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Abstract: A new iterative learning control (ILC) method with initial rectifying action for nonlinear continuous
multivariable systems is presented. Unlike general ILC techniques, the proposed ILC approach allows initial
outputs of an ILC system at different iterations to fluctuate randomly around the initial value of the desired
output. The proposed strategy includes an initial rectifying action of ILC on a very small initial time interval,
and pursues the reference trajectory tracking beyond the initial time interval. The output tracking error
beyond the initial time interval can be driven to a residual set whose size depends on the estimation error of
input matrix. A numerical example is used to illustrate the effectiveness of the proposed ILC approach.
1 Introduction
Iterative learning control (ILC) is a versatile control technique to
improve transient response of a system operating repetitively over
a fixed time interval. One of the important features of ILC is that
it requires less a priori knowledge about the controlled system
in the course of design. This makes ILC increasingly
important in control applications, such as robot manipulators
and disk drive systems that are mostly designed for repetitive
tasks. Until now, there have been a lot of ILC algorithms
reported. But most of the existing ILC works assume that the
initial outputs of an ILC system at different iterations were
kept invariant [1, 2], which means that the ILC system must
have a fixed initial error at different iterations. In some cases, a
more stringent condition of zero initial error is even required
[3–6]. All of these hypothesises are difficult to be
implemented in practice, as locating operation repetitively in
an ILC application can result in irregular drifts of initial
outputs at different iterations to the initial value of the desired
output. Clearly, the study of ILC problem applied to
dynamical systems with non-fixed initial errors is essential.

The difficulty of ILC with non-fixed initial error mainly
lies in the dynamical complexity of ILC in which initial
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iterative error interacts with not only the system dynamics
but also the iterative learning process. Lee and Bien [7]
reported some novel undesirable phenomenon due to the
mismatch in the initial conditions in ILC process. They
pointed out that the control system could become unstable
when the initial output at each iteration was different from
the previous initial output. There are a few research papers
[8–10] discussing the robustness of ILC algorithms to
non-fixed initial errors, but the bound of robustness is
normally too large and cannot be adjusted for practically
tracking a reference trajectory. As a result, an initial
rectifying action should be considered in ILC design. It is
worth noting that there have been works [11, 12]
incorporating an initial rectifying action into ILC design to
achieve complete tracking of a reference trajectory over a
specified interval, but they require that the initial error be a
fixed value. They will not work when a random or non-
fixed initial error is encountered. Hitherto, the research on
ILC applied to dynamical systems with non-fixed initial
errors still remains an open and important issue. Recently,
a few studies [13–17] have been focussed on the ILC
problem of dynamical systems with non-fixed initial errors.
In [13], a method called ILC with multi-modal input
was proposed to tackle the ILC problem for linear
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continuous systems with non-fixed initial errors. But it is
computationally complex because the determined input is,
in fact, the synthesis of the multi-modal ILC input with
varying initial condition. In [14], under a specific
condition, an average operator-based PD-type ILC
controller for linear continuous systems with non-fixed
initial errors was investigated. In [17], an ILC controller
for linear discrete systems with non-fixed initial errors was
investigated using 2-D system theory. Despite its ability to
handle variable initial conditions, it is only effective when
the tracking time interval is sufficiently large. For ILC on
nonlinear systems, Xu and Yan [15] discussed the inherent
relationship between different initial conditions and the
corresponding learning convergence (or boundedness)
property under a Lyapunov-based ILC method. However,
the proposed ILC technique [15] is only suitable for a class
of simple first-order nonlinear continuous systems with
unit input gain. Furthermore, a direct adaptive ILC
approach based on a fuzzy neural network was presented in
[16] for a class of nonlinear systems with non-fixed initial
errors. Using the proposed adaptive ILC approach, the
norm of state tracking error will asymptotically converge to
a tunable residual set as iteration goes to infinite.

The main objective of this paper is to describe how an initial
rectifying action can be combined into the conventional D-
type ILC technique for nonlinear continuous multivariable
(NCM) systems with non-fixed initial errors. Beyond the
designated initial time interval, the established ILC
technique is able to drive the output tracking error to a
residual set whose size depends on the estimation error of
input matrix. It is also important to note that a perfect
reference trajectory tracking beyond the initial time interval
can be achieved when an accurate knowledge on input
matrix at the initial time interval is available.

The organisation of this paper is as follows. Section 2
presents the ILC problem formulation and the ILC rule
with initial rectifying action. Section 3 investigates the
learning convergence of the proposed ILC rule under non-
fixed initial errors. And the simulation results are illustrated
in Section 4. Finally, Section 5 concludes this paper.

2 Problem formulation and ILC
rule with initial rectifying action
Consider the following class of NCM systems performing
repetitive tasks over a fixed time interval t [ [0, T ]

_xk(t) ¼ f (xk(t), t)þ B(t) � uk(t) (1a)

yk(t) ¼ C(t) � xk(t) (1b)

where k denotes the kth repetitive operation of the system;
xk(t) [ Rn, uk(t) [ Rm (m � n), and yk(t) [ Rp are the
state, control input and output of the system, respectively;
B(t) [ Rn�m and C(t) [ Rp�n are time-variant matrices;
the nonlinear function f (�, �) : Rn

� [0, T ] 7! Rn is locally
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Lipschitz in xk, that is, for all t [ [0, T ] and k, there exists
a constant Lf such that

kf (xkþ1(t), t)� f (xk(t), t)k � Lf � kxkþ1(t)� xk(t)k (2)

where the norm k.k will be defined later. An example of
system (1) can be referred to the PM synchronous motor
studied in [18].

Given a reference output trajectory yr(t) and an initial
control input u0(t) at t [ [0, T ], an ILC design for system
(1) is closely related to its boundary conditions xk(0) for
k ¼ 0, 1, 2. . . . Unlike general ILC literatures, we assume
that xk(0) is bounded and different for k ¼ 0, 1, 2 . . . , and
yk(0) fluctuates randomly around yr(0) within a bound in
this study. Based on the given boundary conditions, our
ILC objective is to iteratively determine a control input
sequence fuk(t)g, t [ [0, T ], such that as k goes to infinite,
the output tracking error yr(t)� yk(t) over a specified time
interval t [ [h, T ] can be driven to a residual set whose
size depends on the estimation error of input matrix B(t),
where h is a specified small real number between 0 and T.
In many ILC applications, the model information on the
controlled system, especially the input matrix B(t), can be
well known. In this case, our ILC design with the control
objective can achieve an effective reference trajectory tracking.

The output tracking error in ILC process is denoted as

ek(t) ¼ yr(t)� yk(t) (3)

When the initial ILC errors ek(0) for k ¼ 0, 1, 2 . . . are non-
fixed, but bounded, it has been shown in [9] that a well-
known D-type ILC rule

ukþ1(t) ¼ uk(t)þ K (t)_ek(t) (4)

can ensure the boundedness of the output tracking error ek(t),
t [ [0, T ] as k goes to infinite. In practice, this bound is
usually too large to be applicable to track a reference
trajectory. In this paper, a rectifying action is then
combined into a D-type ILC rule (4), and the following
ILC rule for control calculation is applied

ukþ1(t) ¼ uk(t)þ K (t)_ek(t)þ uh(t)B̂(t)�1
R Xk(0) (5)

where B̂(t) denotes the estimation of B(t); B̂(t)�1
R is the right

inverse of B̂(t); and

uh tð Þ ¼

2

h
1�

t

h

� �
, t [ 0, h½ Þ

0, t [ h, T½ �

8<
: (6)

Xk(0) ¼ B̂(0)K (0)ek(0)þ xk(0)� xkþ1(0) (7)

For the convenience of convergence analysis of the proposed
ILC approach, the following definitions and lemma on
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norms are given

ksk ¼ max
1�i�n
js ið Þ
j

kGk ¼ max
1�i�m

Xn

j¼1

jgi, j j

 !

kq tð Þkl ¼ sup
t[ 0,T½ �

e�lt
kq tð Þk, l . 0

where s ¼ [ s(1) s(2)
� � � s(n) ]T is a vector, G ¼ [gi, j] [

Rm�n is a matrix and q(t), t [ [0, T ] is a real function
vector/matrix. Specially, in this paper, we use

kq(t)kljt[[h,T ] ¼ sup
t[[h,T ]

e�lt
kq(t)k (8)

to define l-norm of q(t) on the time interval t [ [h, T ].

On the relationship between the norm k.k and the l-norm
k.kl of a vector x(t), t [ [0, T ], we have the following
lemma 1.

Lemma 1:

sup
t[ 0,T½ �

e�lt

ðt

0

kx tð Þkdt

� �
�

1

l
kx tð Þkl (9)

The proof of Lemma 1 is an immediate consequence of the
norm k.kl, and therefore is omitted.

3 Learning convergence under
non-fixed initial errors
In this section, the convergence results of ILC rule (5) are
provided in Theorem 1.

Theorem 1: For an NCM system (1), suppose that the
reference output yr(t) is differentiable, and the initial ILC
error ek(0) varies randomly within a bound. If there exists a
matrix K(t) to make

sup
t[ 0,T½ �

kI � C tð ÞB tð ÞK tð Þk ¼ r0 , 1 (10)

and the matrix B(t) at t [ [0, h] is right invertible; then, the
ILC rule (5) can ensure

lim sup
k!1

kek(t)kljt[[h,T ] �
lMC (ME �M �X þM0 �M �K )

(1� r)(l� Lf )

(11)

where B(t)B̂(t)�1
R ¼ I þ E(t), supt[[0,h] kE(t)k �ME ,

supt[[0,T ] kC(t)k �MC , kB̂(0)� B(0)k �M0, supk kXk(0)

k � M �X , supk kK (0)ek(0)k � M �K , 0 , r , 1, and l is a
ET Control Theory Appl., 2009, Vol. 3, No. 1, pp. 49–55
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bounded value. Especially, when the input matrix B(t) at
t [ [0, h] is accurately known, we have limk!1 kek(t)
kljt[[h,T ] ¼ 0.

Proof: From (1) and (5), we have

xkþ1(t)� xk(t)

¼

ðt

0

_xkþ1(t) dt�

ðt

0

_xk(t) dtþ [xkþ1(0)� xk(0)]

¼

ðt

0

[ f (xkþ1(t), t)� f (xk(t), t)] dt

þ

ðt

0

B(t)[ukþ1(t)� uk(t)] dtþ [xkþ1(0)� xk(0)]

¼

ðt

0

[ f (xkþ1(t), t)� f (xk(t), t)] dt

þ

ðt

0

B(t)K (t)_ek(t) dtþ

ðt

0

uh(t)B(t)B̂(t)�1
R dt

� Xk(0)þ [xkþ1(0)� xk(0)] ¼

ðt

0

[ f (xkþ1(t), t)

� f (xk(t), t)] dtþ B(t)K (t)ek(t)� B(0)K (0)ek(0)

�

ðt

0

d (B(t)K (t))

dt
ek(t) dtþ

ðt

0

uh(t)[I þ E(t)]dt

� Xk(0)þ [xkþ1(0)� xk(0)] (12)

On the other hand, from (1) and (3)

ekþ1(t) ¼ yr(t)� ykþ1(t)

¼ ek(t)� [ykþ1(t)� yk(t)]

¼ ek(t)� C(t)[xkþ1(t)� xk(t)] (13)

Substituting (12) into (13), we have

ekþ1(t) ¼ [I � C(t)B(t)K (t)]ek(t)

� C(t)

ðt

0

[ f (xkþ1(t), t)� f (xk(t), t)] dt

þ C(t)

ðt

0

d (B(t)K (t))

dt
ek(t) dt

� C(t)

ðt

0

uh(t)[I þ E(t)] dt � Xk(0)

þ C(t)B(0)K (0)ek(0)� C(t)[xkþ1(0)� xk(0)] (14)

As t [ [h, T ], considering that
Ð t

0 uh(t) dt ¼
Ð h

0 uh(t) dt ¼ 1
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from (6), (12) and (14) can be, respectively, written as

xkþ1(t)� xk(t)

¼

ðt

0

[ f (xkþ1(t), t)� f (xk(t), t)] dt

þ B(t)K (t)ek(t)�

ðt

0

d (B(t)K (t))

dt
ek(t) dt

þ

ðh

0

uh(t)E(t)dt � Xk(0)þ [B̂(0)� B(0)]K (0)ek(0)

(15)

ekþ1(t) ¼ [I � C(t)B(t)K (t)]ek(t)� C(t)

�

ðt

0

[f (xkþ1(t), t)� f (xk(t), t)] dt

þ C(t)

ðt

0

d (B(t)K (t))

dt
ek(t) dt� C(t)

�

ðh

0

uh(t)E(t)dt � Xk(0)� C(t)[B̂(0)

� B(0)]K (0)ek(0) (16)

Now, let us independently investigate the properties of (15)
and (16) on the whole time interval t [ [0, T ]. Taking
the norms on two sides of (15) and (16), respectively, we
have

kxkþ1(t)� xk(t)k � Lf

ðt

0

kxkþ1(t)� xk(t)k dt

þM1 � kek(t)k þM2

ðt

0

kek(t)k dt

þMEM �X þM0M �K (17)

kekþ1(t)k � r0kek(t)k þMCLf

ðt

0

kxkþ1(t)� xk(t)k dt

þMCM2

ðt

0

kek(t)k dt

þMCMEM �X þMCM0M �K (18)

where supt[[0,T ] kB(t)K (t)k �M1, supt[[0,T ] k[d (B(t)K

(t))=dt] k � M2, and ME, M0, MC, M �X , M �K , r0 are
defined as in Theorem 1.

Multiplying (17) and (18) by e2lt, respectively, where
l . Lf, we have

kxkþ1 tð Þ � xk tð Þkl � Lf sup
t[ 0,T½ �

e�lt

ðt

0

kxkþ1 tð Þ � xk tð Þk dt

� �

þM1kek tð Þkl þM2 sup
t[ 0,T½ �

e�lt

ðt

0

kek tð Þk dt

� �

þMEM �X þM0M �K (19)
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kekþ1 tð Þkl � r0kek tð ÞklþMC Lf

� sup
t[ 0,T½ �

e�lt

ðt

0

kxkþ1 tð Þ � xk tð Þkdt

� �
þMC M2

� sup
t[ 0,T½ �

e�lt

ðt

0

kek tð Þkdt

� �
þMC MEM �X

þMC M0M �K (20)

Applying (9) of Lemma 1 to (19) and (20), we can obtain the
following inequality

kxkþ1 tð Þ � xk tð Þkl �
lM1þM2

l�Lf

kek tð Þkl

þ
lMEM �X

l�Lf

þ
lM0M �K

l�Lf

(21)

kekþ1(t)kl � r0þ
MC M2

l

� �
kek(t)kl

þ
MC Lf

l
kxkþ1(t)� xk(t)kl

þMC MEM �X þMC M0M �K (22)

Substituting (21) into (22), we obtain

kekþ1(t)kl � rkek(t)kl þ
lMC MEM �X

l�Lf

þ
lMCM0M �K

l�Lf

(23)

where r¼r0þ(MC M2=l)þ(MCLf (M1þ(M2=l))=(l�Lf )).
When r0 , 1, we can select l to be sufficiently large such
that r , 1. Equation (23) is a contraction, therefore

lim sup
k!1

kek(t)kl �
lMC (MEM �X þM0M �K )

(1� r)(l� Lf )
(24)

On the other hand, from the definition of the
l-norm, lim supk!1 kek(t)kljt[[h,T ] � lim supk!1 kek(t)kl.
Considering (24), we have

lim sup
k!1

kek(t)kljt[[h,T ] �
lMC (MEM �X þM0M �K )

(1� r)(l� Lf )
(25)

Furthermore, if the input matrix B(t) at t [ [0, h] is
accurately known, we have ME ¼ M0 ¼ 0. It can be
directly derived from (25) that limk!1 kek(t)kljt[[h,T ] ¼ 0.

From the above deduction, it is important to note that (25)
is obtained from the investigation of system (15) and (16) on
the time interval t [ [0, T ]. System (15) and (16) is not
equivalent to the original system (12) and (14) at
t [ [0, T ], but they are equivalent on the time interval
t [ [h, T ]. They should exhibit the same properties at
t [ [h, T ]. Therefore (25) is also suitable to system (12)
and (14) at t [ [h, T ]. Theorem 1 is proved. A
IET Control Theory Appl., 2009, Vol. 3, No. 1, pp. 49–55
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Remark 1: Equation (25) shows that the ILC rule (5) is
able to drive the ILC error at t [ [h, T ] into a bound.
But, it is worth noting that after the parameter l is
selected, the bound is mainly decided by parameters ME

and M0, which are related to the estimation error with
respect to the input matrix B(t). Therefore compared with
the robust effect of the D-type ILC rule (4), the bound can
be controlled to a much smaller level when B(t) is well
estimated. This point will be better illustrated by the
example presented in the next section.

Remark 2: From the ILC rule (5) and the definition (6) of
uh(t), it is shown that the ILC rule (5) puts an initial
rectifying action on a small initial time interval [0, h] and
pursues the reference trajectory tracking at t [ [h, T ]. The
function uh(t) specifies the initial rectifying action on [0, h].
A less value h in uh(t) may result in a larger control input.
Thus, the selection of h should be done based on the
trade-off between the resulting control input and the
tracking error.

In addition, Theorem 1 requires that the input matrix B(t)
is right invertible and estimable. But the corresponding time
interval is only a small initial time interval [0, h], not the
entire time interval [0, T]. Also, in order to achieve perfect
tracking at t [ [h, T ] namely limk!1 kek(t)kljt[[h,T ] ¼ 0,
we need the input matrix, B(t), to be accurately known on
the initial time interval [0, h] only.

Remark 3: Regarding the selection of the learning gain
matrix K(t) in the ILC rule (5), Theorem 1 gives us a
theoretical guideline that K(t) should satisfy (10). In
particular, let K (t) ¼ a(Ĉ(t)B̂(t))T [Ĉ(t)B̂(t)(Ĉ(t)B̂(t))T ]�1

if Ĉ(t)B̂(t) is of full-row rank, where Ĉ(t) and B̂(t) are
estimations to C(t) and B(t), respectively. We can find
a [ (1, 2� 1) and 1 [ (0, 1) so that supt[[0,T ] kI �
C(t)B(t)K (t)k ¼ r0 , 1.
Control Theory Appl., 2009, Vol. 3, No. 1, pp. 49–55
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4 Illustrative example
Consider an ILC problem of the following NCM system

d

dt
x(1)

x(2)

� �
¼
�0:5 sin x(1)

� �
þ 0:8 cos x(2)

� �
sin x(1)x(2)
� �

2
4

3
5þ B tð Þu

y ¼ C tð Þ
x(1)

x(2)

� �

8>>>>><
>>>>>:

(26)

where B tð Þ ¼
2:5 sin(10t)
0 1� 0:3t

� �
, C(t) ¼ 0:5t þ 0:1 1

� 	
.

The desired output yr(t) is described by the equation

yr(t) ¼ 15(t � t2), t [ [0, 1] (27)

In order to verify our ILC approach for NCM systems with
non-fixed initial errors, we randomise the initial states of
system (26) x(1)(0) and x(2)(0), which vary between 21 and
1 at different iterations of ILC process randomly, as shown
in Table 1. The induced non-fixed initial ILC errors, ek(0),
are also listed in Table 1.

Suppose that the accurate information on parameters B(t)
and C(t) in system (26) is unavailable, and only their

estimation B̂(t) and Ĉ(t) are given as
2:3 0:7 sin(10t)
0:15 1:2� 0:45t

� �
and 0:6t þ 0:15 1:2

� 	
, respectively. In the ILC process

of system (26), we set the initial input of ILC as

u0(t) ¼
0
0

� �
, t [ [0, 1], and h ¼ 0.05. We pursue the

tracking of the desired output yr(t) on the interval
t [ [0:05, 1]. The accuracy of tracking is evaluated by the
following maximum absolute error of tracking

EE ¼ sup
t[[h,1]

jyr(t)� y(t)j

To better illustrate the initial rectifying action of our
Table 1 Non-fixed initial states and initial errors of ILC tracking performance at different iterations

k 0 1 2 3 4 5 6 7

xk(0)
0:36
0:41

� �
0:59
0:77

� �
0:42
�0:81

� �
�0:17
0:40

� �
�0:31
0:84

� �
0:93
0:54

� �
0:73
�0:75

� �
0:13
0:42

� �

ek(0) 0.45 0.83 20.77 0.38 0.81 0.63 20.68 0.43

k 8 9 10 11 12 13 14 15

xk(0)
�0:38
�0:84

� �
0:93
0:67

� �
�0:60
�0:33

� �
0:83
0:21

� �
�0:71
0:15

� �
�0:08
�0:52

� �
0:27
�0:78

� �
�0:23
0:82

� �

ek(0) 20.88 0.76 20.39 0.29 0.08 20.53 20.75 0.80
53
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proposed ILC rule (5) by comparison, first, a D-type
ILC rule (4) without a rectifying action is used. We

set K (t) ¼ 0:6(Ĉ(t)B̂(t))T [Ĉ(t)B̂(t)(Ĉ(t)B̂(t))T ]�1, which
makes maxt[[0,1] kI � C(t)B(t)K (t)k , 1. Fig. 1 presents
the situation of the tracking error index EE on the interval
t [ [0:05, 1] when the D-type ILC rule (4) is executed at
different iteration numbers. In Fig. 1, it is shown that the
ILC rule (4) is able to drive the ILC error into a bound.
The robustness of the ILC rule (4) to non-fixed initial ILC
errors is thus illustrated. But it is also noticed that the
bound is surely too large for practical application.

Next, the above ILC rule (5), which includes an initial
rectifying action, is applied. Fig. 2 shows how the tracking
error index EE on the interval t [ [0:05, 1] varies at
different numbers of iteration. Compared with the results
shown in Fig. 1, the ILC tracking error is bounded to a
much lower level.

Figure 1 Maximum absolute error of tracking on the
interval t [[0.05, 1] at different iteration numbers using
the D-type ILC rule (4)

Figure 2 Maximum absolute error of tracking on the
interval t [[0.05, 1] at different iteration number using
the ILC rule (5)
The Institution of Engineering and Technology 2009
Finally, given that the input matrix B(t) is accurately known
on the initial time interval [0,0.05], and the ILC rule (5) is
used, Fig. 3 shows the tracking performance of the ILC
system output on the interval t [ [0, 1] when the ILC rule
(5) is iteratively executed from the second to the forth time.
Also, Fig. 4 presents the situation of the tracking error index
EE on the interval t [ [0:05, 1] when the ILC rule (5) is
executed at different iteration numbers. In Fig. 4, it is
noticed that the ILC tracking error on the interval
t [ [0:05, 1] can be surely driven to zero by the ILC rule
(5) with the known B(t). A perfect tracking of the desired
output yr(t) on the interval t [ [0:05, 1] is achieved.

The example used in this paper illustrates that the
proposed ILC approach for NCM systems with non-fixed

Figure 3 Tracking performance of the ILC system outputs
on the interval t [[0, 1] at different iteration numbers
using the ILC rule (5) with the known B(t)

(The dotted, dashed – dotted and dashed lines represent the
system outputs as the ILC rule (5) is iteratively executed two,
three and four times, respectively, and the solid line represents
the desired output)

Figure 4 Maximum absolute error of tracking on the
interval t [[0.05, 1] at different iteration numbers using
the ILC rule (5) with the known B(t)
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initial errors is very effective. It can overcome random initial
errors of ILC systems and can successfully track the desired
output trajectory beyond a small initial time interval after a
small number of iterations.

5 Conclusion
This paper introduces an initial rectifying action into the
conventional D-type ILC method for NCM systems. The
established ILC technique allows the initial output of the
ILC system at different iterations fluctuating randomly
around the initial value of the desired output. The used ILC
strategy is to set a very small initial time interval and to
pursue the reference trajectory tracking beyond the initial time
interval. The output tracking error beyond the initial time
interval can be driven to a residual set whose size depends on
the estimation error of input matrix. It is worth noting that
when an accurate knowledge on the input matrix on the
initial time interval is available, a perfect reference trajectory
tracking beyond the initial time interval can even be achieved.
Compared with the conventional ILC methods, the
robustness of the proposed ILC system is greatly improved.
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