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mechanical fault. The expressions of a classifier (two gene trees)
for mechanical fault detection are shown as follows:

� Gene tree 1: (+ / cos x1 x3 + � x1 4.659882 x3)
� Gene tree 2: (+ / sin x2 * x2 x1 - x2 x1)

After transforming the above expressions into if-then rule, we
obtain the following classification rules:

For a pattern x = (x1, x2, x3, x4),

� Rule 1: IF cosðx1Þ
x3 þ 4:659882 � x1þ x3

� �
> 0; THEN

Class = Normal;
� Rule 2: IF sinðx2Þ

x1�x2 þ x2� x1
� �

> 0; THEN Class = Mechanical Fault;

The above Rules show one typical example set of identified CSP
rules for electrical and mechanical fault detection of induction mo-
tors. It is worth noting that the CSP generated rules are quite accu-
rate, compact, and easier to understand.
5. Conclusion

A newly developed CSP-based classifier is employed for detect-
ing induction machine faults operating at different rotating speeds.
Intensive tests were performed at different operating conditions.
This paper shows that when appropriate feature vectors are ex-
tracted as the inputs of the proposed CSP-based classifier, the pro-
posed method is able to deliver very high detection accuracy. In the
proposed approach, not only different types of machine fault can
be detected, but also the obtained rules are easily understood. This
is very useful for us to implement fault detection system and to
analyze the reasons machine faults generated. In additional, our
proposed method is very simple to implement, and it need not
too much trials to determine the best parameters for algorithm,
this will be proved to be extremely useful for practical industrial
applications.
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