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ABSTRACT

Motivation: Most gene-expression based studies aim to identify

genes with the capability of distinguishing different phenotypes.

Although analysis at the genomic level is important, results of the

molecular/cellular level are essential for understanding biological

mechanisms. To deliver molecular/cellular-level results, a two-

stage scheme is widely employed. This scheme just evaluates

biological processes/molecular activities individually, totally

overlooking the relationship between processes/activities. This

treatment conflicts with the fact that most biological processes/

molecular activities do not work alone. In order to deliver improved

results, this shortcoming should be addressed.

Results: We design a selection model from a novel perspective to

directly detect important gene functional categories (each category

represents a cellular process or a molecular activity). More impor-

tantly, the correlations between gene categories are considered.

Contributed by this capability, the proposed method shows its

advantages over others.

Availability: the source code in Matlab is accessible via

http://www.ee.cityu.edu.hk/�twschow/category_selection/

category_selection.htm

Contact: ifkorf@ucdavis.edu

Supplementary information: http://www.ee.cityu.edu.hk/

�twschow/category_selection/category_selection.htm

1 INTRODUCTION

Gene is the basic functional and physical unit controlling and

regularizing biological phenomena and human diseases. The

studies at the gene level are thus essential and important.

Microarray techniques enable researchers to record the expres-

sion profiles of thousands of genes simultaneously (Ekins,

1999). With the advent of these techniques, the gene-level

studies have been greatly boosted. The studies include the

annotation/function prediction of genes (Zhou, 2002), the

analysis of gene signaling pathways (Segal, 2003), the diagnosis

and prognosis of heterogeneous diseases (Lee, 2003; Yeung,

2005) and the identification of genes responsible for complex

diseases (Golub, 1999; Gui, 2005; Guyon, 2002; Zhang, 2006),

etc. The latter two issues, which are related to disease

understanding and prediction, have been dealt with by using

various supervised machine-learning methods.
In a gene expression dataset used for disease studies, each

sample has a label indicating its phenotypical status (e.g. being

diseased or normal or belonging to which type of disease or

how to respond to a drug). According to the principle of

machine learning, we generalize label of different types

as response. Obviously, the genes that vary systematically

with the change of response are influential and should be paid

attentions on. Through discarding the unrelated and redundant

genes and just focusing on the influential genes, analysis on

gene expression data can be greatly simplified into a low-

dimensional data domain, which is helpful to deliver precise,

reliable and interpretable results. Also, focusing on the marker

genes can reduce the cost of biological experiment and decision.

These are the main reasons that gene selection becomes

essential or even necessary.
In a gene selection scheme, genes are considered individually,

either to evaluate the gene–response association or to assess the

gene–gene relationship. On the other hand, most genes cannot

work alone. Instead, the functionally associated genes always

collaborate with each other through interaction and reaction to

regularize a cellular process at a molecular level, via a signaling

pathway or under a common mechanism. A series of interplays

among cellular processes or molecular activities finally deter-

mine most biological phenomena and human diseases. Given

this observation, there is a need to extend disease research from

a gene level to a cellular/molecular level. Also the cellular/

molecular results are able to offer more insights and a better

understanding of the cellular mechanisms, and thus are favored

by biologists.

The functional roles of genes have been studied in a huge

amount of biological experiments. The confirmed results have

been summarized into databases from various perspectives.

In the Kyoto Encyclopedia of genes and genomes (KEGG)

database, each gene is associated with the molecular signaling

pathways in which it participates (Kanehisa, 1997). In the

SWISS-PORT databases, a gene is labeled with a set of

keywords, such as pathways and general biological processes*To whom correspondence should be addressed.
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(Boeckmann, 2003). Recently, the Gene Ontology consortium
develops an excellent platform to categorize genes in the
context of their cellular and molecular functions (Ashburner,

2000). In the Gene Ontology (GO), gene functions are
organized into three hierarchical trees. These trees are parallel
to each other and respectively stand for biological process,

molecular function and cellular component. A node of tree
represents a functional annotation of gene. Along the direction
of top-down, the range covered by annotation is gradually

narrowed. For example, in the biological process tree, the root
node is named as biological process. One of its descendants is
labeled with growth. Down along this direction, the annotations

of nodes are in turn cell growth, regulation of cell growth, etc.
With the availability of these databases, and driven by

biological needs, it has become a trend to change the focus of
gene-expression-based studies from gene identification to the

detection of relevant molecular activities/cellular processes,
behind which are functional categories of genes. To extract
molecular/cellular-level results, most existing studies adopt

a post hoc scheme. A list of influential genes is firstly selected
out by using a gene-specific method. These genes are generally
ranked in a descendent order of gene–response correlation.

Then for each gene functional category given in biological
databases, the enrichment state in the ranked gene list is
estimated under statistical frameworks. The categories with

significantly enrichment state are considered relevant to a given
task (Al-Shahrour, 2004; Beissbarth, 2004; Draghici, 2003;
Khatri, 2005; Kim, 2003; van’t Veer, 2002). More recently,

to enhance performance, sophisticated strategies were designed
(Al-Shahrour, 2005; Barry, 2005; Mootha, 2004). After
obtaining an ordered gene list, Al-Shahrour et al. (2005)

analyzed the distribution of a gene functional category in that
gene list. A tested category is unimportant to a given task when
the genes of that category uniformly distribute in the ranked

gene list. Barry et al. (2005) developed a permutation-based
framework. Several permutated datasets are first generated.
Based on each permutated dataset, gene–response associations

are measured with a statistic approach, for instance, t-statistic.
Then for a gene functional category, Wilcoxon rank sum or
Kolmogorov–Smirnov statistic is used to compare the within-

category association shift caused by permutation with the
outside-category one. A large difference between these shifts
indicates that the tested category is highly relevant to a given

task. These gene-list-based models can deliver respectable and
meaningful results. However, the aforementioned models,
which are either oversimple or sophisticated, adopt a gene-

list-based working mechanism in which identifying significant
gene categories is just a sequent step of gene selection. In these
approaches, gene functional categories are evaluated individu-

ally, while the relationship between gene categories has not
been taken into account. This shortcoming should be justified,
considering the fact that gene functional categories interplay

with each other. Until now, few attempts have been done on
this issue.
In this article, we present a category selection model in which

gene expression data and gene functional category data are
integrated together, and relevant gene categories are identified in
a straightforward way. In the proposed model, the category–

response and category–category associations are considered at the

same time during the course of category selection. The proposed

model has enhanced the performance of category selection.

2 METHODS

In order to directly select relevant gene categories, the category–

response and category–category associations should be evaluated.

A category, generally consisting of up to thousands genes, is

represented by a high-dimensional variable. Furthermore, different

category variables, covering different numbers of genes, are with

different dimensionalities. With these facts, estimating category-related

associations becomes very challenging. To cope with this difficulty, our

method first estimates the probability distribution of each category

in the gene space. This part is inspired by Yu et al. (2005).

For understanding this point, please refer to Figure 1 in which several

probability distribution histograms of gene categories are illustrated.

Based on the obtained probability estimates, the category–category and

category–response associations are measured by using a newly-

introduced index. Then, a forward selection process is used to identify

relevant categories. The core of this process is another newly developed

evaluation criterion. With this criterion, we can identify the categories

that are relevant to a given task but not redundant to the already-

selected categories. The proposed methods include four sequential

steps, as shown in Figure 1.

Step A. Evaluate the gene–gene and gene–response associations

based on gene expression data. During this course, Pearson’s

correlation and mutual information MI are used.

Step B. Estimate the probabilities of gene categories and the response

variable in the gene space based upon the gene–gene/gene–response

association values.

Step C. Evaluate category–category or category–response correla-

tions based on the probabilities obtained in Step B.

Step D. Search the influential gene functional categories in a forward

way according to the correlations calculated in Step C.

2.1 Gene–gene and gene–response correlation

Given a gene expression dataset, the correlation between genes can be

measured by using many indices, such as Pearson’s correlation, Kendall

ranking correlation (Hollander, 1999) and mutual information

(MI, Cover, 1994), etc. Among them, Pearson’s correlation, which is

reliable and efficient enough, is widely employed. Also, in most

categories/pathways, induced and repressed genes exist at the same

time. To account for variations in either direction, we follow other

researchers (Yu, 2005; Zhou, 2002), using the absolute Pearson’s

correlation to measure the similarity of genes.

To assess the gene–response associations, the popular ways include

signal-to-noise ratio (Golub, 1999), t-test and MI (refered as informa-

tion gain in some literatures). The signal-to-noise ratio and t-test make

use of the averages and the SDs of samples in different classes to fulfill

the evaluation task. These criteria are reliable when given samples are in

the normal or near-normal distribution, but they may not be good

enough to tackle variables with a complex distribution. Compared

with these criteria, MI is more flexible since it can reliably reflect

the arbitrary relationship of variables. We thus use MI to measure

the gene–response associations. Given two variable X and Y, Shannon’s

MI is defined as

IðX;YÞ ¼

Z
x,y

pðy,xÞ log
pðy,xÞ

pðyÞpðxÞ
dxdy: ð1Þ

The above equation shows that the calculation of MI requires

the estimation of p(y,x), p(x) and p(y). To estimate these

probability density functions, histogram and kernel based models

(e.g. Parzen window) are commonly used. In a histogram model,
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the probability of a data point is determined based on the frequency of

that point appearing in a given dataset. Based on histograms, the

integration operation in MI (1) can be simplified as a summation

operation. With this simplification, histogram model can make the

computation of MI much efficient. On the other hand, histogram is

argued to become infeasible in high dimensional space due to the

sparseness of data samples (Moon, 1995). This shortcoming, however,

does not concern us because we only need 2D MIs. With the above

considerations, we employ histograms to estimate the probabilities

required by MI (1).

2.2 Probabilities of gene functional category

in the gene space

Suppose that we have a gene set G¼ {g1, g2, . . . , gM}, and a set of gene

functional categories C¼ {c1, c2, . . . , cK}. Each category consists of

several genes in G, i.e. ci �G (1� i�K). Given a functional category ci,

to evaluate its probability density in the gene space is to determine

p(ci|gj) for j¼ 1, 2, . . . ,M.

Given a gene, say gk, we evaluate the similarity of ci to gk in a way of

sðgk,ciÞ ¼ argmax
gj2ci
ðskjÞ

where skj, the similarity between the genes gk and gj, is measured using

the absolute Pearson’s correlation, as mentioned in the above section.

Clearly, the conditional probability p(gk|ci) is positively related to

s(gk, ci). That is, the more similarity between the gene gk and the

category ci, the greater the conditional probability p(gk|ci). We thus

estimate p(gk|ci) according to

pðgkjciÞ / ð1þ sðgk,ciÞÞ
v, ð2Þ

where v41, for appropriately emphasizing strong correlations without

enforcing a hard threshold. The similar idea has been used in other

studies (Yu, 2005). Yu (2005) set v¼ 6 and delivered respectable results.

Besides v¼ 6, we investigated different settings, such as v¼ 2, 10 and 18.

v¼ 6 corresponded the best results in most cases and was thus used

throughout this article. In the Supplementary Material, the compara-

tive results of different values of v are presented for further reference.

The probability of the category ci at gk is the normalized p(gk|ci), i.e.

pðcijgkÞ ¼
pðgkjciÞP
gj2G

pðgjjciÞ
: ð3Þ

The above probability estimation approach can be extended to the

response variable y as

pðyjgkÞ ¼
pðgkjyÞP
gj2G

pðgjjyÞ
, ð4Þ

where pðgkjyÞ / ð1þMIðgk,yÞÞ
6:

2.3 Category–Category Correlation and

Category–response correlation

To evaluate the similarity between two categories ci and cj, we define an

index as

pcorðci, cjÞ ¼
X

gk2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðcijgkÞpðcjjgkÞ

p
: ð5Þ

pcor(ci, cj) achieves the maximum when ci and cj have the same genome-

wide distribution, that is, p(ci|gk)¼ p(cj|gk) for all k. A small pcor(ci, cj)

means the low similarity between ci and cj. With these properties,

pcor(ci, cj) are very similar to the Pearson’s correlation. We therefore

call the proposed index as probability-correlation (pcor for short). As to

the response y and a category ci, we have

pcorðci, yÞ ¼
X

gk2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðcijgkÞpðyjgkÞ

p
: ð6Þ

Fig. 1. The block diagram of the proposed category selection method.
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2.4 Forward selection process

Referring to the correlation-based feature selection index (Hall, 1999),

we design the criterion rlv(TC, y) (7) to measure the classification

capacity of a gene functional category set.

rlvðTC, yÞ ¼

P
ca2TC

pcorðca, yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jTCj þ

P
ca2TC

P
cb2TC,cb 6¼ca

pcorðca,cbÞ
r , ð7Þ

where TC is a category set and |TC| is the size of TC. rlv(TC, y)

checks the quality of TC in a comprehensive way—the nominator

measures the association of TC to the response, whilst the denominator

evaluates the degree of the redundancy existing in TC. Obviously,

a large rlv(TC, y) indicates a good TC in that the similarity of TC to the

response is high and the redundancy in TC is low at the same time.

Based on rlv(TC, y), we employ a forward searching process to

identify relevant categories in a way of one by one. Below, this process

is detailed.

(1) (Initialization) Set SC, the selected gene category set, empty;

(2) Repeat the following steps until SC reaches the desired size.

For each unselected category, say c, calculate rlv(SCþ c, y).

Choose the category with the maximal rlv(SCþ c, y). Put that

category into SC.

(3) Output the selected set SC.

3 RESULTS ON SYNTHETIC DATA

We compared the proposed method with the related

approaches, including significance analysis of functional

categories (SAFE. Barry, 2005), gene set enrichment analysis

(GSEA. Mootha, 2003) and the average-based method.

The first two are a typical gene-list-based scheme, in which

all given genes are ranked according to their classification

capabilities. Then based on the obtained gene list(s), the

biological relevancy of gene category is evaluated. Both SAFE

and GSEA finally estimate the significance enrichment for each

gene functional category. The smaller the enrichment value,

the higher relevancy of the tested category has. For SAFE,

we considered the cases with P-value 50.1 as significantly

associated. For GSEA, we regarded the categories with

q-value 50.25 as biologically relevant. The average-based

method extracts a hyper-gene to represent a gene category.

Given a category, the expression profile of its hyper-gene is the

average of the expression profiles of the genes assigned to that

category. Based on the extracted hyper-genes, the selection of

gene functional categories is simplified as the selection of hyper-

genes. In general, any gene selection method can be employed

for this issue. We chose the MI based forward

searching scheme proposed by Chow et al. (2005). This MI

based scheme determines the salient hyper-genes in a way of

one by one. The importance of each unselected hyper-gene (say,

hg) is evaluated based on MI(Sþ hg, y) where S is the set of the

selected hyper-genes. The hyper-gene with the largest

MI(Sþ hg, y) is selected into S. This selection process repeats

until certain hyper-genes have been selected. In our Supple-

mentary Material, the details of this MI based forward

search scheme are given.
We first evaluated these methods under a synthetic scenario.

The expression data we used is similar to the one mentioned by

Weston et al. (2000). In this dataset, the samples are evenly

distributed in the class 1 and �1. The gene variable X1 and X2

are drawn from a mixture of normal distributions: with the

probability of 0.7, X1 and X2 respectively come from yN(3,1)

and N(0,1) where y is the class label, that is, y¼ 1 or �1; with

the probability of 0.3, X1 and X2 are respectively generated

according to N(0,1) and yN(3,1). It can be noted that X1, which

can determine the labels of 70% samples, is more important

than X2.

Generally, in a gene expression data, there are many

irrelevant genes. To simulate this, we generated 20 genes

according to the distribution N(0,1). These variables are just

background noise and irrelevant to distinguish the samples

from different classes. Also, we generated redundant genes.

In detail, given X1, we drew five genes in a way of

X1þ 0.2N(0,1). These five genes are highly redundant to X1.

Similarly, around X2, other five redundant genes were built.

After adding the 10 redundant and the 20 irrelevant genes, we

finally got a 32-gene dataset X. Also, suppose that, in X, the 32

genes are arranged in a way of

X ¼ fX1,X2, . . . ,X6

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{similar

,X7,X8, . . . ,X12

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{similar

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
relevant

,X13,X14, . . . ,X32|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
irrelevant

g

In GO, the gene categories show a hierarchical tree structure

in which each node covers the genes associated to itself and all

its descendants. To simulate GO tree, we constructed six gene

categories, as illustrated in Figure 2. S6 is not a representative

category and was rejected from our study. Details about

representative category will be detailed later. Also, based on

our generation mechanism, we observe that (1) of the five tested

categories, S2, S3, S4 and S5 are useful since they contain

Fig. 2. The category setting of the synthetic example.
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informative genes, while S1, having no informative gene,
is unrelated to this classification task; (2) S2, S3 and S4 are

redundant to each other because all of them contain X1 or the
genes close to X1. Among these categories, S2 is the best due to

the highest purity, i.e. S2 includes no irrelevant gene and the

fewest redundant genes; (3) as X1 is more influential than X2,
the categories including X1 are more important than the ones

having X2. According to the above observations, the correct

order of category selection is (S2/S3/S4)!S5. Also, the result
S2!S5 is the most desired since S2 is better than S3 and S4.

We generated 1000 datasets, and run the compared methods
on each of them. In Table 1, the statistical results across

1000 trails are summarized. It is noted that all the methods can
put S2/S3/S4 on the first place with a high probability. Also

GSEA may have bias to large categories since the probability of

S2 being selected out in the first place is zero. Let us see the
category selected in the second place. It is known that following

S2/S3/S4 should be S5. S5 is useful but slightly less important

than S2/S3/S4. Such S5 poses great challenge to SAFE and
GSEA, as indicated by the results presented in the third column

of Table 1. Actually, in all trials, SAFE always assigned S5 with
P-value40.1. In the estimates of GSEA, FDR q-values of S5

were always larger than those of S2, S3 and S4. These

estimation results means that, in all trials, both SAFE and
GSEA could not correctly consider S5 as the second important

category.
Furthermore, we added noise genes into S5 such that

S5¼ {X8, X9, five genes randomly selected from (X13, . . . ,

X32)}. As shown in Table 1 (b), with the noise-mixing S5, the
good performance of our method can be kept, whilst the

average-based method is badly affected. Through the average
operation, the useful genes will be masked by noise ones. This is

the direct reason that, in the average-based method, the

accuracy of selecting S2!S5 greatly decreases to 49.4% from
61.9% obtained in the pervious example.

S3 is the combination of S2 and seven noise genes,
{X13�X19}, as shown in Figure 2. In the estimates of SAFE,

the significance P-values of S2 and S3 were 0.04 and 0.63,

respectively. Also, the P-values of the original S5 (in the first
example) and the noise-mixing S5 (of the second example) were

respectively 0.26 and 0.47 on average. These comparisons
indicate that irrelevant genes may greatly undermine the

performance of SAFE. To sum up, we have the following

conclusions. (1) All the methods except GSEA can successfully

identify the categories with great importance and high purity,

such as S2. (2) The proposed method and the average-based

method outperform SAFE and GSEA when one is dealing

with useful but slightly unimportant categories, for instance, S5.

(3) The proposed method and GSEA can exhibit the advan-

tage over others on identifying noise-mixing categories,

e.g. noise-mixed S5.
It is worth noting that, in a real dataset, ideal categories, like

S2, rarely exist. Thus, the capability of handling noise-mixing

categories is very important, even crucial, for gene category

selection.

4 RESULTS ON PROSTATE DATA

4.1 Data

We applied our method to a prostate cancer data. Prostate

cancer is one of the most well-studied cancers. A lot of

published clinical results can be used for evaluating our data

analysis results. We used the gene expression dataset provided

by Singh et al. (2002). This dataset, collected in the platform of

Affymetrix HG U95A arrays, consists of 102 samples and

records expression profiles of 9527 genes. As to gene-functional

categories, we used GO annotation database (Ashburner, 2000)

and KEGG gene pathway database (Kanehisa, 1997). Due to

the hierarchical structure of GO, there must exists redundant

GO terms. Here, a GO term is considered as redundant when

most genes covered by it can be associated to their children.

Redundant GO terms contain little exclusive information.

To efficiently analyze GO terms, we filtered the redundant GO

terms out and restricted our study to representative GO terms.

We considered a term (say, r) as representative when, out of all

genes associated to r, there exist genes that cannot be covered

by the r’s descendants. Given a GO term (say H), assume that

there are totally w genes annotated either with it or with

its descendants. Among these w genes, z genes are directly

annotated with H itself, while others are associated to its

descendants. The uniqueness of H can be calculated as z/w.

A large uniqueness indicates that H is a representative term in

that most genes related to H cannot be shared by H ’s children.

In this study, we considered the GO terms with uniqueness40.5

as representative. Also, in order to avoid uncertainty, the gene-

functional categories with less than 10 genes were out of our

consideration.

Table 1. The results on a synthetic example. A percentage value indicates the probability of the corresponding category being selected across 1000

trials

(a) The results on the category setting shown in Figure 2 (b) The results when S5 is noise mixed

The 1st selected gene The 1st and 2nd selected genes The 1st selected gene The 1st and 2nd selected genes

Average-based

method

S2: 73.7%; S3: 4.2%;

S4: 22.0%.

{S2, S5}: 61.9%; {S3, S5}: 2.5%;

{S4, S5}: 15.8%

S2: 73.4%; S3: 5.0%;

S4: 21.6%.

{S2, S5}: 49.4%; {S3, S5}: 2.3%;

{S4, S5}: 11.7%.

SAFE S2: 97.0%; S3: 0; S4: 0. {S2, S5}: 0; {S3, S5}: 0; {S4, S5}: 0. S2: 96.0%; S3: 0; S4: 0. {S2, S5}: 0; {S3, S5}: 0; {S4, S5}: 0.

GSEA S2: 0; S3: 15%; S4: 80%. {S2, S5}: 0; {S3, S5}: 0; {S4, S5}: 0. S2: 0; S3: 15%; S4: 80% {S2, S5}: 0; {S3, S5}: 0; {S4, S5}: 0.

Proposed

method

S2: 94%; S3: 1.9%

S4: 0.

{S2, S5}: 89.1%; {S3, S5}: 1.2%;

{S4, S5}: 0.

S2: 94.5%; S3: 3.2%;

S4: 1.2%

{S2, S5}: 80.1%; {S3, S5}: 2.1%;

{S4, S5}: 0.4%
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The given genes involve totally 3152 biological process GO

terms. After filtering out the redundant and uncertain ones,

we remained 621 representative GO terms for study. In KEGG

dataset, totally 155 pathways are given. After rejecting

the categories having no more than 10 genes, we finally left

124 pathways for analysis.

4.2 Results and evaluations

In the experiment, we first evaluated the classification

capability of the selected gene functional categories. That is,

based on a set of selected gene functional categories, we built

the classifiers and evaluated the quality of the tested gene

category set according to the performance of these classifiers.

Considering that a category contains redundant or irrelevant

genes, we did not employ all involved genes for building

classifiers. Instead, from a selected category, we identified the

best gene to represent it. The best gene here means the gene

with the high classification capability. There are many ways

to measure the classification capability of genes, such as signal-

to-noise ratio, t-test and MI. We used MI to identify

representative gene of a category (say, C) in a way of

gC ¼ argmax
gi2C

MIðgi; yÞ:

Based on the selected representative genes, classifiers were built.

Good performance of these classifiers indicates that the

examined gene categories set is respectable. We adopted

the scheme of five cross-validation (5 CV) in which the total

of 102 samples were equally divided into five parts. Four of

them were used for identifying the influential categories

and then for constructing classifiers, whereas the other part

was for testing the classifiers. Five parts of samples were used

for testing in turn. In our Supplementary Material, this 5CV

evaluation framework is stated in detail. We used three types of

classifiers, including k nearest neighbor rule (kNN, and we set

k¼ 1), multi-layer percepton neural network (MLP) and

support vector machine (SVM), for evaluation. The MLP

and the SVM models we used are respectively available at

http://www.ncrg.aston.ac.uk/netlab and http://www.isis.ecs.

soton.ac.uk/resources/svminfo. In Figure 3, the comparative

results on the GO terms are illustrated. There are 30 comparison

cases (3 classifiers, 10 comparative results for each classifier).

In 19 out of the 30 cases, the proposed methods enabled the

classifiers to deliver the best results. Also, we used the student’s

t-test to compare the classification results of the proposed

method with those of others. The P-value of the proposed

method against SAFE is 3� 10�8, and the P-value of the

proposed method against GSEA is 6� 10�9. These results

suggest that our method outperform the others.
Besides the view of machine learning, we evaluated the

obtained results from the biological view. Prostate cancer

has been studies for many years. Many conclusions have been

published and clinically confirmed. SuperArray Bioscience

Corporation presents a relatively comprehensive summary

in which 263 genes are suggested to be (potentially)

responsible for prostate cancer (http://www.superarray.com/

gene_array_product/HTML/OHS-403.html). Below, these

prostate-cancer-related genes are called as PCR genes.

Based on PCR genes, we extracted the PCR annotations and

PCR pathways by using a popular statistics framework.

Concretely, given a functional annotation, say C, we recorded

the number of genes given in the gene expression dataset are

mentioned in C. We also counted the number of genes, out of

the 263 PCR genes, could be associated to C. With these values

and under the scheme of hyper-geometric distribution, the

significance P-value of C enriched by the PCR gene list was

computed. A small P-value means that C is significantly related

to prostate cancer. We adjusted the obtained P-values to

account for multiple hypothesis test using a false discovery rate

(FDR) scheme (Benjamini, 2001). Then, with the condition that

a PCR annotation has adjusted P-value 50.05 and contains

at least five genes, we obtained 58 PCR annotations in total.

Similarly, we identified 13 PRC pathways. The 13 PCR

pathways and the 58 PCR annotations are the basis of our

evaluation. Our PCR annotation list includes many widely-

recognized PCR cellular processes, for example, the apoptosis

Fig. 3. Comparisons in terms of classification results.
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related ones (GO:0006916 anti-apoptosis and GO:0008637

apoptotic mitochondrial changes), the insulin related ones

(GO:0008286 insulin receptor signaling pathway), the cell

growth/proliferation related ones (GO:0008284 positive regula-

tion of cell proliferation, GO:0016049 cell growth). Our PCR

pathway list also contains the pathways that have been stated

to play important roles in prostate cancers, such as apoptosis

(path:hsa04210), MAPK signaling pathway (path:hsa04010)

and Focal adhesion (path:hsa04510). In the Supplementary

Material, the full lists of PCR annotation and pathways

are given.
To evaluate a selection result, we calculated the amount of

the PCR annotation/pathway included. In the cases that GO

annotations are involved, the hierarchical relationship between

annotations was considered. That is, a category was marked as

PCR, either when it is a PCR annotation or when it is the

no-more-than-2-generations ancestor/descendant of a PCR

annotation. Clearly, the more PCR items a selection result

has, the better that result is. In Figure 4, the comparative results

are illustrated. By these results, the advantages of our method

can be clearly indicated. Also, in Tables 2 and 3, detailed results

of our method are listed. The PCR items are marked by

a symbol of asterisk. The obtained results are remarkably

encouraging since many selected annotations/pathways are

either in the PCR annotation/pathway list or supported by the

published clinical results.

Fig. 4. Comparisons in terms of the number of PCR items.

Table 2. The selection results of our method on GO annotations

Selection GO annotation

1 * GO:0016049 cell growth

2 GO:0007262 STAT protein nuclear translocation;

abnormal activity of certain STAT family

members . . . is associated with . . .prostate cancers

(Turkson, 2000)

3 * GO:0000209 Protein polyubiquitination

4 GO:0006457 protein folding

5 GO:0000097 sulfur amino acid biosynthesis

6 * GO:0016337 cell–cell adhesion

7 GO:0006334 nucleosome assembly

8 * GO:0051301 cell division

9 * GO:0001658 regulation of cell growth

10 * GO:0006916 anti-apoptosis

11 * GO:0016567 protein ubiquitination

12 * GO:0001501 skeletal development

13 GO:0006936 muscle contraction

14 GO:0015671 oxygen transport

15 GO:0015669 gas transport

16 * GO:0007169 transmembrane receptor protein

tyrosine kinase signaling pathway

17 GO:0007076 mitosis

18 GO:0031497 chromatin assembly

19 * GO:0008284 positive regulation of cell proliferation

20 * GO:0016064 humoral defense mechanism

(sensu Vertebrata)

21 * GO:0008015 circulation

Table 3. The selection result of our method on KEGG pathways

Selection order Pathway name

1 path:hsa00960 Alkaloid biosynthesis II

2 * path:hsa04510 Focal adhesion

3 * path:hsa04010 MAPK signaling pathway

4 path:hsa04020 Calcium signaling pathway

5 * path:hsa04530 Tight junction

6 * path:hsa04810 Regulation of actin cytoskeleton

7 path:hsa04910 Insulin signaling pathway

8 path:hsa05050 Dentatorubropallidoluysian

atrophy (DRPLA)

9 path:hsa00230 Purine metabolism

10 path:hsa04630 Jak-STAT signaling pathway;

the effects of IL-6 on prostate cancer cell growth

are mediated through . . . (Lou, 2000)

Identifying the biologically relevant gene categories
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5 CONCLUSIONS

In this article, we present a method to identify the relevant gene

functional categories. In this method, the category–category

relationship is taken into account. Contributed by this

capability, the proposed approach can deliver the improved

results. Our method currently employs a correlation-based

index to evaluate a category set. In the further work, we

will develop new evaluation indices based on sophisticated

concepts, such as MI, in order to further enhance the selection

performance.
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