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This paper focuses on enhancing the effectiveness of filter feature selection models from two aspects.

First, feature-searching engine is modified based on optimization theory. Second, a point injection

strategy is designed to improve the regularization capability of feature selection. The second topic is

important, because overfitting is usually experienced. To evaluate the proposed strategies, we

implement these strategies to modify two classic filter feature selection models. One model is based

on sequential forward search scheme and the other employs genetic algorithms (GA) for feature

selection. Comparing the original and modified models on synthetic and real data, the contributions of

our modification are shown.

& 2008 Published by Elsevier B.V.
1. Introduction

Huge amount of data are accumulated in an enormous speed
unprecedentedly experienced in human history because computer
technology became so advanced making the storage of large
dataset possible. In some advanced engineering and physical
science applications, most conventional computational methods
have already experienced difficulty in handling the enormous data
size. Feature selection is an essential and widely used technique to
deal with the large data size problem. It reduces the number of
features through eliminating irrelevant and redundant features,
and thus results in increased accuracy, enhanced efficiency, and
improved scalability for classification and other applications such
as data mining [15]. Feature selection is especially important
when one is handling a huge dataset with dimensions up to
thousands.

A feature selection framework generally consists of two parts: a
searching engine used to determine the promising feature subset
candidates, and a criterion used to determine the best candidate
[23,25]. There are several searching engines: ranking, optimal
searching, heuristic searching, and stochastic searching. Among
these engines, heuristic searching, which can easily be implemen-
ted and can deliver respectable results [29] is widely used. Feature
selection models can be broadly categorized as filter model,
wrapper model, and embedded model according to their evaluation
criteria. To check the quality of features, filter models explore
various types of statistical information, such as distribution
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probabilities underlying data, while wrapper and embedded
models depend on the results of a specific classifier. To evaluate a
feature subset, say S, wrapper and embedded models firstly require
to build a classifier based on S. Wrapper models then rely on the
performance of the built classifier to determine the goodness of S,
while embedded models make use of the parameters of the built
classifier to assess S. Wrapper/embedded models are usually more
computationally expensive than filter models.

In filter model, good feature selection results rely on a
respectable evaluation criterion and an appropriate searching
strategy. The former issue has been heavily investigated. Various
types of information, including mutual information [3,5,7],
correlation [14], etc., have been explored for evaluating features.
In contrast, much less attention has been paid to search engines.
Also, most of the search-engine studies are conducted in discrete
feature domains. For example, sequential forward searching (SFS),
a typical heuristic searching scheme, identifies k important
features from unselected features and places them into a selected
feature subset in each iteration. To improve SFS, a stepwise
strategy is designed—in each iteration, selecting k ‘‘good’’
unselected features is followed by deleting r ‘‘worst’’ selected
features (rok) [29]. Al-Ani and Deriche [1] employ ‘‘elite’’ selected
features, not all of them, to identify important features from
unselected ones. These algorithms, studied in a discrete feature
space, depend on the testing of more feature combinations in
order to deliver improved results. But it is clear that more testing
will increase the computational complexity accordingly. Besides
heuristic schemes, stochastic algorithms, such as genetic algo-
rithms (GA), are also commonly used for feature search [10]. In the
early work of this area, Siedlecki and Sklansky demonstrated that
GA outperformed typical heuristic algorithms [31] in search
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effectiveness. Many subsequent works showing the advantages of
GA in feature selection were reported [6,21,30,35]. Using the
crossover and mutation operators, GA can escape from local
optima, and can explore a wide range of search space when the
parameters are properly controlled. However, they are weak in
fine-tuning when the search is near local optimum points, which
results in a relatively large running time. In order to improve the
local search capability, local search methods should be considered
to hybridize with simple GA. Studies about hybrid GA for feature
selection are then emerging [26].

Given a set of n samples D ¼ {(x1, y1), (x2, y2), y, (xn, yn)}, which
is drawn from a joint distribution P on X�Y, a feature selection
process is per se a learning process in the domain of X�Y

to optimize the employed feature evaluation criterion, say
L(x,y)�P(x, y). As P is unknown, L(x,y)�P(x, y) has to be substituted
by L(x,y)AD(x, y). Clearly, when D cannot correctly represent P, this
substitution may cause overfitting in which the selected features
are unable to deal with testing data satisfactorily despite
performing splendidly on the training data D [4]. In many
applications, a machine-learning process suffers from insufficient
learning samples. For instance, in most microarray gene expres-
sion datasets, 10 samples are given. With such a small sample set,
overfitting is likely to happen. Thus, the issue of overfitting must
be addressed. A wrapper/embedded feature selection model
always involves with classification-learning processes. The reg-
ularization techniques developed for classification learning can be
directly employed in a wrapper/embedded model. For example,
support vector machine and penalized Cox regression model,
which have been argued to have high generalization capability, are
employed in embedded models [12,13]. And an embedded feature
selection model is trained based upon with regularized classifica-
tion loss functions [28]. On the other hand, as filter schemes do not
explicitly include a classification-learning process, the regulariza-
tion techniques developed for classification learning cannot be
explored. Thus, it is needed to design specified regularization
strategies. To our knowledge, research on this topic is handful. In
order to address the problem of overfitting, a bootstrap framework
has been adopted for mutual information estimation [37]. Under
such a framework, mutual information estimation should be
conducted several times in order to deliver the final result.
Apparently, the bootstrap framework is highly computationally
demanding that precludes it from being widely used.

In this paper, we propose two strategies—the first one is aimed
at improving the effectiveness of searching engines, and the
second strategy is developed for addressing the overfitting issue.
We choose two typical filter feature selection models as examples
to demonstrate these strategies. These models employ Bayesian
discriminant (BD) criterion [18,19] for feature evaluation, and use
SFS [9] and GA as search engine. We firstly analyze the classical
search engines, i.e., SFS and GA, according to the well-established
optimization theory [4]. This type of analysis, which has been
overlooked in previous studies, reveals the shortcoming of
conventional SFS and the simple GA—they are unable to perform
optimization in a maximal way. To address this issue, we naturally
come to the optimization theory for solution. As a result, we
propose a strategy to modify SFS and GA. With this strategy,
feature search can be conducted along the more effective
optimization direction. To enhance the regularization capability,
a point injection approach is employed. This approach generates
certain points according to the distribution of given samples. This
is similar to the ones developed for classification learning. The
injected points are employed for evaluating the feature subsets.
This mechanism is able to minimize the undesired side effect of
injected points.

In the next section, the Bayesian discriminant feature evalua-
tion criterion and two popular types of search engine, sequential
forward search and GA, are briefed. After that, our proposed
strategies are described. Finally the proposed strategies are
extensively evaluated.
2. Bayesian discriminant-based feature search

2.1. Bayesian discriminant feature evaluation

Assume that the feature set of n-sample dataset D is F ¼ {f1,
f2,y, fM}. Also, each pattern (say, xi) falls into one of the L

categories, i.e., yi ¼ ok, where 1pipn and 1pkpL.
In filter models, probability-based feature evaluation criteria

are commonly used. BD, a typical probability-based approach, is
developed by Huang and Chow [18]. With the dataset D, BD is
defined as

BDðSÞ ¼
1

n

Xn

i¼1

log
pSðyijxiÞ

pSðyijxiÞ
¼

1

n

Xn

i¼1

log
pSðyijxiÞ

1� pSðyijxiÞ
, (1)

where yi means all the classes but class yi, and pS( � ) represents a
probability which is estimated by using the feature subset S. As
shown in Eq. (1), BD(S) directly measures the likelihood of given
samples being correctly recognized by using S. A large BD(S),
which indicates that most given samples can be correctly
classified, is preferred.

And in our study, the probabilities required by BD(S) are
estimated with Parzen window [27], which is modeled as

pðx; yÞ ¼
X

allðxi ;yiÞ2class y

pðxiÞpðxjxiÞ ¼
X
yi¼y

pðxiÞkðx� xi;hiÞ, (2)

pðxÞ ¼
X

all classes

pðx; yÞ ¼
X

allðxi ;yiÞ2D

pðxiÞkðx� xi;hiÞ, (3)

where k and hi are the kernel function and the width
of window, respectively. The Parzen window estimator
(2) or (3) has been shown to be able to converge the real
probability when k and hi are selected properly [27]. k is required
to be a finite-value nonnegative function and satisfiesR
kðx� xi;hiÞdx ¼ 1. And the width of k, i.e., hi, is required to

have lim
n!1

h ¼ 0, where n is the number of given samples.
Following the common way, we choose Gaussian function as k.
That is,

kðx� xi;hiÞ ¼ Gðx� xi;hiÞ

¼
1

ð2ph2
i Þ

M=2
exp �

1

2h2
i

ðx� xiÞðx� xiÞ
T

 !
,

where M is the dimension of x. And the window width hi is
set with hi ¼ 2distance(xi, xj), where xj is the third nearest

neighbor of xi. We use Euclidean distance, i.e., distance ðxi; xjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞðxi � xjÞ

T
q

for two data vectors xi and xj. As to p(xi) of the

Eqs. (2) and (3), it is estimated with p(xi) ¼ 1/n. With the Eqs. (2)
and (3) and based on p(y|x) ¼ p(x, y)/p(x), p(y|x) required by BD(S)
is finally obtained.

2.2. Feature search engines

A BD-based feature selection process is aimed at determining
the feature subset S that can maximize BD(S) (Eq. (1)). In general,
BD(S) is optimized in the following way: after a pool of
feature subsets is suggested by a searching engine, BD of each
suggested feature subset is calculated, and one with the largest
BD is either outputted as the final feature selection result or
remembered as the reference to guide the subsequent feature
selection process. Many schemes for determining feature subset
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pools have been developed to trade the quality of optimization
results with computational consumption. Among them, heuristic
search and stochastic search are popular. Sequential forward
search is a typical heurist search engine, while GA is a classic
stochastic search scheme. In this paper, these two are investi-
gated.

2.2.1. Sequential forward search

First, we set the selected feature set (denoted by S, below)
empty and enrich S through adding k important features
iteratively into S. In each iteration, k features (generally, k ¼ 1)
are selected in a way that all the feature combinations {S, k

unselected features} are examined. The one with the largest
BD is then extracted and updated as a new S. Based upon the S,
another iteration of feature selection is conducted similarly.
The process continues until certain stopping criteria are met.
Given a feature set F for selection, SFS can be summarized as
following:
�
 Step 1: Set the selected feature subset S with empty.

�
 Step 2: Repeat the following until certain stopping conditions

are met.
Identify the most useful feature (say, fu) from the unselected
genes and place it into S. fu satisfies f u ¼ arg max

f2fF�Sg
BDðSþ gÞ.

2.2.2. Genetic algorithms

GA is a biologically inspired approach simulating natural
evolution [17]. It has been widely applied in numerous scientific
and engineering optimization problems or search engines. The GA
includes the following steps.
�
 Step 1: Chromosome encoding: In feature selection problems,
we use a variable length integer string as chromosome
encoding. An integer in integer string represents a feature.
A value of an integer represents the number of a feature.
For example, chromosome 3267, 654, 2109 means that
the 3267th, 654th, and 2109th features are selected, and
all the other features are removed. The length of a chromo-
some is the number of features selected, which is determined
by users.

�
 Step 2: Fitness evaluation: The objective of feature selection is

to optimize an evaluation criterion. In this study, we use BD
[18] as the evaluation criterion. The fitness of a chromosome S

(i.e., a feature subset) is defined as fitness (S) ¼ BD(S).

�
 Step 3: Selection and stop: The chromosome selection for

the next generation is conducted on the basis of fitness.
The selection mechanism should ensure that fitter chromo-
somes have a higher probability of survival. In our design,
we use the rank-based selection scheme. When the number
of running generations reaches the preset value, the
GA stop.

�
 Step 4: Crossover and mutation: The standard single point

crossover and mutation operators are used. They choose one
cutting point randomly and alternately copy each segment out
of two parents.

3. Modified strategies

3.1. Weighting sample

The objective of feature selection is to optimize the
employed evaluation criterion, for example, BD(S) (Eq. (1)) in this
study, through adjusting S. To clearly explain our idea, we recast
BD(S) (1) as

BDðSÞ ¼
1

n

Xn

i¼1

log
pSðyijxiÞ

1� pSðyijxiÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
f ððxi ;yjÞ;SÞ

¼
1

n

Xn

i¼1

log f ððxi; yiÞ; SÞ. (4)

According to the optimization theory, the steepest direction of
adjusting S to maximize Eq. (4) is determined by

qBDðSÞ

qS
¼

1

n

Xn

i¼1

qBDðSÞ

qf ððx; yÞ; SÞ

qf ððx; yÞ; SÞ

qS

����
ðxi ;yiÞ

. (5)

It shows that, to optimize BD(S), the updating of S depends on the
two terms, qBD(S)/qf((x, y), S) and qf((x, y), S)/qS. The former one
happens in a continuous domain, while the latter one is related to
S and has to be tackled in a discrete feature domain. In this sense,
Eq. (5) cannot be solved directly. To maximize BD(S), SFS tests all
combinations of S and unselected features, and selects the one
having the maximal BD. Clearly, SFS only considers the second
term of Eq. (5), but overlooks the first term. It means that the
searching direction of SFS is not according to the steepest
optimization one. The effectiveness of optimization will then be
degraded as a result.

Naturally, our proposed strategy is based on the optimization
theory, i.e., Eq. (5). The second term of Eq. (5) is resolved by using
any conventional discrete-domain searching scheme. We use SFS
for this purpose. The first term of Eq. (5) can be directly calculated
in the way of

qBDðSÞ

qf ððx; yÞ; SÞ
¼
q logðf ðx; yÞ; SÞ

qf ððx; yÞ; SÞ
¼

1

f ððx; yÞ; SÞ
¼

1� pSðyjxÞ

pSðyjxÞ
. (6)

This shows that qBD(S)/qf((x, y), S), which is only related to x, is
independent of the change making on S. With this observation,
we use Eq. (6) as weights to samples. In such way, feature
searching is conducted on the weighted samples, but not on the
original ones.

Assume that the dataset D is weighted by {w1, w2,y, wn}. With
this weighted dataset, the criterion BD (Eq. (1)) and the
probability estimations (2) and (3) are adjusted accordingly. The
rule of p(xi) ¼ 1/n is replaced by p(xi) ¼ wi/n. Also, we have

pðx; yÞ ¼
X

allðxi ;yiÞ2class y

wi

n
Gðx� xi;hiÞ. (7)

And the criterion BD is modified as

BDðSÞ ¼
1

n

Xn

i¼1

wi log
pSðyijxiÞ

1� pSðyijxiÞ

¼
1

n

Xn

i¼1

wi log
pSðxi; yiÞP

all yjayi
pSðxi; yjÞ

. (8)

Apparently, it is natural to regard that different samples may have
different contributions to the learning processes. It is worth
noting that most current machine-learning algorithms have
already incorporated this idea. For instance, the classification
learning is aimed at minimizing the mean squared error LðLÞ ¼P

allðxi ;yiÞ
ðf ðxi;LÞ � yiÞ

2 by training the model f, i.e., adjusting the
parameter set L of f. The steepest decent type algorithm,
commonly used for classification learning, determines the updat-
ing direction with

�
qE

qL
¼

X
allðxi ;yiÞ

�
qE

qf

qf ðx;LÞ
qL

����
x¼xi ;y¼yi

¼
X

allðxi ;yiÞ

�ðf ðx;LÞ � yÞ
qf ðx;LÞ
qL

����
x¼xi ;y¼yi

, (9)

where (xi, yi) is a given training sample. It is noted that the
contribution of (xi, yi) is penalized by |f(xi,L)�yi|. AdaBoosting [16]
is another example of a typical boosting learning algorithm that
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weights the sample (xi, yi) with wi e�yif ðxiÞ repeatedly during the
course of learning, where wi is the current weight to (xi, yi). Also, in
order to reduce the risk of overfitting, it is intuitively expected
that the negative samples (i.e., incorrectly recognized ones) have
more influence to the subsequent learning than the positive
samples. As a result, the convergence rate can be speeded up, and
the problem of overfitting can also be alleviated [22]. It is clear
that using AdaBoosting algorithm meets the above expectation.
But Eq. (9) indicates that the steepest decent algorithm fell short
on tackling overfitting in a way that the correctly recognized
patterns still carry large weights. This shows the need on deriving
improved versions of gradient-based algorithms [22]. Consider
our proposed weighting-sample strategy as defined in Eq. (6). It
penalizes the negative patterns heavily, which induces an effect
on alleviating the problem of overfitting.
3.2. Point injection

Overfitting is caused by the deviation between the real
optimization goal and the actual achievable optimization objec-
tive. The real goal of the BD-based feature selection process is to
maximize BDP(S), where P is the underlying probability. As P is
unknown in most cases, BDP(S) can not be actually defined, and
thus has to be substituted with its empirical estimate BDD(S)
(simplified as BD(S), like Eq. (1) does). When BD(S) cannot always
reflect BDP(S) correctly, overfitting is caused. To avoid overfitting,
it is preferred that BDP(S) varies smoothly enough.

In the area of classification/regression, the effect of overfitting
can be alleviated through modifying the employed empirical
objective function with regularization terms. These regularization
terms penalized the complex models. Incorporating these reg-
ularization terms, relatively simple models can be obtained. Thus,
the chance of suffering from overfitting will be reduced [4]. It
must be pointed out that deriving the penalty terms has never
been straightforward, because it requires thorough theoretical
analysis. This is especially the case when the parameters or factors
controlling smoothness of a training model are hard to determine.
Another widely used regularization technique is point injection. It
is known that smoothness means that samples close to each other
should correspond to similar performance. This is the rationale
behind the point injection technique. In many literatures, point
injection technique is referred as noise injection [24,33,36], but the
injected points are certainly not expected to be real noise. In order
to avoid the confusion, we use the term point injection instead of
noise injection in this paper.

Under the frameworks of classification/regression learning,
injected points are always treated like the original samples—a
classifier/regression model is built upon the original samples as
well as the injected points. This working mechanism requires
high-quality points. Spherical Gaussian distributed points are
generated around each training object [4,24], but the added points
may have increased the complexity. Thus, high-quality injected
points, such as k-NN direction points [33] and eigenvector
direction points [36], are suggested to replace Gaussian distrib-
uted points. Also, points are generated in a way of feature-knock-
out [34]. With improved quality of injected points, the advantages
of injected point techniques are enhanced. In this study, the risk
caused by point injection is reduced through adopting a different
mechanism. Under our proposed mechanism, only the given
samples are used for deriving the probability estimators. The
given samples and the injected points are used for evaluating the
feature subsets. Without participating in the process of model
building, the undesirable effect of injected points is then reduced.

Around a pattern xi, the point injection technique adds v points
that are generated from a distribution b(x�xi). v and b(x�xi) play
important parts in a point injection scheme [20,33]. In order to
strike the balance between performance stability and computa-
tional efficiency, v is determined. Also, it has been argued that, for
the reasonable choice of v, such as v ¼ 8, 10 or 20, the effect of
point injection is slightly different [33]. We thus set v ¼ 10. As to
b(x�xi), the ‘‘width’’ of b(x�xi), which determines the variance of
the injected points, is crucial. As the aim of point injection is to
test the properties of the region around xi, too large a width of
b(x�xi) is not desired, while too small a value of b(x�xi) may not
have significant effect.

To determine an appropriate width of b(x�xi), the simulation-
based strategies is used [33]. Inspired by the ideas described in
Refs. [11,20], we develop an analytic approach for determining
the width of b(x�xi). Aiming to reduce the bias intrinsic to the
re-substitution error estimation as much as possible [11],
our approach depends on the joint distribution (X, C) to deter-
mine the width of b(x�xi). Around a given pattern, say xi,
several points around it are generated from Gaussian distribution
N(xi,si), where si ¼ di/2 and di is the distance of xi to the nearest
samples, i.e.,

di ¼ arg min
j;jai
jjxi � xjjj. (10)

In this way, it can assure that x0 having ||xi�x0|| ¼ di occurs with
the close-zero probability.

The given sample set D cannot cover each part of the whole
data domain very well. In turn, the probability estimators built
with these samples cannot describe every part of the data domain.
In detail, there may exist the parts that the conditional
probabilities p(x|y) for all classes are small. According to Eq. (8),
it can be shown that jðqBDðSÞÞ=ðqpðx;oÞÞj / 1=ðpðx;oÞÞ for all
classes o. It indicates that, when all p(x|y) are small, a little
change of x will cause a large change of BD(S). The points of such
type are not expected.

For the originally given samples on which the probability
models are built, at least one p(x|y) must be large enough. On the
other hand, an injected point may be uncertain. That is, all
the probabilities about it are very small. It is better to minimize
the impact of uncertain points, although it can be argued that they
may equally affect the quality of different feature subset
candidates. Using this idea, the way of calculating BD(S) of
injected points is modified. Suppose that, according to the given D,
we generate dataset D0

BDðSÞ
��
D0
¼

1

jD0j

X
all x0

i
;y0

ið Þ2D0

w0i log
pS y0ijx

0
i

� �
pS ȳ0ijx

0
i

� � arg max
all o

pS x0ijo
� �� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

,

(11)

where |D0| means the cardinality of D0. y0i and w0i are the weight
and class label of x0i, respectively, and are inherited from the
corresponding sample in D. With part A, the impact of uncertain
points will be limited. This satisfies our expectation.

Below, contributions of the point injection strategy are
assessed on a group of three-class and eight-feature synthetic
datasets. In these data, the first four features are generated
according to
�
 Class 1�m samples from N ((1,1,�1,�1),s),

�
 Class 2�m samples from N ((�1,�1,1,1),s),

�
 Class 3�m samples from N ((1,�1,1,�1),s).
And the other four features are randomly determined from
normal distribution with zero means and unit variance. Clearly,
among the total eight features, the first four are equally relevant
to the classification task, and the others are irrelevant. Three
feature selection methods are applied to this data to determine
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four salience features. They are the conventional SFS, SFS with the
feature-knock-out, and SFS with the proposed point injection
approaches. Only if all relevant features are selected, the selection
results can be considered correct.

Different settings of s and m are investigated. For reliable
estimation, in each setting, three feature selection methods are
run on 10,000 datasets independently generated. And the correct
results over 10,000 trials are counted. In Table 1, the correctness
ratios are presented. It shows that the feature-knock-out point
injection strategy cannot bring the improved feature selection
results in this example. This may due to the fact that the strategy
is originally designed for classification learning, not for feature
selection. In our proposed point injection strategy, its advantage
becomes more significant either when the sample size becomes
small or when s becomes large. All these conditions actually
mean that there is a high possibility of overfitting, because the
larger s mean is, the more complex the problem is. Thus, the
presented results can suggest that our proposed approach can
improve the generalization capability of SFS.

3.3. Procedures

This section shows the implementation of the proposed
strategies by modifying conventional search engines.

3.3.1. Modified SFS

With the above weighting sample and point injection strate-
gies, the conventional BD-based SFS feature selection model is
modified as follows.
�

Tab
Com

s ¼
m

m

s ¼
m

m

The
Step 1 (Initialization): Set the selected feature set S and injected
point set D0 empty. Also, for each sample, assign a weight of 1,
i.e., wi ¼ 1, 1pipn.

�
 Step 2 (Feature selection): From the feature set F, identify the

feature fm which satisfies

f m ¼ arg max
f2F
½BDðf þ SÞjD þ BDðf þ SÞjD0 �.

The probability estimators required by BD are established
with Eq. (7) based on the dataset D. And the BDs on D and D0

are defined in Eqs. (8) and (11), respectively. Put the feature fm

into S and delete it from F at the same time.

�
 Step 3 (Update the sample weights): Set wi based on Eq. (6).

Then normalize wi as wi ¼ wi=
Pn

j¼1wj.

�
 Step 4 (Point injection): Set D0 empty. In the data domain

described by S, conduct point injection around each sample in
the following way.
Around the pattern xi, produce 10 points based on the
distribution N(xi,di/2), where di is defined by the Eq. (10). Place
these points into D0. Also, the class label and the weight of
these injected points are set with yi and wi, respectively.

�
 Step 5: If the size in S has reached the desired value, then stop

the whole process and output S, otherwise go to step 2.
le 1
parisons on a synthetic data

SFS SFS with feature-

knock-out strategy

SFS with the point

injection strategy

0.3

¼ 3 0.980 0.941 0.991

¼ 9 1.000 1.000 1.000

0.8

¼ 3 0.357 0.358 0.392

¼ 9 0.933 0.930 0.931

se results demonstrate the merits of the proposed point injection strategy.
3.3.2. Modified GA

In order to further examine the performance of the above-

described weighting sample and point injection strategies,
the conventional BD-based GA feature selection model is
also modified. We add a steepest descent operator in the simple
GA. With the weighting-sample strategy, our modified GA can
search the local optimal value efficiently, which is stated as
follows.
�
 Step 1 (Initialization): Set the selected feature set S empty.
Randomly generate N the initial population. Also, for each
sample, assign a weight of 1, i.e., wi ¼ 1, 1pipn.

�
 Step 2 (Point injection): Set D0 with empty. Around the pattern

xi, produce 10 points based on the distribution N(xi, di/2),
where di is defined by the Eq. (10). Place these points into D0.
Also, the class label and the weight of these injected points are
set with yi and wi, respectively.

�
 Step 3 (Simple GA for feature selection):

(a) Selection: the fitter chromosomes are selected from the N

individuals in population for evolution. The fitness of a
chromosome S is defined as fitnessðSÞ ¼ BDðSÞjD þ BDðSÞjD0 .
The probability estimators required by BD are established
with Eq. (7) based on the dataset D. And the BDs on D and
D0 are defined in Eqs. (8) and (11), respectively.

(b) Crossover: choose one cutting points at random and
alternately copies each segment out of the two parents.

(c) Mutation: determine which gene of a chromosome in
population will mutate, and change it as another gene.
�
 Step 4 (Steepest descent operator): Set wi based on Eq. (6). Then
normalize wi as wi ¼ wi=

Pn
j¼1wj.
�
 Step 5: If the maximal generation has reached, then stop the
whole process and output S, otherwise go to step 3.

4. Experimental results

In this study, the proposed strategies are used to modify SFS
and GA. In order to elaborate the results, we first evaluate the
modified SFS.

Below, the modified scheme SFS, called gradient and point
injection-based SFS (gp-SFS), is evaluated by comparing with
several related methods, namely, the conventional SFS, support
machine learning recursive feature elimination scheme (SVM RFE)
[13], and the conventional SFS with the feature-knock-out
regularization technique (fko-SFS) [34]. SVM RFE, a typical
embedded feature selection model, begins with the training of
an SVM (of linear kernel) with all the given features. Then
according to the parameters of the trained SVM, features are
ranked in terms of importance, and half of the features are
eliminated. The training-SVM-eliminating-half-of-features pro-
cess repeats until no feature is left. As SVM RFE employs
the classic SVM model to conduct feature selection, the
SVM RFE method is not applicable to the multi-class vehicle
database.

The feature-knock-out point injection scheme is designed for
classification learning in which a point x0 is added in each learning
iteration. To generate x0, two samples (say x1 and x2) are randomly
selected and a feature f is specified according to the newly built
model. And all information about x0 is set with that of x1, except
that of x0(f) ¼ x2(f). We adopt this point injection scheme to
modify the conventional SFS as fko-SFS.

In this study, we rely on experimental classification results to
assess the quality of feature selection results. In detail, given a
feature subset for examining, say S, certain classifiers are
constructed using training data, which is also used for feature
selection. Then, based on the performance of these classifiers on a
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test dataset, the quality of S is evaluated. Respectable feature
subsets should correspond to good classification results. In our
study, we apply the feature selection methods to four datasets,
and use four classifiers to evaluate the feature selection results.

4.1. Datasets

4.1.1. Sonar classification

It consists of 208 samples. Each sample is described with
60 features and falls into one of two classes, metal or rock. From
208 samples, 40 ones are randomly selected for training and the
others are used for test.
Fig. 1. Comparison results on UCI datasets under SFSs framework against number of fea

feature using four different feature selection methods for sonar dataset. (b) Classificati

different feature selection methods for vehicle classification.
4.1.2. Vehicle classification

This is a four-class dataset for distinguishing the type of
vehicle. There are totally 846 samples provided. Each sample is
described with 18 features. We randomly select 80 samples for
training. The remaining 766 samples are used for testing. It must
be noted that because of the nature of the basic SVM, the basic
SVM classification models cannot be applied to this multi-class
dataset.

4.1.3. Colon tumor classification

This is a microarray dataset and is built for colon tumor
classification, which contains 62 samples collected from colon-cancer
tures. (a) Classification accuracy rate of four classifiers against number of selected

on accuracy rate of two classifiers against number of selected feature using three
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Fig. 2. Classification accuracy rate of four classifiers against number of selected

feature using four different feature selection methods for colon cancer classifica-

tion dataset under framework of SFSs.

Fig. 3. Classification accuracy rate of four classifiers against number of selected

feature using four different feature selection methods for prostate cancer

classification dataset under framework of SFSs.
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patients [2]. Among these samples, 40 samples are tumor, and
22 are labeled ‘‘normal’’. There are 2000 genes (features) selected
based on the confidence in the measured expression levels. We
randomly split the 62 samples into two disjoint groups—one
group with 31 samples for training and the other one with 31
samples for test.

4.1.4. Prostate cancer classification

This is another microarray dataset, which is collected with the
aim to identify prostate cancer cases from noncancer cases [32].
This dataset consists of 102 samples from the same experimental
conditions. And each sample is described by using 12,600 genes
(features). We split the 102 samples into two disjoint groups—one
group with 60 samples for training and the other with 42 samples
for testing.

4.2. Classifiers

Four typical classifiers employed in this study include multi-
layer perceptron model (MLP), support vector machine model
with linear kernel (SVM-L), the support vector machine model
with RBF kernel (SVM-R), and the 3-NN rule classifier. The MLP
used in our study is available at: /http://www.ncrg.aston.ac.uk/
netlab/S. For convenience, we set six hidden neurons of MLP for
all examples. It must be noted that slightly different numbers of
hidden neuron do not have an effect on the overall performance.
The number of training cycles is set with 100 in order to ease the
concerns on overfitting. And other learning parameters are set
with default values. SVM models are available at: /http://
www.isis.ecs.soton.ac.uk/resources/svminfoS. The default setting
of C for SVM is used. That is, C is set as Inf. We set the width of RFB
kernel to 1 with consideration that all the data are normalized to
unit variance and zero mean before classification. In this study, we
use the widely used SVM models, which can handle only
two-class classification problems [8]. Thus, there is no SVM
classification result for the case of vehicle dataset.

4.3. Evaluations of the modified SFS

In each example, we repeat investigation on 10 different sets of
training and test data. The presented results are the statistics of
10 different trials. Also, in each training data, the original ratios
between different classes are roughly remained. For example,
during the investigation on the colon cancer classification, the
original ratio between tumor and normal class, i.e., 40 normal vs.
22 tumor, is roughly kept in each training dataset. For each
training dataset, we preprocess it so that each input variable has
zero means and unit variance. And the same transformation is
then applied to the corresponding test dataset.

The computational complexity of SFS type models is O(M2),
where M is the number of features. A microarray dataset generally
contains information of thousands or ten thousands genes.
Clearly, directly handling the huge gene sets cost SFSs unbearable
computational burden. To improve the computational efficiency,
and given by the fact that most genes originally given in a
microarray dataset are irrelevant to a specified task, a widely used
pre-filtering-gene strategy is adopted in our study to eliminate the
irrelevant and insignificantly relevant genes before the com-
mencement of feature selection. In detail, all the given features
(genes) are ranked in a descending order of BD (Eq. (8)). And the
one-third top-ranked features are left behind for further feature
selection.

The comparative results are presented in Fig. 1 (for sonar
classification and for vehiecle classification), Fig. 2 (for
colon cancer classification), and Fig. 3 (for prostate cancer
classification). In these figures, the x-axes give the number of
selected features and y-axes indicate the classification accuracy
rate of the trained classifiers on testing data. In most cases, our
modified SFS greatly outperform the conventional SFS. This is
contributed by the gradient-based method and point injection
strategies. Also, compared with fko-SFS and SVM RFE in which
the problem of small sample is tackled explicitly or implicitly, the
proposed SFS still shows its advantages. This confirms the
contributions of our proposed methods.

4.4. Evaluations of the modified GA

To evaluate the proposed strategies under the framework of
GA, we compare the modified GA, called hybrid GA and point

http://www.ncrg.aston.ac.uk/netlab/
http://www.ncrg.aston.ac.uk/netlab/
http://www.isis.ecs.soton.ac.uk/resources/svminfo
http://www.isis.ecs.soton.ac.uk/resources/svminfo
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injection (p-HGA) with the conventional SGA. For this purpose,
the above classification evaluation schemes are used. That is,
p-HGA and SGA are compared on the aforementioned
datasets, and are evaluated by using the classifiers MLP,
SVM, and kNN (k ¼ 3). Also, we use SVM RFE as an evaluation
baseline.

The comparative results are presented in Fig. 4 (for sonar
classification and for vehiecle classification), Fig. 5 (for colon
cancer classification), and Fig. 6 (for prostate cancer classifica-
tion). In these figures, the x-axes give the number of selected
features, and y-axes indicate the classification accuracy rate of
trained classifiers on testing data. In most cases, the modified GA,
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Fig. 4. Comparisons results on UCI datasets under GA framework. (a) Classification accu

feature selection methods for sonar dataset. (b) Classification accuracy rate of two cl

methods for vehicle classification.
i.e., p-HGA, outperforms the conventional GA. These confirm the
contributions of the proposed strategies. For instance, in the
example of colon cancer classification, apart from one case, the
results of p-HGA are better than those of SGA in all other cases. It
is also noticed that p-HGA has a higher accuracy rate of about 20%.
Similar remarks can be obtained on other datasets.
5. Conclusions

In this paper, two strategies are proposed to enhance the
performance of filter feature selection models. First, a gradient-
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racy rate of four classifiers against number of selected feature using three different

assifiers against number of selected feature using two different feature selection
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Fig. 5. Classification accuracy rate of four classifiers against number of selected

feature using three different feature selection methods for colon cancer

classification dataset under framework of GA.

Fig. 6. Classification accuracy rate of four classifiers against number of selected

feature using three different feature selection methods for prostate cancer

classification dataset under framework of GA.
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based strategy is used to enhance the searching effectivenss,
and a new point injection approach is introduced to improve
generalization ability. We apply these strategies to modify two
typical filter models—SFS-based and GA-based approaches. We
evalaute the modified models on synthetic data and real data. The
obtained results demonstrate that these proposed strategies can
bring improvement to either the SFS-based model or the
GA-based model. It is worth noting that the improvement is quite
remarkable in some cases. In furture work, we will further extend
these strategies to other feature evaluation criteria and evaluate
their merits and limitations.
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