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Motor Bearing Fault Diagnosis Using Trace Ratio
Linear Discriminant Analysis
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Abstract—Bearings are critical components in induction mo-
tors and brushless direct current motors. Bearing failure is the
most common failure mode in these motors. By implementing
health monitoring and fault diagnosis of bearings, unscheduled
maintenance and economic losses caused by bearing failures can
be avoided. This paper introduces trace ratio linear discriminant
analysis (TR-LDA) to deal with high-dimensional non-Gaussian
fault data for dimension reduction and fault classification. Motor
bearing data with single-point faults and generalized-roughness
faults are used to validate the effectiveness of the proposed method
for fault diagnosis. Comparisons with other conventional methods,
such as principal component analysis, local preserving projection,
canonical correction analysis, maximum margin criterion, LDA,
and marginal Fisher analysis, show the superiority of TR-LDA in
fault diagnosis.

Index Terms—Bearing, fault diagnosis, linear discriminant
analysis (LDA), pattern recognition, trace ratio (TR) criterion,
vibrations.

NOMENCLATURE

BLDC Brushless DC.
BF Ball fault.
CCA Canonical correction analysis.
DC Direct current.
FMMEA Failure modes, mechanisms, and effects analysis.
hp Horsepower.
IRF Inner race fault.
ITR Iterative trace ratio.
LDA Linear discriminant analysis.
LLE Locally linear embedding.
LPP Local preserving projection.
MFA Marginal Fisher analysis.
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MMC Maximum margin criterion.
NN Nearest neighbor.
OLDA Orthogonal LDA.
ORF Outer race fault.
PCA Principal component analysis.
PMM Power ratio of maximal defective frequency to

mean.
SLPP Supervised LPP.
TR Trace ratio.

I. INTRODUCTION

MOTORS are widely used in modern society. They con-
sume over 50% of the electrical energy in industrial

applications in the United States [1]. Bearings are important
components in motors. According to reports [2]–[4], bearing
failure is the most common failure mode of induction motors
and BLDC motor fans. Bearing failure can lead to motor
breakdown, loss of production and income, and even human
casualties [5]. Therefore, health monitoring and fault diagnosis
for bearings are important and play a key role in the reliable op-
eration of motors. Although signals such as vibration, current,
temperature, acoustic emission, and sound pressure can be used
for bearing health monitoring and fault diagnosis, vibration
signal analysis, used in this paper, is the most reliable, effective,
standardized, and popular method [1]–[3], [6]–[19].

Bearing faults that are widespread in the industry can be
categorized into two types, namely, single-point faults and
generalized-roughness faults [10], [11]. A single-point fault is
an obvious defect (e.g., pit and spall) localized on the bearing
surface. It is usually caused by overloading during operation,
which leads to a fatigue crack in the bearing surface until
a piece of metal drops off. Generalized-roughness faults are
faults that considerably degrade, roughen, or even deform the
bearing surface. Some common causes of this type of fault
are contamination, lack or loss of lubricant, and misalignment.
In this paper, both of these two types of bearing faults are
studied.

Normally, bearing fault diagnosis methods are based on time
domain analysis [12]–[14], frequency domain analysis [15],
[16], or time–frequency domain analysis [17]. In this paper,
a set of features was constructed from vibration signals. In
that way, bearing fault diagnosis is transformed into a pattern
recognition problem with a high-dimensional and non-Gaussian
data set. However, dealing with high-dimensional data has
always been a major problem for pattern recognition. Hence,
dimensionality reduction techniques can be used to reduce the
complexity of the original data and embed high-dimensional
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data into low-dimensional data while keeping most of the de-
sired intrinsic information [20], [21]. Such intrinsic information
can be geometrical [20]–[24] or discriminative [25], [26].
Several methods have been proposed for solving high-
dimensional data in fault diagnosis [27]–[33].

Over the past decades, many dimensionality reduction meth-
ods have been proposed, including ISOMAP [20], LLE [21],
LPP [26], PCA [34], and LDA [34], [35]. Recently, Yan et al.
have proposed a new graph embedding framework to unify
these existing methods (e.g., PCA, LDA, ISOMAP, LLE, and
LPP), in which the statistical and geometrical properties of
the data are encoded as graph relationships [36]. Among the
dimensionality reduction methods, PCA [34] and LDA [34],
[35] are the most popular methods. PCA pursues the direction
of maximum variance for optimal reconstruction, whereas LDA
is to find the optimal low-dimensional representation of the
original data set by maximizing the between-class scatter ma-
trix, i.e., Sb while minimizing the within-class scatter matrix,
i.e., Sw. Due to the utilization of the labeled information, LDA
can achieve better classification results than those obtained by
PCA if sufficient labeled samples are provided.

Several variants of LDA have been proposed during the past
decades, and TR-LDA is one of the most common [37], [38].
TR-LDA is based on the TR criterion, which can directly
reflect Euclidean distances between data points of inter- and
intraclasses. In addition, the optimal projection obtained by
TR-LDA is orthogonal. When evaluating the similarities be-
tween data points based on Euclidean distance, the orthogonal
projection can preserve such similarities without any change
[37]. Thus, TR-LDA tends to perform empirically better than
the classical LDA in many problems. Recently, another type
of LDA variants has been proposed by bringing the idea from
the mentioned unsupervised manifold methods. These methods
start from the local structure of the labeled sample and then
aim to preserve the geometric information provided by both
the data sample and the labeled information. Typical methods
include MFA [36], locality sensitive discriminant analysis [39],
local Fisher discriminant analysis [40], [41] and robust linearly
optimized discriminant analysis [42].

The contributions of this paper can be summarized here.

1) TR-LDA, an orthogonal variant of LDA, is utilized for
bearing fault diagnosis. It is also extended to deal with
the non-Gaussian data sets confronted in many real-world
fault diagnosis problems.

2) Real motor bearing data, including single-point fault
bearing data and generalized-roughness fault bearing
data, are used to validate the effectiveness of the proposed
method for fault diagnosis. Results show the superiority
of the TR-LDA method to other methods.

The rest of this paper is organized as follows: The basic
concepts of LDA and TR-LDA are described in Section II.
Section III introduces preprocessing and feature construction
from bearing vibration signals. In Section IV, motor bearing
data are used to test the effectiveness of the TR-LDA-based
fault diagnosis, and the performance of the proposed method
is also compared with other methods. Finally, conclusions are
drawn in Section V.

II. TR-LDA

LDA uses the within-class scatter matrix, i.e., Sw, to eval-
uate the compactness within each class and the between-class
scatter matrix, i.e, Sb, to evaluate the separability of different
classes. The goal of LDA is to find a linear transformation
matrix, i.e., W ∈ RD×d, mapping the original D-dimensional
space onto a reduced d-dimensional feature space with d �
D, for which the between-class scatter matrix is maximized,
whereas the within-class scatter matrix is minimized. Let X =
{x1, x2, . . . , xl} ∈ RD×l be the training set; each xi belongs to
a class ci = {1, 2, . . . , c}. Let li be the number of data points in
the ith class and l be the number of data points in all classes.
Then, the between-class scatter matrix, i.e., Sb, the within-class
scatter matrix, i.e., Sw, and the total-class scatter matrix, i.e.,
St, are defined as

Sb =

c∑
i=1

li(μi − μ)(μi − μ)T (1)

Sw =

c∑
i=1

∑
xi∈ci

(xi − μi)(xi − μi)
T (2)

St =

l∑
i=1

(xi − μ)(xi − μ)T (3)

where μi = 1/li
∑

xi∈ci xi is the mean of the data points in

the ith class, and μ = 1/l
∑l

i=1 xi is the mean of the data
points in all classes. The original formulation of LDA, called
the Fisher LDA [35], can only deal with binary classification.
Two optimization criteria can be used to extend the Fisher
LDA to solve the multiclass classification problem. For the
first criterion, the optimization of LDA is to find the optimal
projection matrix Ŵ satisfying

Ŵ = argmax
W

Tr
(
(WTSwW )−1(WTSbW )

)
. (4)

To distinguish this from the TR problem introduced later,
the above optimization is called the ratio trace problem in this
paper. If we assume that Sw is nonsingular, the optimization
problem in (4) can be solved by generalized eigenvalue decom-
position as [34], i.e.,

Sbwk = τkSwwk (5)

where wk ∈ RD is the eigenvector corresponding to the kth

largest eigenvalue τk. We then form Ŵ by the wk correspond-
ing to the d largest eigenvalues. Finally, the original high-
dimensional set X can be projected into a low-dimensional set
Y ∈ Rd×l by Y = ŴTX .

Another reasonable optimization criterion of LDA is to max-
imize Tr(WTSbW ) while minimizing Tr(WTSwW ). The
optimization problem can be given by

Ŵ = arg max
WTW=I

Tr(WTSbW )

Tr(WTSwW )
. (6)
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TABLE I
ITR ALGORITHM FOR SOLVING TR PROBLEM

The above problem is called the TR problem in this paper.
In fact, TR-LDA is a new variant of LDA, which is based on
the TR criterion. Let the ith column of projection matrix W
as wi, i.e., W = {w1, w2, . . . , wd}, the goal of TR-LDA is
to find W ∗ = argmaxW (

∑d
i=1 w

T
i Sbwi)/(

∑d
i=1 w

T
i Swwi).

On the other hand, the ratio trace-based LDA is to iteratively
find the ith column wi that maximizes wT

i Sbwi/w
T
i Swwi,

which is to use the greedy algorithm that optimizes W ∗ =
argmaxW

∑d
i=1(w

T
i Sbwi/w

T
i Swwi). From the above analy-

sis, we can see that the optimal projection matrix obtained by
the ratio trace-based LDA is only an approximated solution to
that of TR-LDA. Hence, the TR-LDA is theoretically better
than the ratio trace LDA.

A. Efficient Algorithm for Solving TR Problem

Solving the TR problem has never been a straightforward
issue because it does not have a closed-form solution [38].
Fortunately, a recent study in [38] has rigorously proven that the
TR problem can be solved equivalently to searching the optimal
TR value λ∗ = maxW WT (Sb − λ∗Sw)W by using iterative
procedures [37], [38], [43]. Based on this point, Wang et al.
[37] proposed an efficient method, called the ITR algorithm,
to solve the TR problem. The basic steps of the algorithm are
shown in Table I.

Though the ITR algorithm works well for solving the TR
problem, it has its drawbacks. First, the initialized orthogonal
matrix W0 is arbitrary and hard to choose. In some cases,
when W0 is well chosen, the algorithm is able to converge
relatively quickly, while in most cases, an inappropriate W0

dramatically increases the number of iterations. On the other
hand, initializing λ0 seems much easier for any λ0 satisfying
0 ≤ λ0 < +∞ [38], [43]. Hence, λ0 can simply be set as 0
in practice. Second, as shown in Step 4 in Table I, the ITR
algorithm method has chosen d eigenvectors corresponding to
the d largest eigenvalues of Sb − λtSw to form Wt. These
eigenvectors can only maximize the trace difference value
Tr[WT (Sb − λtSw)W ]; however, they cannot maximize the
TR value Tr(WTSbW )/Tr(WTSwW ). Thus, how to find
d eigenvectors to maximize the TR value is an important
question. Motivated by this issue, an improved ITR algorithm,
called the ITR-Score algorithm, is proposed in the preliminary
work of [25], [44] to solve this problem. For all the eigen-
vectors of Sb − λtSw, the ITR-Score algorithm computes a
score si = wT

i Sbwi/w
T
i Swwi for each eigenvector wi. Then,

d eigenvectors with the largest scores form Wt. This proce-
dure can be viewed as a greedy algorithm that optimizes the

TABLE II
ITR-SCORE ALGORITHM FOR SOLVING TR PROBLEM

Fig. 1. Intrinsic graph and penalty graph. In the intrinsic graph, each sample
is connected to its k NNs within the same class, whereas in the penalty graph,
each sample is connected to its k′ NNs in different classes.

TR problem, causing it to be faster than the ITR algorithm
[25], [44]. The basic steps of this algorithm are listed in
Table II. For more details about the convergent analysis of
ITR-Score algorithm, please refer to our preliminary work in
[25] and [44].

B. Application for Non-Gaussian Data Sets

The above algorithm was developed with the assumption
that the samples in each class follow a Gaussian distribution.
However, in many fault diagnosis problems, samples in a
data set may follow a non-Gaussian distribution that cannot
satisfy the above assumption. Without this assumption, the
separability of different classes may not be well characterized
by the scatter matrices, causing the classification results to be
degraded [34]. To solve this problem, some researchers have
developed new scatter matrices of Sw and Sb to characterize
the intraclass compactness and interclass separability [36], [37].
In this paper, inspired by the work in [36], Sw and Sb are
constructed using the particularly designed intrinsic graph,
i.e., W , and penalty graph, i.e., W+ (see Fig. 1 for details).
Specifically, let Nk(xi) be the set of k NNs of xi in the same
class, and N+

k (xi) be the set of k′ NNs of xi in different
classes. The intrinsic graph W and penalty graph W+ can be
defined by

Wij =
{
1 if xi ∈ Nk(xj) or xj ∈ Nk(xi)
0 otherwise

(7)

W+
ij =

{
1 if xi ∈ N+

k′(xj) or xj ∈ N+
k′(xi)

0 otherwise.
(8)
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Fig. 2. TR-LDA-based fault diagnosis.

The intraclass compactness Sc from the intrinsic graph and
interclass separability Sp from the penalty graph can then be
characterized by

Sc =
∑

i,j: xi∈Nk(xj) or xj∈Nk(xi)

∥∥WTxi −WTxj

∥∥2
=2Tr

(
WTX(D −W )XTW

)
=2Tr

(
WTS ′

wW
)

(9)

Sp =
∑

i,j: xi∈N+

k′ (xj) or xj∈N+

k′ (xi)

∥∥WTxi −WTxj

∥∥2

=2Tr
(
WTX

(
D+ −W+

)
XTW

)
=2Tr

(
WTS ′

bW
)

(10)

where D and D+ are two diagonal matrices satisfying Dii =∑
j Wij and D+

ii =
∑

j W
+
ij , and S ′

w = X(D −W )XT and
S ′
b = X(D+ −W+)XT are the newly designed scatter matri-

ces. The above strategy for constructing the scatter matrices can
avoid the drawback that samples in each class must follow a
Gaussian distribution [36]. Thus, for a non-Gaussian data set, it
is better to represent the separability of different classes than
the intraclass covariance, such as in LDA. In this paper, we
calculate the scatter matrices in the proposed TR-LDA method
using the above strategy. Hence, the objective function of TR-
LDA for a non-Gaussian data set can be rewritten by notation
substitutions in (6), i.e., Sb → S ′

b and Sw → S ′
w. Thus,

Ŵ = arg max
WTW=I

Tr
(
WTS ′

bW
)

Tr (WTS ′
wW )

. (11)

III. VIBRATION SIGNAL PREPROCESSING AND FEATURE

SET CONSTRUCTION

For fault diagnosis, it is necessary to separate all the possible
fault types and the normal condition. The TR-LDA, which
maximizes the between-class measure while minimizing the
within-class measure, was used for fault diagnosis of the motor
bearings, as illustrated in Fig. 2. A low-pass filter filtered the
vibration signals first. Then, the filtered vibration signals were
divided into sections of equal window lengths, as shown in
Fig. 3. A set of features was then constructed from each window
to represent the characteristics of the vibration signals.

Fig. 3. Division of signal with equal window lengths.

TABLE III
NINE TIME-DOMAIN STATISTICAL PARAMETERS

TABLE IV
MOTOR BEARING DATA DESCRIPTIONS

When faults occur in bearings, the increased friction and
impulsive forces cause both the time-domain parameters and
the time-frequency-domain parameters to vary from the normal



JIN et al.: MOTOR BEARING FAULT DIAGNOSIS USING TRACE RATIO LINEAR DISCRIMINANT ANALYSIS 2445

Fig. 4. (Left) Raw vibration signals and (right) their corresponding spectrums. (a) Normal. (b) 0.007-in IRF. (c) 0.014-in IRF. (d) 0.021-in IRF. (e) 0.007-in BF.
(f) 0.014-in BF. (g) 0.021-in BF. (h) 0.007-in ORF. (i) 0.014-in ORF. (j) 0.021-in ORF.

ones. Normal bearings and bearings with different faults usu-
ally have different data distributions in their signals. In this
paper, nine time-domain statistical parameters, as described in
Table III, are considered [27], [30], [45]. More specifically,
such as peak reflects the maximum vibration amplitude in the
time domain, standard deviation is a measure of how spread
out the amplitudes are, skewness is a asymmetry indicator,
kurtosis reflects the sharpness of the peak, and crest factor
defines the ratio of peak value to the RMS value. All of
these nine parameters reflect the characteristics of time series
data in the time domain. Furthermore, six parameters about
the percentage of energy corresponding to wavelet coefficients
are also considered by decomposing the vibration signal by
a wavelet transform using “db4” at level 5 [46], since they

reflect the vibration energy distribution in the time-frequency
domain [47]. Thus, nine time-domain statistical parameters to-
gether with six time–frequency domain parameters are used to
represent each window’s vibration signals. This 15-feature data
set constructed from the bearing vibration signals is the input
of the proposed method. It should be noted that our proposed
method is not limited by these 15 features; other features, such
as PMM [30], spectrum peak ratio [47], and mean frequency
[47], can be also used. Detailed discussions of which types of
features are more useful than others for bearing fault diagnosis
are beyond the scope of this paper. Based on the experimental
motor bearing data, the analysis results in Section IV are drawn
to verify the effectiveness of these 15 features for bearing fault
diagnosis.
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Fig. 5. Two-dimensional representation of single-point fault bearing data by each method.
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IV. EXPERIMENT SETUP AND FAULT DIAGNOSIS

To validate the effectiveness of the proposed approach for
fault diagnosis, both bearing data with single-point faults and
bearing data with generalized-roughness faults were studied.
These two types of bearing fault data were each measured from
a different type of motor bearing under unique experimental
conditions. The details of the two data sets are shown in
Table IV. The visualization and classification of bearing fault
data using TR-LDA are reported and compared with other
methods, including unsupervised methods, such as PCA and
LPP [26], and supervised methods, such as CCA [48], MMC
[49], LDA, and MFA [36].

A. Single-Point Faults

Motor bearing data with single-point faults obtained from
Case Western Reserve University [50] are analyzed in this
paper. Experimental data were collected from the drive end ball
bearing of an induction motor (2 hp Reliance Electric Motor)
driven test rig. The test bearings were SKF 6205 JEM, a type
of deep groove ball bearing. The accelerometer was mounted
on the drive end of the motor housing. Single-point faults were
seeded into the drive end ball bearing using electrodischarge
machining. Vibration signals were collected for four different
conditions, namely: 1) normal; 2) ORF; 3) IRF; and 4) BF. For
ORF, IRF, and BF cases, vibration signals for three different
severity levels (0.007-, 0.014-, and 0.021-in diameter) were sep-
arately collected. All the experiments were done for one load
condition (3 hp), whereas the rotation speed was 1730 r/min.
Therefore, experimental data (see Fig. 4) consisted of one
vibration signal for the normal condition and three vibration
signals for the ORF, IRF, and BF conditions. The sampling rate
was 48 kHz.

The cutoff frequency for the low-pass filter was set to 6 kHz.
The equal window length was set to 12 000. Fig. 5 shows the
2-D visualization results of single-point fault bearing data by
PCA, LPP, CCA, MMC, LDA, MFA, and TR-LDA, in which
we chose all samples in the data set as the training set. Here,
TR-LDA1 is to use the scatter matrices as LDA that are defined
in (1) and (2), whereas TR-LDA2 is to use the scatter matrices
as MFA defined in (9) and (10). From the results in Fig. 5, the
unsupervised methods, PCA and LPP, show the different classes
of bearing data, but the boundaries among different classes
are heavily overlapped and unclear. Therefore, both PCA and
LPP cannot preserve the discriminative properties of the data.
On the other hand, by providing the discriminative information
based on labeled data, the boundaries learned by CCA, MMC,
LDA, MFA, and the proposed TR-LDA algorithm are clearer
and less overlapped. That is to say, supervised methods are able
to preserve more discriminative information embedded in bear-
ing data than unsupervised methods. Fig. 5 also demonstrates
that the proposed method, TR-LDA, outperforms the other
supervised methods, MMC, CCA LDA, and MFA, so that the
same class of bearing data is closely conglomerated, whereas
those belonging to different classes are clearly separated. In
the following simulation, we randomly chose 8, 16, 24, and 40
samples from each class as the training set and the remaining
samples as the test set to evaluate the classification accuracy

TABLE V
CLASSIFICATION ACCURACY OF MOTOR BEARING DATA WITH

SINGLE-POINT FAULTS (1-NN CLASSIFIER)

Fig. 6. Fan and accelerometer.

for different methods. Table V shows the test accuracies for
an average of 20 random trials. Here, we also include with
another orthogonal variant of LDA, i.e., OLDA [51], and SLPP
[26] for comparisons. From Table V, we can observe that
TR-LDA achieves competitive performance compared with
other methods. These results verify the effectiveness of the
proposed method for diagnosing single-point faults in bearings.

B. Generalized-Roughness Faults

The motor bearing data with generalized-roughness faults
analyzed in this paper were collected from a BLDC motor fan
with no lubricant in the ball bearings. Jin et al. [4] conducted
FMMEA on fans and concluded that lubricant degradation
was the most common cause of bearing failure. Moreover, the
bearing loads in fans are very light. Therefore, lubricant plays a
vital role in the reliability of fan bearings. In this paper, the
loss of lubricant was simulated by not adding any lubricant
to the ball bearings. The test bearings were NSK 693 ZZ, a
type of miniature ball bearing. These customized ball bearings
without lubricant were used in a BLDC motor fan. The fan
was from Sanyo Denki Co., Ltd., and its size was 80 mm ×
80 mm × 25 mm. Although no lubricant was added to the
ball bearings, all other bearing components (including the inner
race, outer race, retainer, and balls) were in good condition with
protecting oil. The protecting oil acted as a temporary lubricant
before it evaporated during the experiment. In other words, the
nonlubricated fan acted like a normal fan before its protecting
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Fig. 7. (Left) Raw vibration signals and (right) their corresponding spectrums. (a) 0 h. (b) 8 h. (c) 16 h. (d) 24 h. (e) 48 h. (f) 72 h.

oil evaporated. Therefore, it was regarded as being in good
condition before the stress test.

The high-temperature (70 ◦C) stress test was conducted on
the tailor-made BLDC motor fan when it was running under
free airflow conditions. The degradation of ball bearings in the
BLDC motor fan was expected due to the loss of lubricant
during the high-temperature stress test. The lack of lubricant
increases friction and wear between the balls and races. Such
friction and wear cause generalized-roughness faults in the ball
bearing.

The fan was powered by a 12-V DC power supply and
controlled by a pulsewidth modulation input signal (duty cycle
was set at 74%) to simulate fan operation in actual application
conditions. The rotation speed was 4000 r/min. An accelerome-
ter was attached to the fan housing, and the fan was mounted
on a test plenum for the acquisition of the vibration signal,
as shown in Fig. 6. After the fan underwent 0, 8, 16, 24, 48,
and 72 h of high-temperature stress tests, its vibration signal
was measured, as shown in Fig. 7. When bearings degraded
due to the lack of lubricant, the increased friction damaged the
surfaces of the bearings and resulted in small pieces of metal
dropping off. The dropped metal and the defective bearing
surface were smoothly grinded by the continuous operation of
the cooling fan bearings. Hence, the vibration signals could
become weaker [see Fig. 7(c)]. However, as the defects grew,
the vibration became stronger. National Instruments’ LabVIEW
was used for the data collection. The data sampling rate was
102.4 kHz. The high-temperature stress test was stopped when
the fan’s sound pressure level increased 3 dBA from the initial
value, which is one of the failure criteria defined in IPC-9591
[52]. Fig. 8 shows a failed bearing after it underwent 72 h of the

Fig. 8. (a) Failed bearing. (b) Close up of (a). Arrows indicate tiny metal
particles detached from bearing surfaces.

high-temperature stress test; tiny metal particles detached from
the bearing surfaces were observed.

The cutoff frequency for the low-pass filter was set to
10.24 kHz. The equal window length was set to 20 480.
Fig. 9 shows the 2-D visualization results for the generalized-
roughness fault bearing data using different methods. Here, we
also choose all samples in the data set as the training set. From
the results, the following phenomena can be observed.

1) The supervised methods, namely, MMC, CCA, LDA,
MFA, and TR-LDA, outperformed the unsupervised
methods, namely, PCA and LPP, as they preserved more
discriminative information embedded in the bearing data.

2) Compared with the other supervised methods—MMC,
CCA, LDA, and MFA—TR-LDA2 can achieve the best
performance in a way that the submanifolds of different
classes are more separated and less overlapped, and the
submanifolds in each class are smoothly preserved.

For other supervised methods, there are some overlapped
parts among the boundaries of different classes. The main
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Fig. 9. Two-dimensional representation of generalized-roughness fault bearing data by each method.
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TABLE VI
CLASSIFICATION ACCURACY OF MOTOR BEARING DATA WITH

GENERALIZED-ROUGHNESS FAULTS (1-NN CLASSIFIER)

reason is that TR-LDA2 is based on TR criterion, which can
directly reflect the distances between data samples of inter- and
intraclasses. It also includes more local discriminative infor-
mation by using the local scatter matrices, which is good for
classification. Table VI shows the classification performance
using the different methods. In the following simulation, we
randomly choose 10, 20, 30, and 50 samples from each class
as the training set and the remaining samples as the test set
to evaluate the classification accuracy for different methods.
Table VI shows the test accuracies for an average of 20 random
trials. From Table VI, we can see that TR-LDA achieved
a better performance than the other methods. These results
verify the effectiveness of the proposed method for diagnosing
generalized-roughness faults in bearings.

V. CONCLUSION

In this paper, TR-LDA, a new efficient dimensionality reduc-
tion method, has been used and has been extended to deal with
the non-Gaussian data sets confronted in the real-world fault
diagnosis. Different from other dimensionality reduction meth-
ods, TR-LDA can directly reflect Euclidean distances between
data points of inter- and intraclasses. Hence, the compactness
within each class can be minimized, whereas the separability of
different classes can be maximized, which is suitable for fault
diagnosis. In addition, motor bearing data, including single-
point fault bearing data and generalized-roughness fault bearing
data, are used to validate the effectiveness of the approach.
Results showing the 2-D visualization and classification per-
formance of the data demonstrate that the extended TR-LDA
method achieves better performance than other algorithms,
such as PCA, LPP, MMC, CCA LDA, and MFA, in fault
diagnosis.
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