
Expert Systems with Applications 36 (2009) 3996–4005
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Clone selection programming and its application to symbolic regression

Zhaohui Gan, Tommy W.S. Chow *, W.N. Chau
Department of Electric Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
a r t i c l e i n f o

Keywords:
Clone selection

Programming
Immune system
Gene expression
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.02.030

* Corresponding author.
E-mail address: eetchow@cityu.edu.hk (T.W.S. Cho
a b s t r a c t

A new idea ‘clone selection programming (CSP)’ is introduced in this paper. The proposed methodology is
used for deriving new algorithms in the area of evolutionary computing aimed at solving a wide range of
problems. In CSP, antibodies represent candidate solutions, which are encoded according to the structure
of antibody. The antibodies are able to keep syntax correct even they are changed with iterations. Also,
the clone selection principle is developed as a search strategy. The proposed strategies have been thor-
oughly evaluated by intensive simulations. The results demonstrate the effectiveness and excellent con-
vergent qualities of the CSP based search strategy. In our study, the convergence rate with respect to
population size and other parameters is studied. A thorough comparative study between our proposed
CSP based method with the gene expression programming (GEP), and immune programming (IP) are
included. The comparative results show that the CSP based method can significantly improve the pro-
gram performance. The experimental results indicate that the proposed method is very robust under
all the investigated cases.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary computing or evolutionary algorithms is a kind of
general optimization technology inspired by natural evolution. It
has been developed for over three decades since John Holland (Hol-
land, 1975) first introduced genetic algorithms in 1975. Due to its
characteristic of independence on the problems, evolutionary algo-
rithms have been widely applied in many physical science and
engineering areas, i.e., machine learning, data mining, artificial
intelligence, and control systems. In general, evolutionary algo-
rithms can be categorized in four main types, namely, genetic algo-
rithms (GA), genetic programming (GP), evolution strategies (ES)
and evolutionary programming (EP) (Eiben & Smith, 2003). Various
kinds of evolutionary algorithms differ mainly in the evolution
models applied, the evolutionary operators employed, the selec-
tion methods and the fitness function used (Fogel, 1994). Genetic
algorithms (GA) and genetic programming (GP) are based on the
level of genetic. They emphasize the acquisition of genetic struc-
tures at symbolic level and regularities of the solutions. On the
other hand, the idea of optimization is used in evolution strategies
(ES) and the structures being optimized are the individuals of the
population. Various behavioral properties of individuals are
parameterized and their values evolved with the optimization pro-
cess. Evolutionary programming (EP) uses the highest level of
abstraction by emphasizing the adaptation of behavioral properties
of various species (Eiben & Smith, 2003).
ll rights reserved.

w).
Genetic algorithms (GA) are general search methods that use
the analogy of natural selection and evolution. Every kind of GA en-
codes a potential solution of a specific problem in a simple string of
alphabets called a chromosome. The basic operators of a GA in-
clude individual population initialization, selection, crossover and
mutation etc. Through the introduction of nonlinear structures
(parse tree) with different sizes and shapes into GA, Cramer intro-
duced Genetic programming (GP) in 1985 (Cramer, 1985) and Koza
improved the GP enabling it to be applicable to wider areas, i.e.,
machine learning, data mining, artificial intelligence, and control
systems (Muni, Pal, & Das, 2006). In fact, Genetic programming is
a kind of extension of GA (Koza, 1992). The main difference be-
tween the GA and GP lies in the representation of the structure
and the meaning of representation. GA usually treats a population
with fixed or variable-length binary strings or real strings. Parse
tree is a kind of structure used for representing computer programs
in GP. Since GP focuses on the behavior of computer programs, the
definition of phenotype in GP is more abstract than that in GA. In
brief, parse tree is a more complex encoding scheme compared
to the encoding scheme used in GA, making GP able to create a ri-
cher and versatile system representation.

Performing a sequence of functions to the arguments is a kind of
simple representation used in most computer programs. Generally,
a given computer program is firstly translated into a parse tree by
using a language compiler. A sequence of machine instructions is
subsequently generated for execution. Thus, parse tree is regarded
as natural representations of computer programs at the beginning
of GP development (Koza, 1992). In Koza work in GP, a parse tree
includes two sets of nodes. The internal nodes are called primitive

mailto:eetchow@cityu.edu.hk
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005 3997
functions, while the leaf nodes are called terminals. The inputs of
the program can be represented by the terminals which may in-
clude several independent variables and a set of constants. Some
primitive functions are combined with the terminals and other
primitive functions to form a more complex expression. The above
procedures iterate until a desirable program is produced. The
selection of the primitive functions set is flexible. It can be freely
and randomly generated including different arithmetic operators,
logic operators and transcendental functions etc. Generally speak-
ing, there is no fixed guideline on establishing the primitive func-
tions set, because its complexity is mainly dependent upon the
given problem.

Apart from basic GP, there are other different improved versions
of genetic programming, for example, linear genetic programming
(LGP), cartesian genetic programming (CGP) etc. GP on its own
lacks a simple and autonomous genome like the linear chromo-
somes of GA, because the nonlinear structure of parse tree acts
as a dual role of genotype/phenotype. Despite chromosomes pre-
senting a kind of structure, GP is still a kind of genetic algorithm
because it relies on operating on a population, which consists of
numerous parse trees, and selecting a group of improved parse
trees according to their fitness. It is worth noting that crossover,
mutation, permutation are still the main operators in GP. Although
Koza has improved the operations on parse tree by introducing the
above three operators, most GP applications use only tree cross-
over as the genetic operator (Koza, 1992). Consequently, no new
genetic material is introduced in the genetic pool of GP popula-
tions. Due to the dual role of the parse trees which combining
the genotype and phenotype, genetic programming is difficult to
incorporate a simple, rudimentary expression. In all cases, the
solution must be expressed by using an entire parse tree.

Gene expression programming (GEP) was firstly introduced by
Ferreira in 1999 (Ferreira, 2001). GEP incorporates simple fixed
length linear chromosomes, which are similar to the ones used in
GA. These chromosomes, called genotype in GEP, are changed as
the ramified structures of different sizes and shape. In fact, a chro-
mosome can be represented in another form. Phenotype, a ramified
expression tree of different sizes and shapes, is translated from a
chromosome according to certain criteria. The different formats
of genotype and phenotype in GEP are able to bring out the evolu-
tionary advantages of the algorithm.

The phenotype of gene expression programming is the same as
the ramified structure used in GP. But the ramified structures
evolved by GEP have totally autonomous genome expression. This
means that only genome is passed on to the next generation. Con-
sequently, we no longer need to operate the relatively cumber-
some structures because all the modifications take place in a
simple linear string, which will grow into an expression tree in
the later stage. All this novelty comes from the simple, but revolu-
tionary structure of GEP genes. This structure not only allows the
encoding of any conceivable program, it also allows an efficient
evolution. Although GEP has a powerful encoding scheme, it is still
a kind of GA, which possesses all the shortcomings of GA specially
the pre-matured.

Artificial immune system is a kind of methodology inspired by
the human immune system. Research on artificial immune system
(de Castro & Timmis, 2002; Wierzchon, 2002) has become increas-
ingly popular in the area of evolutionary computing. New models
of artificial immune system are proposed, and more applied re-
search have been explored, such as computer security, data mining,
clustering, pattern recognition and function optimization etc
(Cutello, Nicosia, Pavone, & Timmis, 2007; de Castro & Von Zuben,
2000; Watkins, Timmis, & Boggess, 2004). Despite flourishing in
some areas, there is few research on immune programming. Musi-
lek, Lau, Reformat, and Wyard-Scott (2006) first proposed a con-
cept, namely, immune programming (IP). IP, inspired by the
principles and theories of the immune system, is a novel paradigm
composed of the program-like representation of solutions to prob-
lems and optimal search engine. IP is an extension of artificial im-
mune algorithms. Clone selection algorithm (de Castro & Von
Zuben, 2002, 2000; de Castro & Timmis, 2002), presented by de
Castro and Von Zuben, is one of the kinds of artificial immune sys-
tem (AIS). It has been widely applied into pattern recognition and
optimal search. An immune version of GP (iGP) (Nikolaev, Iba, &
Slavov, 1999) was introduced by Nikolaev et al. It uses dynamic fit-
ness function implemented by immune network dynamics control
the progressive search for programs. The results presented in the
paper (Nikolaev et al., 1999) demonstrate that the immune version
of GP attains better programs, while it is able to maintain higher
population diversity when it is applied to a machine learning task
and a time-series prediction problem. Johnson (2003) proposed a
kind of artificial immune system programming for symbolic
regression. The clone selection algorithm is used as search engine
for program.

While computer programs are represented as lisp parse trees
like the expression given in the standard GP (Koza, 1992), the re-
sults presented in these papers show that these kinds of artificial
immune system programming is superior to GP (Johnson, 2003;
Musilek et al., 2006; Nikolaev et al., 1999). The current immune
programming may be superior to the GP, but the immune pro-
gramming still has major shortcomings. One of the principal prob-
lems is that the algorithm still relies on the use of lisp parse trees
or stack representing programs, which result in degrading the effi-
ciency and effectiveness of the algorithm.

In this study, we propose a new clone selection programming to
address the aforesaid problems. The main objective of this work is
to enhance the effectiveness of programs encoding and search en-
gine. We demonstrate the proposed algorithm by implementing it
in the problem of symbolic regression. We analyze search engines
from the perspective of immune system theory (Ada & Nossal,
1987; de Castro & Timmis, 2002) and program encoding. The anal-
ysis of this type, which has been overlooked in most previous stud-
ies, reveals a major drawback of lisp parse trees and stack based
encoding. It is found that conventional lisp parse trees and stack
based encoding cannot perform optimization in a maximal way
because their encoding manner and searching engine do not com-
pletely utilize optimization in a way of efficiency and effectiveness.
To address this drawback, we employ clone selection programming
to formulate a new programming strategy, in which program
encoding and search engine appear to be very efficient and
effective.

The presentation of this paper is organized as follows. In Section
2, biological immune system is briefed and our proposed program-
ming strategies are detailed. In Section 3, simulation examples are
presented and discussed. The conclusion is drawn in Section 4.
2. Clone selection programming

The immune system of human body, which consists of an innate
and an adaptive immune system, is a very complex, rapid, and
effective defense mechanism against disease. The innate and adap-
tive immune systems both depend on the activity of a great variety
of molecules, cells, and organs spread throughout the body. Vari-
ous distributed elements incorporate immune functions that do
not need central control. The cells of the innate immune system
are in-born and exist throughout our body. Once a wide variety
of bacteria occur in the body, these cells are immediately available
to fight against them. The response produced by an antibody com-
bating a determined infectious agent is called adaptive immune re-
sponse. The presence of antibodies reflects the kind of infection
that our body has already been exposed. Cells of the adaptive



3998 Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005
system can extinguish the same antigenic stimulus when these
antigens attack the body again. The capability of adaptive immune
system is called immune memory which enables diseases within
human organism be rapidly destroyed. The adaptive immune sys-
tem is mainly made up of lymphocytes which are responsible for
the recognition and elimination of the pathogenic agents. The main
function of the immune system is to protect human organism
against pathogens and to eliminate malfunctioning self cells. This
self-defense function is largely relied on the ability of recognition.
The immune system not only recognizes pathogens and malfunc-
tioning cells, it is also able to recognize the organism’s own prop-
erly functioning cells and tissues in order to prevent them from
inadvertent destruction. All elements, pathogens, malfunctioning
cells, and healthy cells etc recognized by the immune system are
called antigens. The cells which belong to the organism and are
harmless to its functioning are termed self, while the harm-causing
elements are termed non-self. The immune system has the ability
to distinguish which element is self or non-self. In immunology,
this process is named self/non-self discrimination.

When the immune system finds an antigen and recognizes it as
non-self, it generates a response to eliminate the pathogen. But the
process of antigen recognition and elimination is not enough on
their own to deactivate various pathogens. In order to be better
to recognize new pathogens and to improve response to pathogens
already encountered, the immune system is provided with mem-
ory and an ability to learn from the processes of pattern recogni-
tion, clone selection, negative selection, and affinity maturation.

In this section, the proposed paradigm of clone selection pro-
gramming (CSP) is described in detail. In CSP, an antigen is used
to present a given problem, while an antibody is used to describe
a candidate solution. Each antibody is encoded by a string whose
character is analogous to gene in immune systems. The antibody
population, randomly generated at initial stage, is evaluated
against the problem specification. Their affinities are calculated
by mean squared error. If a solution cannot be found in the popu-
lation, the algorithm will continue to evolve antibodies through
replacement, cloning, and hypermutation until a solution is found
or a predefined stopping criteria is attained.

2.1. Antibody encoding

2.1.1. Biological structure of antibody
An antibody, or immunoglobulin (Ig) has four polypeptide

chains: two identical light (L) and two identical heavy (H) chain
(Tonegawa, 1983) composed of an amino terminal region that is
highly variable (variable region) and a carboxyterminal region that
can be assumed as one of a few types (constant region). The vari-
able region, or V-region, is responsible for the antigenic recogni-
tion. They contain some special variable sub-regions whose
composition is a consequence of the contact with an antigen.
Moreover, a number of effector functions, such as complement fix-
ation and ligation to other cell receptors of the immune system, are
developed by the constant region, or C-region.

Multiple gene segments scattered along a chromosome of a
genome consists of a polypeptide chain of an antibody molecule
which means that genes located in several different gene libraries
are concatenated to form the heavy and light chains of the anti-
body molecules. For example, the V-region of heavy and light
chains of the antibody molecules is coded by two separated gene
segments named V (for variable) and J (for junction). Beyond the
V and J segments, the area between the segments V and J of the
heavy chain is the third segment named D which is for diversity.
Therefore, antibody population diversity, which is due to the ran-
dom recombination of gene fragments, is contained in several li-
braries. The process of somatic hypermutation is used to increase
the Ag–Ab (antigen–antibody) affinity so that the immune diver-
sity and capacity of response are improved. The affinity can be
understood as the strength of binding between two binding sites,
such as a cell receptor and an epitope. Thus, the above two mech-
anisms of generation and diversification of antibodies makes the
immune system capable of synthesizing an almost infinite number
of cell receptors from a finite genome.

2.1.2. Structure of antibody encoding
In contrast to its analogous antibody structure expression, anti-

body in CSP consists of a linear, symbolic string of fixed length that
composes of one or more genes. Expression of antibody is rather
simple. It has two main components: the antibody encoding and
the expression trees. The latter is an expression of the immune
information encoded in the former. The process of information
decoding (from the antibody encoding to the expression tree) is
called translation. The symbols of the antibody and program or
problem they represent have a one to one relationship. The spatial
organization of the function and terminals in the expression trees
is determined by the corresponding rules. Therefore, there exist
two languages in CSP: the language of the antibodies and the lan-
guage of the expression trees. It is noted that the two languages are
sufficient to infer exactly the other. For example, the algebraic
expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðxyÞ þ yþ ex

p
can also be used for representing an

expression tree (ET), where Q represents the square-root function,
E represents the exponential function, and S represents the sinusoi-
dal function. The gene can be represented by the expression tree
shown in Fig. 1a.

The expression tree as shown in Fig. 1a is, in fact, the phenotype
of an antibody gene. An expression string of the above algebraic
expression can be translated from the expression tree as follows:

For each sub-tree in the ET, the root must be read out firstly, and
then the left child node, the right child node is read out lastly. To
complete the translation of the whole expression string to an
expression tree, the following rules are used.

(i) The start of expression string corresponds to the root node of
the ET as in Fig. 1a.

(ii) If the root node is a terminal, the mapping stops. Or its child
branches are processed from left to right. All of the children
branches are read from the antibody encoding one by one. If
a node is a function having only one argument, only one
symbol in the encoding is placed as its child node.If the func-
tion has arguments, add a symbol from the left of the start
node, some symbols in encoding are placed as its child nodes
hierarchically until the end is leaf node. The number of child
branches is determined by the number of arguments of their
parent node. After the left of node has been constructed, the
right part of node will be constructed by the same method.

(iii) From left to right, new nodes are filled consecutively with
the elements of the expression string. This process continues
in layer-by-layer until all leaf nodes in the ET are composed
of elements from the terminal set.

After mapping an antibody encoding into an ET, the fitness of
the antibody encoding can be calculated by decoding the ET
through traversal. Through various operations, there is no invalid
expression or computer program. This encoding scheme makes



Q

+

S

*

+

x

Ey

x y

+

+

+

Gene 1

Gene 2

Gene 4Gene 3

(a) The expression tree of a gene (b) A four-gene antibody linked by addition 

Fig. 1. The expression tree of gene and antibody.

Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005 3999
all programs evolved by CSP syntactically correct. Thus, in CSP,
syntactic closure is the intrinsic nature making evolution more effi-
cient. Indeed, this is the paramount difference between other im-
mune programming and other types of GP implementations,
which either limit themselves to inefficient genetic operators or
checking all the newly created programs exhaustively for syntactic
errors.

2.1.3. Structure and functional organization of antibody encoding
The encoding scheme is similar to gene expression encoding in

GEP (Ferreira, 2006). The structure of antibody genes composes of
two different domains which exhibit different properties and func-
tions. They are a variable region and a constant region. The variable
region is used mainly to express the functions chosen for the spe-
cific problem, whereas the constant region works as a buffer or res-
ervoir of terminals in order to guarantee the formation of only
valid structures. Thus, the variable region contains symbols repre-
senting both functions and terminals, whereas the constant region
composes of only terminals. For a given problem, the length of the
variable region V is chosen, whereas the length of the constant re-
gion C is a function of V and the number of arguments of the func-
tion with more arguments nmax (also called maximum arity). It is
evaluated by

C ¼ V � ðn� 1Þ þ 1: ð1Þ

Consider a gene, a set of functions F = {Q, *, /,�, +}, and a set of termi-
nals T = {a,b} are given. Thus, it gives nmax = 2, and if we chose an
V = 11, then C = 11 � (2 � 1) + 1 = 12, the length of the gene is
11 + 12 = 23. A typical gene is shown below, in which the constant
region is shown in bold

The antibodies usually consist of several genes of equal length. The
interaction between the genes is specified by a linking function. An
example of a four-gene antibody linked by addition is shown in
Fig. 1b.

2.2. Clone selection algorithm

Based on the concept of the clone selection in immune system
(Nossal, 1993), the algorithm of CSP is developed. At the initializa-
tion stage, antibodies, which are the candidate solutions to a given
problem, are randomly generated as an initial population. The
cloning and hypermutation operation of the antibody make the
population evolve so that the diversity of the population is main-
tained and the search space for solutions is expanded. Evaluation
of the quality of each antibody is based on the affinity value. The
high-affinity antibodies are selected for cloning or hypermutation,
while the antibodies with lower affinity are replaced. This selection
process finishes through one of the operations of replacement,
cloning or mutation to form a new population. This process repeats
until the stopping criteria or maximal generation number is
reached. The final result of search process is then decoded to the
program space becoming an implementation of the solution to
the given problem.

The procedures of CSP can be briefly described as follows:
A. Initialization: The initial population of antibodies is randomly

generated. The encoding structure is introduced in the above sec-
tion. These N individuals compose of an initial population (P) of
candidate solutions which include a subset of memory cell (M).

B. Evaluation: An antigen (Ag) representing the problem to be
solved appears at the initial stage of programming. Different
expression forms of antigen depend on the specific problem. Here,
we assume that the antigen is taken the form of an arithmetic
expression, say, Ag ¼ x2 þ y2 þ xþ y. To evaluate the affinity of
the antibodies, particular values of variable(s) have to be placed
on the expression and the programs have to be executed. Since
the problem is described in a symbolic form, no numerical argu-
ment values are explicitly prescribed and they must be generated.
For the antigen used as an example, this corresponds to generation
of x and y values. Here, we randomly generate x and y in the range
of [0,255]. Five sets of values x and y are generated to execute each
antibody and to compare the execution results to the antigens
behavior. The affinity of ith antibody with antigen fi ¼

1
1
n

Pn

i¼1
ðAbi�AgiÞ2þ1

, where Agi ¼ x2
i þ y2

i þ xi þ yi. Abi ¼ f ðxi; yiÞ � n ¼ 5.

Thus, the affinity of antibody with antigen is in the range of
[0,1]. The whole antibodies are sorted in descending order accord-
ing to the affinity of all antibodies in the population P with antigen.

C. Cloning: Before a new antibody has been generated, an anti-
body Abi from the current population is considered for cloning.
The antibodies are selected for cloning according to the affinities
with antigen. The antibodies in population are sorted in descend-
ing order. The n (n < N) highest affinity antibodies will be cloned.
The number of clones (given by Eq. (2)) reproduced for each indi-
vidual is proportional to its affinity.

Nc ¼ round
b � N

i

� �
ð2Þ

for each individual, b is a multiplying factor. Where, Nc is the num-
ber of clones generated, N is the total number of individuals, i is the
index of current individual in the population, and round (�) is the
function that rounds its variable toward the closest integer. After
these n best individuals are cloned, a temporary clone population
(PC) is generated.



Fig. 3. Pseudocode of mutation.

Fig. 4. Pseudocode of whole algorithm.

4000 Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005
D. Hypermutation: The individuals in the population PC of the
previous step are submitted to a hypermutation procedure. Sup-
pose an antibody has J genes, while a gene has K bit symbol string,
Abi ¼ hS1; S2; . . . Sji, the mutation process is implemented by replac-
ing some bit symbols of each gene with some new randomly gen-
erated symbols belonging to the defined function set or terminal
set. The symbols in variable region may be replaced as function
or terminal symbol, whereas the symbols in constant region are
only mutated as terminal symbol. The probability of mutation Pm

determines this process. To illustrate the process of hypermuta-
tion, let us assume that there is an antibody containing three
genes, the size of variable region of gene is five, the argument num-
ber is two, and the size of constant region of gene is six. This anti-
body is shown as follow in which the constant regions are shown
in bold:

The corresponding arithmetic expression is f ðx; yÞ ¼ 4x2 þ 2xyþ y;
and its corresponding expression tree is shown in Fig. 2a. From
the first symbol of antibody, a random positive float number less
than one is generated. If the number is less than the probability
of mutation, Pm, the symbol will mutate. The new symbol that re-
places the old one is randomly selected from the function or termi-
nal set. This process repeats until the last symbol of the last gene.
The Pseudocode of mutation is shown in Fig. 3. In our example,
mutation points of each gene of antibody are highlighted in under-
line. The mutated antibody is shown as follows:
The corresponding arithmetic expression is f ðx; yÞ ¼ 3x2 þ 4xyþ 2y,
and the corresponding expression tree is shown in Fig. 2b. Owing to
x

*

+

x y

+

*

x y

*

x y

+

y *

x+

xx

+

+

Gene 1 Gene 2 Gene 3

(a) The expression tree of antibody

+

*

x y

+

y *

+

yx

+

+

x

*

+

x

y

+

y

x +

xy

Gene 1 Gene 2 Gene 3

(b) The expression tree of antibody mutated

Fig. 2. The expression tree of antibody and antibody mutated.
the hypermutation operator, the algorithm is able to provide new
gene material into the antibody population. This can enhance the
diversity of antibody population and expand the search space for
finding the solution. After hypermutation, an antibody population
(PM) based on clone population (PC) is generated.

E. Re-selection: After hypermutation is finished, the individuals
in the population PM are evaluated again so that the individuals
with higher affinity are chosen to compose the memory cell set M.

F. Replacement: After the above phases are complete, the algo-
rithm proceeds with generation of new individuals. The new ran-
domly generated individuals will be put into population directly
so that the lower affinity individuals will be replaced with higher
probabilities.

Step (ii) to step (vi) iteratively proceed until the stopping crite-
rion is reached. The criterion used in this study takes two forms:
maximal number of generations and fitness threshold. At last, the
final attribute string is presented and translated into solution of
specified problem. The Pseudocode of the whole algorithm is de-
picted in Fig. 4.

3. Simulations and analysis

To demonstrate the advantage of our proposed algorithm, sev-
eral simulations with antigens in the form of arithmetic expres-
sions are conducted. The results are compared with mainly
related methods such as immune programming (IP) and gene
expression programming (GEP). The function and terminal set are
F = {+,*, /,�}, and the set of terminals are T = {x,y}.

Besides the form of the generated programs, the number of gen-
erations to arrive at the solutions is recorded. Due to the stochastic
nature of the algorithm and simplicity of arithmetic expressions,
the foregoing four examples were conducted with 1000 indepen-
dent trials to avoid bias. The results are averaged and reported in



Table 1
The parameters of CSP

Population size, N 100
Number of antibodies selected, n 20
Clone factor, b 2
Number of new antibodies, d 40
Number of antibodies replaced, r 80
Mutation rate, Pm 0.2

Table 2
The parameters of GEP

Population size, N 100
Mutation rate 0.44
Inversion rate 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
Gene transposition rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.3

Table 4
Comparison of performance of IP, GEP and CSP for multiple variables

Constrained program size L/
variable region size H

4 5 6 7 8 9 10

Number of generation G (IP) 10.7 14.6 10.9 17.1 15.9 26.8 43.4
Number of generation

G (GEP)
23.5 20.7 42.8 85.9 130.9 158.1 195.1

Number of generation
G (CSP)

11.7 6.2 9.7 14.2 17.6 21.6 24.3

The number of generations is an average of a number of different trails.

Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005 4001
this paper. As stacked encoding used in IP is totally different to
antibody encoding in CSP and gene expression encoding in GEP, a
program size expressed by stack encoding, antibody encoding
and gene expression encoding is set as the same for fair compari-
son. The parameters used in CSP and GEP are listed in Tables 1
and 2. The results of the simulations of IP are abstracted from this
paper (Musilek et al., 2006).

3.1. Single variable high order expression

This simulation is used to evaluate the performance of three
algorithms handling with operations of high order single variable
expression. The expression used is X8. The performance of three
algorithms over the program size, L, is listed in Table 3. As the min-
imum number of antibody encoding and gene expression encoding
for this expression is six, CSP and GEP do not deliver results when
the program size is five.

In IP, the numbers of generations to find a solution are all inverse
proportional to the program length, whereas in GEP and CSP, the
numbers of generations are nearly constant due to this simple
expression. Compared with IP and GEP, our proposed approach re-
quires less number of generations to obtain a solution in all simula-
tions with different program sizes. The shortest possible program is
in the following form corresponds to the expression X8.
Table 5
Comparison of performance of IP, GEP and CSP for factorization

Constrained
program size L/

3 4 5 6 7 8 9 10
3.2. Multiple variable expression

In this session, we demonstrate the ability of three algorithms
to handle operations of multiple variable mathematical expression.
Table 3
Comparison of performance of IP, GEP and CSP for high order operations

Constrained program size L/variable region
size H

6 7 8 9 10

Number of generation G (IP) 318.3 58.3 55.2 54.6 33.3
Number of generation G (GEP) N/A 4.8 4.7 6.3 7.4
Number of generation G (CSP) N/A 2.6 2.3 2.5 2.7

The number of generations is an average of a number of different trails.
The particular expression used in this study is x � yþ y2 þ z. It in-
volves three variables x, y, z. The performance of the three algo-
rithms for various values of L, is shown in Table 4. It shows that
stack based encoding scheme is unable to represent a relatively
complex algebraic structure. Compared with IP and GEP, our ap-
proach requires less number of generations to come up with the
solution in all simulations with different program sizes. The short-
est possible program is in the form of
The above expression corresponds to a mathematical expression of
x � yþ y2 þ z.

3.3. Factorization

In order to compare the ability of the three algorithms for sim-
plifying an arithmetic expression by factorization, this session
demonstrates an antigen expression of x2 � y2. The performance
of the three algorithms for various values of L, is summarized in Ta-
ble 5. For the IP, the obtained results show that there is no strong
dependence between the number of generations and the program
length, whereas the number of generations required by our pro-
posed approach is more or less constant. Compared with the IP
and GEP, our proposed approach requires less number of genera-
tions to find a solution. The shortest possible program is in the
form of
The above expression corresponds to a mathematical expression of
x2 � y2.
variable region size
H

Number of
generation G (IP)

4.8 4.7 4.5 6.4 6.3 11.4 9.2 12

Number of
generation
G (GEP)

2.75 2.78 4.44 12.91 32.58 39.60 47.77 53.53

Number of
generation
G (CSP)

1.71 1.50 1.61 2.75 4.96 5.50 5.83 6.35

The number of generations is an average of a number of different trails.



Table 6
Comparison of performance of IP, GEP and CSP for no simplification

Constrained program size L/head length H 7 8 9 10 11 12 13 14 15

Number of generation G (IP) N/A N/A N/A 488.1 292.3 210.4 165.2 135.3 224
Number of generation G (GEP) 21.8 36.9 60.9 117.0 204.4 249.3 309.9 293.7 326.6
Number of generation G (CSP) 6.5 9.9 17.3 28.8 54.3 55.9 51.6 54.7 53.2

The number of generations is an average of a number of different trails.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Generation

A
ff

in
it

y

Maximum Affinity

Average Affinity

Fig. 5. Evolution of affinity over time.

4002 Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005
3.4. No simplification expression

In order to verify whether the three algorithms are capable of
solving more complicated mathematical expression. In this ses-
sion, an expression x2 þ y2 þ xþ y, which cannot be further math-
ematically simplified, is considered. The performance of the three
algorithms over various values of L, is summarized in Table 6. It
is noticed that a minimum of 10 instructions is required for IP to
solve the expression. Apparently, the increased program length
causes a significant increase in the number of generations. In our
proposed algorithm, a minimum length of 7 variable regions is re-
quired to represent the expression. It is worth noting that they are
all able to obtain the correct solutions irrespective of minimum or
maximum length of gene expression encoding or antibody encod-
ing. It is important to point out that our proposed approach has
exhibited faster convergence rate compared with IP and GEP. The
shortest possible program is in the form of

The above expression corresponds to the mathematical expression
0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

Population size N

G
en

er
at

io
n

Fig. 6. Sensitivity of CSP performance with respect to population size, N.
of x2 þ y2 þ xþ y. The evolution of affinity and the sensitivity of
the algorithm parameters are also examined. A comparative study
of the three algorithms is detailed in Section 3.5.

3.5. Evolution of affinity

The same expression x2 þ y2 þ xþ y is used in this analysis. The
aim of this session is to analyze the evolution of population with
respect to its affinity. The parameters of CSP are set to P = 100,
n = 20, d = 40, r = 80, b = 2, Pm = 0.2, where n, d, r, b, Pm are chosen
according to the empirical results from the sensitivity analysis in
the following section. The program size is set to L = 6, the evolved
function set is {+,�, *, /}, terminal set is {x,y}. In the trial under
examination, the algorithm found the solution in the 18th genera-
tion. The growth of affinity during evolution of the solution is
shown in Fig. 5. The maximum and average affinities are gradually
improved until the 15th generation at which a marked improve-
ment on the maximum and average affinities appears. The maxi-
mum and average affinities are obtained at the 18th generation
when the solution is correctly found.

3.6. Sensitivity analysis

To examine the parameter sensitivity of our proposed algo-
rithm, the same expression x2 þ y2 þ xþ y as used in Section 3.5
is considered. The following parameters with their default values
indicated in parentheses will be changed.

Population size N (N = 100),
Percentage of antibodies selected for clone to population n

(n = 0.2),
Clone factor b (b = 2),
Percentage of new antibodies to population d (d = 0.4),
Percentage of antibodies replaced to population r (r = 0.8),
Probability of mutation Pm (Pm = 0.5).
In these experiments, the variable region size of antibody

encoding, L, is kept constant at 10. Similar to previous examples,
the results of 100 independent trials are averaged to avoid bias.

3.6.1. Effect of population size
This session examines the effect of population size on conver-

gence rate. The population was varied from 20 to 1000 with an
increment of 10. The number of generations required for producing
the solution is plotted against the population size shown in Fig. 6.
The curve indicates that a large population size would have an ef-
fect on speeding up the convergence rate. But it is noticed that the
algorithm was able to converge and to find a solution even with a
very small population size. The obtained result also indicates that
there is a threshold on the population size, which appears to be
about 300, beyond which has no further effect on speeding up
the convergence rate.

3.6.2. Effect of percentage of antibodies selected for clone to
population

We examine the effect of varying the percentage of antibodies
selected for clone to population, n, on the convergence. In this



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Percentage of selected antibodies for cloning to population number

G
en

er
at

io
n

Fig. 7. Sensitivity of CSP performance with respect to size of selected antibody for
clone, n.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Percentage of new antibodies d to population number

G
en

er
at

io
n

Fig. 9. Sensitivity of CSP performance with respect to size of new antibodies, d.

0 10 20 30 40 50 60 70 80 90 100
6

8

10

12

14

16

18

20

Percentage ofnumber of antibodies replaced to population number

G
en

er
at

io
n

Fig. 10. Sensitivity of CSP performance with respect to size of replaced antibodies, r.

Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005 4003
study, n was varied from 1% to 99% with an increment of 1%. The
number of generations required to produce the solution is plotted
against n. Fig. 7 shows that a larger number of antibodies selected
for clone has a significant effect on speeding up the convergence
rate. The low convergence rate at a small n is attributed to the de-
crease in search space.

3.6.3. Effect of clone factor
This session evaluates the effect of clone factor on convergence

rate. The clone factor b was varied from 0.1 to 10 with an incre-
ment of 0.1. Fig. 8 shows the number of generations required to
produce the solution is plotted against the clone factor, b. The
curve shows that a larger number of clone factor has a significant
effect on speeding up the convergence rate. It is noticed that a
small value of b will have an effect of slowing down the conver-
gence rate. This is mainly due to a loss of search space.

3.6.4. Effect of percentage of new antibodies to population
We examine the effect of varying the percentage of new anti-

bodies to population, d, on the convergence rate. In this study, d
was varied from 1% to 99% with an increment of 1%. The number
of generations required to produce the solution is plotted against
d in Fig. 9. It shows that a larger number of new antibodies has a
significant effect on speeding up the convergence rate. The low
convergence rate at a small d is attributed to the decrease in search
space.

3.6.5. Effect of percentage of antibodies replaced to population
In this session, we evaluate the effect of percentage of antibod-

ies replaced to population on the convergence rate. The percentage
of antibodies replaced, r, was varied from 1% to 99% with an incre-
0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Clone Factor

G
en

er
at

io
n

Fig. 8. Sensitivity of CSP performance with respect to clone factor, b.
ment of 1%. The number of generations required to produce the
solution is plotted against r. Fig. 10 shows that the percentage of
antibodies replaced, r, do not affect the convergence rate
significantly.

3.6.6. Effect of probability of mutation
We evaluate the effect of probability of mutation, Pm, on the

convergence rate. The value of Pm was varied from 1% to 90% with
an increment of 5%. The number of generations required to pro-
duce the solution is plotted against the probability of mutation,
Pm. In Fig. 11, a ‘‘V” shape with a minimum at 0.5 appears in the
curve. It is noted that the probability of mutation significantly af-
fects the efficiency of our proposed algorithm.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
6

8

10

12

14

16

18

20

Probability of Mutation (Pm)

G
en

er
at

io
n

Fig. 11. Sensitivity of CSP performance with respect to probability of mutation, Pm.



4004 Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005
3.7. Comparison of between CSP, IP and GEP

In evolutionary computation, encoding and optimal search
strategy are the most important aspects affecting the performance
of the algorithms. GA usually requires large numbers of encoding
schemes and search strategies. In evolutionary programming, Gene
expression programming and immune programming are very ver-
satile algorithms. In the following section, we thoroughly analyze
and compare their advantages and shortcomings from the perspec-
tives of encoding scheme and search strategy.
3.7.1. Encoding scheme
Stack-based encoding scheme has the characteristics of small

size, and low system complexity. It is able to deliver high system
performance consistently even under varying conditions (Jerne,
1974). But it has the following distinct shortcomings:
� It is difficult to express complex program.

� Efficiency of executing program is low.

� It cannot guarantee program syntax correct.

In antibody encoding scheme, it has an important characteristic
of being syntactic closure. Antibody encoding scheme allows the
genotype totally unconstrained manipulated, which results in an
efficient evolution. This is the paramount difference between anti-
body encoding and stack encoding or previous lisp tree encoding in
GP implementations, the latter two encoding scheme make some
evolution operation quite complex and inefficient because algo-
rithm must check exhaustively all the newly created programs
for syntactic errors (Banzhaf et al., 1998).

3.7.2. Search strategy
In fact, gene expression programming is a special genetic algo-

rithm whose encoding represents computer program. It has all of
genetic operators of genetic algorithm and increases some new ge-
netic operators. Although GEP outperforms GP due to its powerful
gene expression encoding, its search strategy basically is the same
as genetic algorithm, which it has all shortcoming of genetic algo-
rithm. Clone selection algorithm based on biological immune sys-
tem is a kind of new optimal search approach, which has strong
search ability. Although CSP and IP all are clone selection algo-
rithm, there are some difference between them listed below.

� In CSP, the number of new generated individual in each gener-
ation keeps constant, whereas in IP, it depends on the probabil-
ity of clone Pc and affinities of individuals.
Table 7
Comparison of convergence success rate of IP, GEP and CSP

L/H System Repertoire/population size, n

10 50 100 200 300 400 500 1000
� In CSP, only some high-affinity individuals will be chosen for
clone, whereas low-affinity individuals do not have chance to
be cloned.In IP, the more larger affinity individuals have, the
higher chance individuals have to be cloned.
5 IP N/A N/A N/A N/A N/A N/A N/A N/A
0% 0% 0% 0% 0% 0% 0% 0%

GEP 135 37 29 18 11 11 9 3
100% 100% 100% 100% 100% 100% 100% 100%
� In CSP, only cloned individuals can be mutated, which these
individuals have equal chance be mutated.In IP, each individual
not cloned has chance to be mutated, which probability of
mutation depends on their affinities.
CSP 157 23 17 5 3 3 3 2
100% 100% 100% 100% 100% 100% 100% 100%

9 IP N/A 919 1053 991 852 846 857 786
0% 7% 12% 24% 35% 43% 51% 75%

GEP 148 50 33 29 23 15 13 6
� In CSP, the individuals being cloned and mutated are the best in
population.In IP, although clone and mutation of individuals
depend on their affinities, the highest affinity individuals are
probably not be evolved.
99% 100% 100% 100% 100% 100% 100% 100%
CSP 63 10 5 3 3 2 2 2

100% 100% 100% 100% 100% 100% 100% 100%
15 IP 1057 1001 807 795 650 529 436 249

10% 30% 53% 82% 90% 99% 99% 100%
GEP 511 221 181 167 161 134 101 100

85% 98% 100% 100% 100% 100% 100% 100%
CSP 188 26 17 6 5 4 4 3

95% 100% 100% 100% 100% 100% 100% 100%
� In CSP, Due to syntactic closure of antibody encoding, we just
need simple Euclidean distance to calculate affinity of the gen-
erated programs from the expected results defined by the anti-
gen.In IP, a complex evaluation function must be elaborately
designed for calculating affinity of individual because stack-
based encoding does not guarantee all program syntax correct-
ness, if evaluation function is not be designed better, it will
decrease the performance of algorithm.
In order to further compare the performance of CSP with IP and
GEP, the expression x2 þ xþ 3y is used for this study. To allow an
unbiased comparison, the same method of generated test cases
and evaluation of candidate solutions were maintained. As the
minimal program size for this expression of these two encoding
schemes is five and nine respectively, the simulations are con-
ducted for the minimal program length, L = 5 and L = 9, and another
larger size, L = 15. The stopping criteria is either success in finding
a solution or a maximum number of generations, Gmax = 2000. Each
of the experiments is repeated one hundred times. The results,
listed in Table 7, represent the average taken over all trials. The ta-
ble also relates the number of trials (as a percentage of the one
hundred trials) in which a solution is found within Gmax genera-
tions. This measure is provided since in some trials neither algo-
rithm finds a solution within the stopping criteria. The average
number of generations G to find a solution for 100% successful sets
of trials is set in a bold font. For any population size and any pro-
gram size, clone selection programming is clearly superior to IP
and GEP not only in terms of the average number of generations
needed to find a solution, but also in the ability of the algorithm
to find a solution within a restricted number of iterations. When
program size is minimum number for solving this expression in
IP, IP gets quite low success rate in all trials for any population of
size smaller than 1000. The CSP and GEP algorithm, on the other
hand, achieve complete success for any population of size, but
CSP runs faster than GEP. When program size is set as fifteen, the
CSP algorithm is able to find a solution in 95% of trials for popula-
tion size N = 10. The ability of CSP to perform successfully with
small populations can be attributed to the way in which the algo-
rithm has better encoding and powerful search strategy which
maintains population diversity. This diversity is introduced during
initialization steps which are analogous to population initialization
of other two algorithms. However, in CSP, diversity is subsequently
maintained via replacement and mutation. Additionally, due to the
affinity-based selection process, the high-affinity individuals will
be cloned and kept to next generation and mutation happens at
individuals having been cloned so that the most excellent individ-
uals were chosen and evolved.

4. Conclusion

In this paper, a new paradigm of evolutionary computation
named ‘clone selection programming’ (CSP) is introduced. Based



Z. Gan et al. / Expert Systems with Applications 36 (2009) 3996–4005 4005
on the biological immune system concepts, CSP is an extension of
artificial immune system (AIS), which is a systematic, domain-
independent, and intelligent based method to solve programming
problems. A specific operation is implemented by an antibody’s
affinity and a set of probabilistic parameters. Convergence of CSP
is superior to IP and GEP for the problems tested: successful solu-
tions are found in fewer generations with the most dramatic
improvement evident when using a small antibody population.
Additionally, CSP converges in situations that cannot be handled
by GEP and IP, which is attributed to its powerful encoding scheme
and search strategy. Sensitivity of CSPs convergence with respect
to algorithm parameters is explored in this paper. The generaliza-
tion capabilities of the system are demonstrated by its capacity to
provide a variety of alternative solutions to a given problem.

It is worth poting out that the paradigm may be widely applied
into machine learning, data mining and optimization, i.e., classifi-
cation of datas, feature selection and system recognition and mod-
elling etc. In future work, we will extend this algorithm to new
applications in order to further evaluate its advantages and im-
prove its performance.

References

Ada, G. L., & Nossal, G. J. V. (1987). The clonal selection theory. Scientific American,
257(2), 50–57.

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming:
An introduction: On the automatic evolution of computer programs and its
applications, Morgan Kaufmann.

Cramer, N. L. (1985). A presentation for the adaptive generation of simple
sequential programs. In Proceedings of the international conference on genetic
algorithms and their applications (pp. 183–187).

Cutello, V., Nicosia, G., Pavone, M., & Timmis, J. (2007). An immune algorithm for
protein structure prediction on lattice models. IEEE Transactions on Evolutionary
Computation, 11(1), 101–117.
de Castro, L. N., Von Zuben, F. J. (2000). The clonal selection algorithm with
engineering applications. In Proceedings of GECCO’00, workshop on artificial
immune systems and their applications (pp. 36–37).

de Castro, L. N., & Timmis, J. (2002). Artificial immune systems: A new computational
intelligence approach. Springer.

de Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal
selection principle. IEEE Transaction on Evolutionary Computation, Special Issue
on Artificial Immune Systems, 6(3), 239–251.

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Springer.
Ferreira, C. (2001). Gene expression programming: A new adaptive algorithm for

solving problems. Complex Systems, 13(2), 87–129.
Ferreira, C. (2006). Gene expression programming: Mathematical modeling by an

artificial intelligence. Springer.
Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE

Transactions on Neural Networks, 5(1), 3–14.
Holland, J. H. (1975). Adaptation in natural and artificial systems. University of

Michigan Press.
Jerne, N. K. (1974). Towards a network theory of the immune system. Annales D

Immunologie (Inst. Pasteur), 125C, 373–389.
Johnson, C. G. (2003). Artificial immune system programming for symbolic

regression. In Genetic programming, 6th European conference (EuroGP) (pp.
345–353).

Koza, J. R. (1992). Genetic programming: On the programming of computers by means
of natural selection. Cambridge, MA, USA: MIT Press.

Muni, D. P., Pal, N. R., & Das, J. (2006). Genetic programming for simultaneous
feature selection and classifier design. IEEE Transactions on Systems, Man and
Cybernetics, Part B, 36(1), 106–117.

Musilek, P., Lau, A., Reformat, M., & Wyard-Scott, L. (2006). Immune programming.
Information Sciences, 176(8), 972–1002.

Nikolaev, N. I., Iba, H., & Slavov, V. (1999). Inductive genetic programming with
immune network dynamics. Advances in genetic programming (Vol. 3). MIT Press
(pp. 355–376).

Nossal, G. J. V. (1993). The molecular and cellular basis of affinity maturation in the
antibody response. Cell, 68, 1–2.

Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature, 302,
575–581.

Watkins, A., Timmis, J., & Boggess, L. (2004). Artificial immune recognition system
(AIRS): An immune inspired supervised machine learning algorithm. Genetic
Programming and Evolvable Machines, 5(3), 291–317.

Wierzchon, S. T. (2002). Function optimization by the immune metaphor. Task
Quarterly, 6(3), 493–508.


	Clone selection programming and its application to symbolic regression
	Introduction
	Clone selection programming
	Antibody encoding
	Biological structure of antibody
	Structure of antibody encoding
	Structure and functional organization of antibody encoding

	Clone selection algorithm

	Simulations and analysis
	Single variable high order expression
	Multiple variable expression
	Factorization
	No simplification expression
	Evolution of affinity
	Sensitivity analysis
	Effect of population size
	Effect of percentage of antibodies selected for clone to population
	Effect of clone factor
	Effect of percentage of new antibodies to population
	Effect of percentage of antibodies replaced to population
	Effect of probability of mutation

	Comparison of between CSP, IP and GEP
	Encoding scheme
	Search strategy


	Conclusion
	References


