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Tommy W. S. Chow, Senior Member, IEEE, Piyang Wang, and Eden W. M. Ma

Abstract—A new efficient unsupervised feature selection
method is proposed to handle nominal data without data trans-
formation. The proposed feature selection method introduces a
new data distribution factor to select appropriate clusters. The
proposed method combines the compactness and separation to-
gether with a newly introduced concept of singleton item. This
new feature selection method considers all features globally. It is
computationally inexpensive and able to deliver very promising
results. Eight datasets from the University of California Irvine
(UCI) machine learning repository and a high-dimensional cDNA
dataset are used in this paper. The obtained results show that the
proposed method is very efficient and able to deliver very reliable
results.

Index Terms—Clustering, feature ranking, unsupervised fea-
ture selection.

I. INTRODUCTION

F EATURE reduction is a generic term for a process that
aims at reducing features with certain criteria. It is an

important preprocessing tool for high-dimensional datasets as
high dimensionality is unaffordable for many existing algo-
rithms. There are two common approaches to achieve this goal:
1) feature extraction and 2) feature selection [1]. Feature ex-
traction transforms a given feature set into a feature subset with
fewer features. As the feature set is transformed, the physical
meaning of each original feature is blurred. Thus, referring to
the original feature set is usually required for feature-subset
interpretation. Principle component analysis, which is designed
to capture the variance of a dataset in terms of principle compo-
nents, is a popular unsupervised feature-extraction method. In
contrast, feature selection reduces features from a given feature
set without transformation. It retains the physical meaning of
the selected features and provides clues for data collection
or further analysis. There are numerous supervised feature
selection methods [2], [3], but unsupervised selection method
is rare.

Usually, feature selection is performed in a way of feature
ranking [12], [13], in which selected features are individually,
instead of globally, considered. Thus, the selected features
may not always be the optimal features in representing a
given dataset. The feature selection can be formalized as a
combinational optimization problem finding a feature set to
maximize the quality of the hypothesis learned from these
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features through ranking all features. In some of the well-
known numerical feature selection approaches, features are
ranked in mutual information (MI) [12], [13], [22] or Bayesian
discriminant [21]. Top ranked features are selected iteratively,
with MI-based criteria and a forward searching process. In these
cases, the number of features to be selected may be difficult to
be determined.

Feature selection conducted in the previously described ways
[12], [13] usually leads to effective data dimensionality re-
duction, but these methods are only designed for numerical-
data problems. Each unsupervised feature selection inherits the
characteristics of its employed clustering algorithm, inclusive
of the evaluation criteria [4]. Unsupervised feature selection
schemes, such as [5]–[9], are able to handle with the numerical
data easily, but they are inept to handle nominal data such as
color and brand name. This is because their evaluation criteria
involve distance calculation which is not applicable to nominal
data that carry no order information. Converting nominal data
into binary data and inserting order into nominal data are
common approaches when the nominal data are handled by
using a numerical feature selection scheme. However, such a
data conversion usually results in generating a lot of irrelevant
features. In addition, the conversion may make the interpreta-
tion of a feature selection result difficult or even impossible. To
transform a dataset from nominal to numerical, inserting order
is required [10]. However, the performance of this approach is
quite dataset-dependent. The method proposed in [11], called
SUD (Sequential Backward Selection algorithm to determine
the relative importance of variables for Unsupervised Data)
in this paper, is an unsupervised feature selection method.
The SUD can handle the nominal data without any transfor-
mation or conversion. It uses entropy similarity measurement
to determine the importance of features with respect to the
underlying clusters. Features are ranked according to the en-
tropy similarity measurement in the following ways. First, each
feature in the feature subset is removed in turn to perform
entropy calculation on the remaining feature subset without
that particular feature. The feature, which has been taken out
from the feature subset, that scores the minimum entropy is
regarded as the least important in the subset and removed in the
next iteration. Fig. 1 shows the mechanism of SUD in a block
diagram. Due to the iteratively entropy estimation, the SUD
is highly computationally expensive. If there are m features
in the dataset, (2 + m) × (m − 1)/2 entropy estimations are
required. In addition, it is worth noting that the measurement
of SUD may suffer from inevitable problems posed by high
dimensionality, such as estimates of entropy, probability density
function, and similarity in high-dimensional space [12], [13].
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Fig. 1. Block diagram of the SUD.

In this paper, an efficient unsupervised feature selection
scheme for nominal data (UFSN) is proposed. The proposed
feature selection scheme, called UFSN, is able to directly
process nominal dataset. As a result, the shortcomings of con-
verting data from nominal into binary are eliminated. To the
best of our knowledge, today, only the SUD and the proposed
scheme are able to perform the unsupervised feature selection
on the nominal data without binary conversion or data transfor-
mation. In this paper, we propose a very computationally effi-
cient approach for handling the nominal-data feature selection
by means of ranking features. In the proposed method, we use a
relevance index (REL), which will be detailed in a later section,
to determine the importance of every feature. The evaluated
REL value of each feature is compared and ranked. This enables
appropriate features to be ranked and selected. It is worth noting
that the evaluation of REL is not affected by the sequence of
feature selection. In the obtained results, the proposed scheme
is found to be up to 100 times more efficient than the SUD
because the UFSN does not require the iterative calculation of
entropy. As there is no class label provided, a clustering algo-
rithm must be firstly used to generate a set of clustering results,
which are called cluster descriptions in this paper. These cluster
descriptions are generated by using a clustering algorithm with
different parameter settings. A data distribution factor (DDF)
is newly introduced to select an appropriate cluster description
from the provided cluster descriptions for further measurement.
DDF is the combination of both compactness and separation.
Similar objects are grouped into the same cluster for obtaining
a high compactness. For the separation part, another new idea
of singleton item is introduced for handling the nominal data.
We show that the more singleton items there are in a separation
among clusters, the higher the entropy will be. This indicates an
important relationship between the separation and the number
of singleton items. Clearly, they have a very similar nature in

terms of clustering information. In addition, it is worth noting
that the determination of singleton item is very computationally
efficient.

Usually, without the knowledge on how much information
is contained in the selected features, most feature selection
methods have a difficulty in stopping the selection process ana-
lytically. Instead, the selection process can only be terminated at
a predetermined point that results in the selected features either
missing out certain useful information or including certain
redundancy features. This problem is overcome in this paper
by introducing the cluster number as stopping criteria. Our
obtained results show that the proposed method can be up to
100 times faster compared with the SUD. A REL using the
concept of singleton item is then developed to evaluate features
individually. Based on the selected cluster description, this
paper shows that the newly proposed scheme can deliver very
promising results. This paper is organized as follows. Section II
presents the proposed feature selection method. Section III
displays the simulation platform for all the datasets. Section IV
shows our intensive simulations based on eight UCI datasets
and a cDNA dataset with 12 600 features. At last, a conclusion
is drawn in Section V.

II. PROPOSED FEATURE SELECTION MECHANISM

In this paper, a dataset with m features and N nominal data
instances, which are also referred as transactions in [14]–[16],
is considered. The nominal dataset consists of finite values
in each feature, and there is no order information among
these values. For example, there is no order information in
color, i.e., red is not closer to blue than green. The proposed
feature selection scheme is composed of three parts. First, a
clustering algorithm that can handle the nominal data is used to
generate a set of cluster descriptions, which describe the data
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Fig. 2. Procedure of the proposed method.

characteristics in a clustering sense. Then, the DDF is used to
select an appropriate cluster description for further relevance
ranking. Finally, a newly developed feature REL is applied for
feature ranking. Fig. 2 shows the block diagram of the proposed
scheme. A clustering algorithm is employed in Phase 1 to
generate a set of cluster descriptions, which are the output of
Phase 1. From these descriptions, only one cluster description
selected by the DDF in Phase 2 will be passed to Phase 3 for
feature relevance rank. Features are ranked in Phase 3, and the
number of relevant features is determined by a threshold called
IrrThreshold. A feature with a relevance value higher than the
IrrThreshold is recognized as a relevant feature; otherwise, it is
an irrelevant feature.

A. Phase 1—Generation of Cluster Descriptions

Clustering is an unsupervised process aiming at grouping
similar objects into the same cluster and separating dissimilar
objects into different clusters. Any clustering algorithm that is
able to handle the nominal data can be used in this phase to
generate a set of cluster descriptions with different parameter
settings. In this paper, two different transactional clustering
algorithms, namely, Clustering with sLOPE (CLOPE) [14] and
small–large ratio (SLR) [15], are used in this phase for compar-
ison since they do not use order information to cluster data.

CLOPE needs larger height-to-width ratio of the histogram
to indicate a better intracluster similarity. In its clustering algo-
rithm, criterion functions should be defined and optimized so
that the intracluster similarity and the intercluster dissimilarity
can be maximized. The shape of every cluster and the number
of transactions in a given dataset must be considered in order to
have the criterion function defined.

There are two phases in the SLR, which are the allocation
phase and the refinement phase. Each transaction is read one

Fig. 3. Transactional–nominal data format.

by one in the allocation phase and then assigned to a cluster in
order to minimize the total cost of clustering. The transaction
may be assigned to the existing cluster or a new cluster. In
the refinement phase, the support values of items computing
and clusters searching and the intermediate support values of
items calculating are performed in sequence. All the data used
in this paper are in a form of transactional–nominal data, which
is modified to fit the algorithms without changing the meaning
of data.

The conversion of nominal data to fit into transactional
clustering is discussed next. For transactional data, each value
is unique; number of items is not restricted, and permutation of
items is irrelevant. If there are any missing values, some form
of “?” must be supplemented to avoid disorder. Obviously, the
nominal data format, which is unable to distinguish features,
is not suitable for the transactional clustering. As a result,
the nominal data are transformed into transactional–nominal
format by means of connecting each value to the name of the
feature to form an item (Fig. 3). Missing values are ignored in-
stead of supplemented with dummy values, and the permutation
of the features can be altered. While inheriting the merits of the
transactional data, the fundamental meaning of each feature is
reserved. The number of value is variable, which is capped at
the number of features. This transactional–nominal format is
used to present the nominal data throughout this paper.

In this phase, a set of cluster descriptions with different
parameter settings is generated. A transactional clustering algo-
rithm is used to generate a set of cluster descriptions. CLOPE
[14] and SLR [15], which are the commonly used efficient
algorithms for processing the transactional data, are used to
make a comparative study. The CLOPE and the SLR, which
do not require transforming data into binary type, have one
and three user input parameters, respectively. The CLOPE uses
the height-to-width ratio of the cluster histogram to determine
clusters. The parameter r is used to control the tightness of the
clusters. SLR is an enhanced version of LargeItem [16], which
employs the large-item idea from association rule. The SLR
introduces a middle item, which is an item belonging to neither
a large item nor a small item. Three user input parameters
(minimum support, MinSup, damping factor λ, and SLR thresh-
old α) are required. If the support of an item in a cluster is
larger than the minimum support, it is considered a large item.
On the contrary, if the support of an item in a cluster is smaller
than the maximum ceiling, which is defined as the product of
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Fig. 4. Item distribution in cluster descriptions “A” and “B.”

minimum support and damping factor, it is considered a small
item. If the small-to-large-item ratio is greater than the SLR
threshold α, the transaction is regarded as an excess transaction
and handled separately. In this paper, the parameters are set
according to [15].

B. Phase 2—Cluster Description Selections

In this phase, an appropriate cluster description is selected by
means of DDF. An appropriate cluster description is a cluster
description with the highest DDF and with a number of clusters
greater than one. The DDF is defined as follows:

DDF =
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(1)

where f(Fi_ν, Cj) is the frequency of value Fi_ν in cluster
Cj , |D(Cj)| is the number of the distinct values in cluster j,
and |Cj | is the number of instances of cluster Cj .

The first part of DDF evaluates the compactness of the
cluster description. As one of the purposes of clustering is to
group similar objects into the same cluster, a high compactness
within a cluster means the objects in the cluster exhibit high
similarity. The average frequency of values within the cluster
is determined by

∑
Fi_ν∈D(Cj)

f(Fi_ν, Cj)/|D(Cj)| × |Cj |,

where |D(Cj)| × |Cj | is the maximum total possible frequency
of values. The average frequency of values is weighted by the
ratio of the number of instances.

The second part of DDF evaluates the separation of the
cluster description. Moreover, another purpose of clustering
is to group dissimilar objects into different clusters. In the
following example, the concept of entropy is used to illustrate
the relationship between the number of singleton items and its
cluster separation.
Example 1: A dataset consists of seven transactions: t1 =

{a,b, c}, t2 = {a,b, c,d}, t3 = {a,b, c, e}, t4 = {a,b, c},
t5 = {d, g,h}, t6 = {d, g, i}, and t7 = {a,b, c}. Cluster de-
scription “A” consists the following: C1 = {t1, t2, t3, t4, t7}
and C2 = {t5, t6}. Cluster description “B” consists the fol-
lowing: C1 = {t1, t4, t7}, C2 = {t2, t3}, and C3 = {t5, t6}.
Fig. 4(a) and (b) shows the frequency of the items in cluster
descriptions “A” and “B,” respectively.

Obviously, for description “A,” item “d” appears in both
clusters 1 and 2. This means that “a,” “b,” “c,” “e,” “g,” “h,”
and “i,” which appear in only one cluster, are all singleton
items. Similarly, “e,” “g,” “h,” and “i” are singleton items
in description “B.” Therefore, there are seven singleton items
in description “A” and four in description “B.” The entropies
for cluster descriptions “A” and “B” are 0.9597 and 0.53,
respectively. By using the concept of entropy, this typical
example shows that a clear separation among the clusters has
more singleton items. The frequency of the singleton values is
counted in the second part of the DDF. A cluster description
with the highest DDF and the number of clusters greater than
one is chosen for relevance rank in Phase 3.

C. Phase 3—Relevance Rank

Based on the selected cluster description, relevance value of
each feature is evaluated. A feature is a relevant feature when
its relevance value is higher than or equal to the threshold,
IrrThreshold. The REL, REL(Fi), of feature i is defined as
follows:

REL(Fi) =
|Singleton|

|Fi|
× N − Miss(Fi)

N
(2)

where |Singleton| is the number of singleton values, |Fi| is the
number of values in ith feature fi, N is the number of instances,
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Fig. 5. Feature ranking process.

TABLE I
THREE CLUSTERS AND THEIR FEATURE VALUE DISTRIBUTIONS

and Miss(Fi) is the number of instances with a missing value
in Fi.

A relevant feature is a feature grouping instances according
to the cluster description closely. If all values of a particular
feature are singleton values, this feature groups the instances
exactly according to the cluster description. Hence, higher
|Singleton|/|Fi| means that the feature groups the instances
more closely to the cluster description. Since there may be
missing values in features, [N − Miss(Fi)]/N is used to weigh
the instance value percentage of a feature.

As aforementioned, a singleton value is defined as a value
appearing in a single cluster. There are, however, cases that
such definition seems too stringent. A parameter acceptable
frequency (AccFreq) is proposed to loosen the definition and
satisfy those cases if required. If a value appears in more
than one cluster and it mostly occurs in one cluster (i.e., its
frequency in one cluster is greater than or equal to AccFreq),
it is still regarded as a singleton value. For example, there are
98 instances in cluster A and two instances in cluster B among
100 instances containing the value of “1_T.” Since the AccFreq
is 98%, “1_T” is a singleton value if AccFreq = 95% and not
a singleton value when AccFreq = 99%. When AccFreq =
100%, the definition of singleton value is the same as the
original one, i.e., the value occurs in a cluster only. Throughout
this paper, AccFreq = 100% is used in all investigations. It
is worth noting that the REL(Fi), which is the label used
for the subsequent unsupervised clustering, is related to the
IrrThreshold and the AccFreq. Apparently, the REL(Fi) is a

synthetic class label, which is different from the real labels used
for supervised clustering method.

By comparing the ratio |Singleton|/|Fi| with the parameter
AccFreq, the finalized number of singleton number can be
determined. As aforementioned, AccFreq is set to 100% as
a reference. After obtaining the |Singleton|/|Fi| and [N −
Miss(Fi)]/N , the REL is obtained. The REL of each feature is
calculated and compared. Thus, we are able to discard features
with REL less than IrrThreshold. Apparently, a feature with
the highest REL value is regarded as the most relevant feature.
Fig. 5 shows the process of feature ranking.
Example 2: This example illustrates how features are

ranked. The concept of REL, IrrThershold, and AccFreq is
also elaborated. The dataset used in this example has nine data
instances and seven features in three clusters. Table I shows the
data and the REL with respect to each feature. According to
the index, the relevance of features should be in an order of
F6 > F7 > F1 = F2 > F5 > F3 = F4. It is clear that feature
F6 is the most relevant feature, whereas features F3 and F4 are
the irrelevant ones. The distribution of feature F6 is identical to
the cluster description, whereas feature F3 is random. Feature
F4, which appears once in two different clusters, has only one
different value. Feature F7 provides more information than
features F1, F2, and F5, as the former distinguishes two classes
while the latter distinguishes one cluster from others. The REL
of F5 is less than those of F1 and F2 because F5 has one missing
value, whereas F1 and F2 do not contain any missing value. For
instance, if IrrThreshold is set at zero, features F3 and F4 are
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Fig. 6. Enhanced version of the proposed feature selection scheme.

recognized as irrelevant features. If IrrThreshold is set at 0.5,
features F1–F5 are considered irrelevant. If AccFreq is ≤ 0.75,
the REL of feature F7 is changed from 0.67 to 1.

D. Enhanced Version

To reduce the computational resources, an enhanced version
of UFSN, called EUFSN, is designed. In some clustering al-
gorithms, the number of clusters can be roughly estimated by

their parameters. For example, the number of clusters tends to
increase when r in CLOPE increases. Based on this property,
the enhanced scheme changes the parameter automatically.
Fig. 6 shows a block diagram of the EUFSN. In the enhanced
scheme, one of the stopping criteria is that the number of
clusters is greater than

√
N , where N is the number of data

instances. This criterion is used to prevent choosing a cluster
description with the number of clusters close to the number of
instances. In some datasets, the second part of DDF is very low
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TABLE II
PARAMETER CHANGE OF THE ENHANCED SCHEME

for all cluster descriptions. In these cases, the DDF increases
when the number of clusters increases. Hence, it is suggested
that only the cluster descriptions with the number of clusters
between 2 and

√
N [17] are evaluated.

Instead of generating all clustering descriptions in Phase 1
and evaluating them in Phase 2, the enhanced scheme combines
Phases 1 and 2 to save the computational resources. First of
all, the enhanced scheme generates a cluster description with
a parameter at the minimum and evaluates the description.
Then, the parameter is raised by a user-predefined step-up size
and generates a cluster description with the new parameter
setting, if necessary. The parameter step-up repeats and goes
on to generate and evaluate cluster description until the cluster
description with the highest DDF value is determined. The
cluster description with the highest DDF proceeds to Phase 3.

In case there is a relationship, either direct or inverse pro-
portion, between parameter settings and number of clusters and
that the step size is small, it is probable that the consecutive
cluster descriptions are the same. If the number of clusters of
a cluster description is equal to one, it is very likely that the
number of the consecutive cluster description is also equal to
one. The enhanced scheme, hence, doubles the step size of the
parameter and investigates the number of clusters in the cluster
description. The process repeats until there is more than one
cluster in the cluster description. Likewise, a step-down size
is set to generate the skipped cluster description for the DDF
evaluation.

Table II is used to demonstrate how the parameter r varies in
the enhanced scheme. First, the initial r is set at 0.1, whereas the
step size is set at 0.1. Since the number of clusters in the first
four iterations is one, it increases with a doubled step size of
0.2. At the fifth iteration, the number of clusters is two, whereas
the number of clusters at the fourth iteration is one. Due to the
cluster description with r of 0.8 being skipped, a step-down
size is set to determine the cluster description with r equals
0.8. It is then found that there is only one cluster in the cluster
description when r is 0.8. The parameter r, again, is increased
by a doubled-step size, i.e., 0.2, for the next iteration. Similarly,
the cluster description with r of 0.9 should be determined in the
eighth iteration. However, the cluster description with r of 0.9
has already been determined in a prior iteration. As a result, the
cluster description generation and evaluation when r is equal to
0.9 is skipped. Although the DDF of the cluster description with
r of 0.8 is greater than that of 0.9, the cluster description with r
of 0.8 has one cluster only and cannot be selected. The scheme
continues by stepping up the parameter until the peak of DDF

is determined or the number of clusters of a cluster description
is greater than

√
N , where N is the number of data instances.

III. SIMULATION PLATFORM

In this paper, we use eight real datasets from the UCI
machine learning repository [18] and a cDNA dataset with
12 600 features about prostate cancer [19] to demonstrate the
ability of the proposed method. In order to simulate a real-world
situation, all class labels of the UCI datasets and the cDNA
dataset are removed. During the feature selection process, no
class label is involved. Classification accuracy is provided to
present a brief idea of the results from the proposed feature
selection method. The classification accuracy is generated by
using the J48 decision tree in Weka [20], which is a modified
version of a C4.5 decision tree, on the selected feature subset
and the class label. All classification accuracies are obtained by
the J48 decision tree with a tenfold cross validation in Weka.
In the tenfold cross validation, the original data are separated
into ten subsamples. Of the ten subsamples, a single subsample
is retained as the validation data for testing the model, and the
remaining nine subsamples are used as training data. The cross-
validation process is then repeated ten times, with each of the
ten subsamples used exactly once as the validation data.

In a real application where the class label is not available,
it is difficult to determine if the selected features are correct
or not. In the problem studied in this paper, we assume that the
relevant features are the features describing the synthetic cluster
labels. Thus, the classification accuracy of the selected feature
subset and the synthetic cluster labels provides a measure on
the performance.

IV. RESULTS

In this paper, the SUD [11] is compared with the proposed
UFSN, where AccFreq is set at one for all comparisons. The
method CLOPE used in Phase 1 is called UFSN-CLOPE, and
the scheme based on CLOPE with enhanced scheme is called
EUFSN-CLOPE. The UFSN-CLOPE generates cluster descrip-
tions where a setting of r starts from 0.1 and a step size of 0.1. It
stops when the number of clusters is greater than

√
N . Similar

to the UFSN-CLOPE, the EUFSN-CLOPE starts at r of 0.1 and
a step size of 0.1. The SLRs used in Phase 1 with α at 0.5, 1.5,
and 2.5 are called UFSN-SLR-0.5, UFSN-SLR-1.5, and UFSN-
SLR-2.5, respectively. For UFSN-SLR-0.5, UFSN-SLR-1.5,
and UFSN-SLR-2.5, the cluster description is generated with
a minimum support at 0.6 and λ varying from 0.4 to 1.

The comparative computational time among UFSN-CLOPE,
EUFSN-CLOPE, UFSN-SLR-0.5, UFSN-SLR-1.5, UFSN-
SLR-2.5, and SUD is shown in Table III. It shows that the
SUD, which delivers the same level of classification accu-
racy, is a very computational demanding method compared
with the proposed scheme. The UFSN-CLOPE is extremely
similar to the EUFSN-CLOPE with much longer computa-
tional time. UFSN-SLR-0.5, UFSN-SLR-1.5, and UFSN-SLR-
2.5 are faster than EUFSN-CLOPE except dataset “cDNA.”
Table IV illustrates the selected cluster description of each
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TABLE III
COMPARISON OF THE COMPUTATIONAL TIME (IN SECONDS) OF DIFFERENT METHODS

TABLE IV
SELECTED CLUSTER DESCRIPTION OF EACH DATASET IN THE PROPOSED SCHEME

TABLE V
INFORMATION OF THE UCI DATASETS

dataset in UFSN-CLOPE, EUFSN-CLOPE, UFSN-SLR-0.5,
UFSN-SLR-1.5, and UFSN-SLR-2.5.

A. UCI Datasets

Eight nominal UCI datasets are used to demonstrate the
ability of the proposed method. The UCI repository provides
benchmark datasets with class label for machine learning.
Table V depicts the detail information of each dataset. The
classification accuracies of different feature subsets conducted
via EUFSN-CLOPE, UFSN-SLR-0.5, and SUD are shown in
Fig. 7. Meanwhile, Fig. 7 shows a brief comparison between

the proposed schemes (both EUFSN-CLOPE and UFSN-SLR-
0.5) and the SUD.

Classification accuracies with respect to datasets “Agaricus-
Lepiota” and “Soybean-Small” are discussed in detail in the
following paragraphs. The dataset “Agaricus-Lepiota” consists
of 22 features and 8124 data instances with 2480 missing
data in feature 11 (stalk–root). The dataset is composed of
two classes: “edible” and “poisonous.” The features describe
different fundamental characteristics such as odor and cap
color. This is the only one UCI dataset with different cluster
descriptions selected by the UFSN-CLOPE and the EUFSN-
CLOPE. The cluster description with r of 4.4, smaller than
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Fig. 7. Classification accuracies for different numbers of features selected by EUFSN-CLOPE, UFSN-SLR-0.5, and SUD of the following datasets: (a) “Agaricus-
Lepiota,” (b) “Balance-Scale,” (c) “Breast-Cancer,” (d) “Breast-Cancer-Wisconsin.”

√
N , is selected by the UFSN-CLOPE. This is a typical case

that the DDF value of a cluster description increases when r
increases. Classification accuracies of various numbers of fea-
tures selected by the UFSN-CLOPE and the EUFSN-CLOPE
for dataset “Agaricus-Lepiota” are shown in Fig. 8. As the
feature ranking is based on the cluster description, a cluster
description with too many clusters may cause confusion about
the feature relevance measurement.

The EUFSN-CLOPE reduces the dataset from 22 features to
11 features (50.0% reduced) without lowering the classification
accuracy. When the number of features is reduced to one
(95.5% reduced), the EUFSN-CLOPE is still able to maintain
an accuracy of 98.5%, i.e., the most important feature is picked.
In general, the classification accuracy in the cluster description
generated by the EUFSN-CLOPE, the UFSN-SLR-0.5, the
UFSN-SLR-1.5, and the UFSN-SLR-2.5 is comparable. The
EUFSN-CLOPE outperforms the others when there is only one
feature left. The UFSN-CLOPE and the EUFSN-CLOPE use
12.2 and 2.5 h to rank the features, respectively, whereas the
UFSN-SLR-0.5, the UFSN-SLR-1.5, and the UFSN-SLR-2.5
use less than 0.5 h to rank the features of the same dataset. In
addition, it takes more than 60 days to rank the eight features via
SUD, and the process is subsequently terminated on the 66th
day. As shown in the presented results, the proposed schemes
are more efficient than the SUD.

The dataset “Soybean-Small” consists of 35 features and
47 data instances with no missing data. The “Soybean-Small”
dataset has four class labels represented by D1–D4. Its fea-
tures describe the planting situation such as temperature and
area damages for soybean disease diagnosis. The classification
accuracy of the original dataset is 97.9%. Both the UFSN-
CLOPE and the EUFSN-CLOPE select the cluster description
with r at 1.1, and the number of features is reduced from 35
to 5 (85.7% reduction) with 100% classification correctness,
whereas the classification accuracy of SUD is 36.2% with 14
features. In terms of computational efficiency, the SUD used
603 s to rank the features, whereas the UFSN-CLOPE and the
EUFSN-CLOPE required only 16 and 3 s, respectively.

To sum up, the classification accuracy and the number of
selected features by the SUD are about the same as that of
the proposed schemes. Nevertheless, the computational time
of SUD, which is about 100 times on average, is substantially
longer than the proposed scheme. It is clear that the proposed
schemes select relevant features in a more efficient way com-
pared with other methods.

B. cDNA

As there is no benchmark dataset with huge number of
features available for examining the capability of handling
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Fig. 7. (Continued.) Classification accuracies for different numbers of features selected by EUFSN-CLOPE, UFSN-SLR-0.5, and SUD of the following datasets:
(e) “Hepatitis,” (f) “House-Votes-84,” (g) “Lung-Cancer,” and (h) “Soybean-Small.”

Fig. 8. Classification accuracies for different numbers of features selected by
UFSN-CLOPE and EUFSN-CLOPE for dataset “Agaricus-Lepiota.”

large number of feature datasets, a numerical cDNA dataset
with 12 600 features is transformed into nominal format and
subsequently used for illustration. The dataset “cDNA” is
composed of 12 600 features and 102 data instances with no
missing data. It contains two classes represented by A and B.
Both the EUFSN-CLOPE and the UFSN-CLOPE select the
cluster description with r of 0.6. The number of features is

Fig. 9. Classification accuracies for different numbers of features selected by
EUFSN-CLOPE, UFSN-SLR-0.5, and SUD of dataset “cDNA.”

trimmed down from 12 600 features to 5797 (54% reduced)
with an accuracy level of 78.4%, whereas the classification
accuracy of the full dataset is 75.5%. The EUFSN-CLOPE
used approximately 40 min to select the features, whereas the
UFSN-CLPOE used 94 min. The SUD was terminated after
72 h without any features ranked. The proposed schemes are
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proved again to be more efficient than the SUD. As there are too
many features to be shown in a graph, Fig. 9 shows a part of the
classification accuracy for various numbers of features selected
by the EUFSN-CLOPE and the UFSN-SLR-0.5. The number of
features in the minimum feature subset of the EUFSN-CLOPE
is 5797, whereas it is one for the UFSN-SLR-0.5.

V. CONCLUSION

An efficient unsupervised feature selection scheme is devel-
oped to perform the nominal-data feature selection. The pro-
posed scheme can be used with different clustering algorithms,
for instance, CLOPE. The DDF is introduced as a stopping
criterion for selecting cluster description for relevance ranking.
A singleton item, which is proved to be similar in nature of
finding the higher entropy, is developed for efficient clustering.
Based on the selected cluster description, the relevance of the
features is measured by using the proposed REL. The user is
allowed to adjust the threshold, IrrThreshold, to control the
number of features to be included. The relevance of features
is measured individually and does not suffer from the problem
caused by high dimensionality. The SUD is compared with
the proposed scheme, and the obtained results show that the
proposed scheme is a reliable and efficient feature selection
methodology.
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