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Abstract. Microarray gene expression data usually consist of a large amount of genes. Among these genes,

only a small fraction is informative for performing cancer diagnostic tests. This paper focuses on effective

identification of informative genes. A newly developed gene selection criterion using the concept of Bayesian

discriminant is used. The criterion measures the classification ability of a feature set. Excellent gene selection

results are then made possible. Apart from the cost function, this paper addresses the drawback of conventional

sequential forward search (SFS) method. New genetic algorithms based Bayesian discriminant criterion is

designed. The proposed strategies have been thoroughly evaluated on three kinds of cancer diagnoses based on

the classification results of three typical classifiers which are a multilayer perception model (MLP), a support

vector machine model (SVM), and a 3-nearest neighbor rule classifier (3-NN). The obtained results show that

the proposed strategies can improve the performance of gene selection substantially. The experimental results

also indicate that the proposed methods are very robust under all the investigated cases.
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1. Introduction

Microarray techniques, such as DNA chip and high-

density oligonucleotide chip, are powerful biotech-

nological means because they are able to record the

expression levels of thousands of genes simulta-

neously [12]. Systematic and computational analysis

on microarray data enables us to understand pheno-

logical and pathologic issues in a genomic level [11,

12]. Microarray data, however, always contains a

huge gene set of up to thousands and a small sample

set that down to tens. Moreover, only a very small

fraction of the genes are informative for a certain

task [13]. Different diseases are related to different

gene sets. Intuitively, research on the identification

of cancer-causing genes has become very challeng-

ing. Effectively tackling this problem has many

merits. Using a small gene set, we can conduct

computational data analysis in a relatively low-

dimensional data domain. This is very useful to

deliver precise, reliable and interpretable results.

Also, with the gene selection results, biology

researchers can focus only on the marker genes,

and confidently ignore the irrelevant genes. The cost

of biological experiments and decisions can thus be

greatly reduced.

Various machine learning and statistical feature

selection models have been directly applied or

adapted to gene selection/reduction [13, 15, 17, 19,

21, 27, 29, 31, 32, 35]. A (gene) feature selection

framework basically consists of two parts: a search

engine to determine the promising feature subset

candidates and a criterion to determine which

candidate is the best [22, 20]. There are several



search engines including ranking, optimal search,

heuristic search and stochastic search. Feature

selection models are categorized as filter model,

wrapper model and embedded model according to

the type of evaluation criterion.
The filter selection model that uses heuristic/

stochastic search engines [21, 27, 29, 31], wrapper

model [10, 15] and the embedded selection model

[15, 19, 32] are the three widely used feature

selection frameworks for conducting gene selection.

In this paper, we focus on the former one. A typical

filter model is selected and implemented to demon-

strate the capabilities of our proposed strategies. In

this model, the employed search engine is the genetic

algorithms (GA). The evaluation criterion is based

on Bayesian discriminant because it can evaluate the

classification ability of a feature subset in a straight-

forward fashion [16].
In a gene (feature) selection scheme, the evalua-

tion criterion and search engine play equally impor-

tant roles. Evaluation criteria have been heavily

investigated in many studies [13, 15, 19, 21, 27, 29,

31, 32, 35]. In contrast, study on search engines has

drawn little attentions. The heuristic search engines,

especially the sequential forward/backward search

(SFS/SBS), and the stochastic search engines (e.g.,

Genetic algorithm) are pervasively employed for

gene selection. The sequential forward selection

(SFS) [9] methods start from an empty set and

gradually add features selected by some evaluation

function while the sequential backward selection

(SBS) [9] schemes start with the complete feature set

and discard features one by one till an optimum

feature subset is retained. However, in SFS once a

feature is selected, it cannot be rejected later and

reverse is true for SBS.

Evolutionary algorithms have also been used for

Forward Search (FS) [3, 8, 23, 26, 28]. Siedleki and

Sklansky [28] used a branch-and-bound technique in

their GA for FS. Casillas et al. [3] devised a genetic

FS scheme for fuzzy rule based classification

systems. Richeldi and Lanzi [26] proposed a genetic

algorithm based FS scheme with C4.5 induction

learning. In [23], Pal et al. proposed a new genetic

operator called self-crossover for FS. Despite all

these work, there have been very few attempts on

using genetic algorithms (GA) for gene selection [3,

27, 28].

The genetic algorithms consist of several oper-

ators. Each operator affects the performance of the

GA in different ways. In the case of GA based gene

selection, the fitness function is one of the main

elements affecting the overall result significantly.

Different fitness functions may deliver very different

results on the same dataset. In [8], a GA based gene

selection method was proposed. Its fitness function

consists of two parts. The first part is the deviation of

one gene between other genes within the same

group. Another part is the deviation of a gene group

between other gene groups. The objective is to get

the gene with the smallest deviation within the group

and the biggest deviation between the groups. In [4],

another gene selection method using GA and support

vector machines (SVM) was proposed. SVM was

used as discriminant to evaluate the effectiveness of

a subset of expressed genes. GA was applied to

identify the best subsets in the combinational space

of feature subsets. In [7], an evolutionary algorithm,

which utilized a score function as fitness function,

was proposed for gene selection. In this approach,

higher scores were given to certain genes when more

data points were correctly classified. Simulated

annealing was applied to evolutionary algorithm for

speeding up the convergence. It is clear that GA has

been used as search engine in different approaches,

but they all deliver different results when working

with different fitness functions.
In this study, we propose the use of genetic

algorithm (GA) together with Bayesian discriminant

cost function to address the aforesaid problems. The

main aim of this study is to enhance the effectiveness

of searching. We analyze search engines from the

perspective of global optimization theory [2]. The

analysis of this type, which has been overlooked in

most previous studies, reveals a major drawback of

sequential search methods. It is found that conven-

tional search engines cannot perform optimization in

a maximal way because their searching mechanisms

do not completely incorporate with global optimiza-

tion theory. To address this drawback, we employ

genetic algorithms to formulate a new searching

strategy, in which gene selection is conducted along

the possible global optimization direction.
The presentation of this paper is organized as

follows. In Section 2, the probability based sequen-

tial forward search (SFS) gene selection model is

briefed. Our proposed search strategies are detailed

in Section 3. In Section 4, simulation examples are

presented and discussed. We make a conclusion in

Section 5.
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2. Sequential Forward Gene Selection Process

Assume that we have a classification dataset D = {X

C} = {(x1, c1), (x2, c2),..., (xN, cN)}, (xi, ci) represents

a set of data sample, in which xi is the input vector,

and ci records the class label of xi. xi is an M-

dimensional vector, that is, a sample is described

with the expression levels of M genes. We represent

these genes as F = { f1, f2,..., fM}. Moreover, the

samples in D are grouped into L classes denoted as

{w1,...,wL}. For a data sample (say, xi), we have

ci=wk, where 1 e k e L. A gene subset evaluation

criterion is represented by F(S), where S is a gene

subset. Furthermore, without loss of generality, we

suppose that a large value of F(S) means a good S.

Thus, the goal of a gene selection process is to

maximize F(S) through adjusting S. In general, F(S)

is optimized in the following ways. After a pool of

gene subsets is suggested according to certain rules,

F(S) of each suggested subset is calculated. The one

with the optimal F(S) is selected. The schemes for

determining the gene subset pools require trading the

quality of optimization results with computational

complexity. Among these schemes, the SFS strategy

is the most popular one. The steps are summarized as

followings.

Step 1: Set the selected gene subset S to empty.

Step 2: Repeat the following until certain stopping

conditions are met. Identify the most use-

ful gene (say, gu) from the unselected genes,

and place it into S. gu satisfies gu ¼ arg max
g

F Sþ gð Þ.

One of the main shortcoming of SFS is that it is a

greedy search scheme and can only deliver local

optimal results. To alleviate this shortcoming, there

are several modification approaches. In the stepwise

strategy [25], that is, the floating (compound) search,

selecting k features (genes) is followed by eliminat-

ing j Bworst^ selected ones, where j is less than k. Al-

Ani and Deriche [1] used only the Belite^ selected

features to identify the important items from unse-

lected features. Although these methods enhance the

performance of SFS to a certain extent, they cannot

change the basic working rationale of SFS. The

modified SFS are still a type of greedy search

strategy and cannot deliver globally optimal results.

For gene evaluation, many criteria can be used. In

this study, Bayesian discriminant based criterion

(BD) [16] is employed. With the given dataset D,

BD is defined as

BD Sð Þ ¼ 1

N

XN

i¼1
log

pS ci xijð Þ
pS ci xijð Þ

¼ 1

N

XN

i¼1
log

pS ci xijð Þ
1� pS ci xijð Þ; ð1Þ

where ci means all the classes but class ci, and pS(.)

represents a probability density function estimated

based on the gene set S. In order to estimate the

posterior probabilities p(c|x) in Eq. (1), the margin

probability p(x) and the joint probability p(x,c)

should be firstly obtained. We use Parzen window

[24] to build p(x) and p(x,c). Given the aforemen-

tioned dataset D = {X,C}, Parzen window estimators

are modeled as

p x; cð Þ ¼
X

xi 2 class c
p xið Þp x xijð Þ

¼
X

xi 2 class c
p xið Þ� x� xi; hið Þ;

ð2Þ

p xð Þ ¼
X

all class c

p x; cð Þ

¼
X

all xi 2X

p xið Þ� x� xi; hið Þ; ð3Þ

where k is the kernel function and hi is the width of

k. With a proper selection of k(I) and h, a Parzen

window estimator can converge to the real probabil-

ity density. We choose the Gaussian function as k,
that is,

k x� xi; hið Þ ¼ G x� xi; hið Þ

¼ 1

2ph2ið ÞM=2
exp � 1

2h2i
x� xið ÞT x� xið Þ

� �
;

where M is the dimension of x. The width hi is set

with hi= 2d(xi,xj), where d(xi,xj) is the Euclidean

distance between xi and xj, and xj is the third nearest

neighbor of xi. Following the general rule, we have

P(xi) = 1/N. Thus, according to the Bayes formula we

can model p(c|x) as

p c xjð Þ ¼ p x cjð ÞP cð Þ
p xð Þ ¼ p x; cð Þ

p xð Þ

¼
P

xi 2 class c p xið Þk x� xi; hið Þ
P

all xi
p xið Þk x� xi; hið Þ :
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3. Genetic Algorithms for Gene Selection

Process

In order to effectively overcome the shortcoming of

conventional SFS, we use GA as a search engine.

The GA is biologically inspired and has many

mechanisms mimicking natural evolution. It has

been widely applied to numerous scientific and

engineering optimization problems or search prob-

lems. The following additional GA procedures are

incorporated into our proposed searching scheme.

3.1. Chromosome Encoding

In the gene selection problem, we encode a chromo-

some as a variable length integer string. An integer

represents a feature with value presenting the feature

number. For example, chromosome 3267, 654, 2109

means that the 3267th, 654th, and 2109th features

are selected, while all other features are removed.

The length of a chromosome is the number of

features selected, which is determined by users.

Once the length is defined by the user, it becomes a

constant in the algorithm. Given by the fact that most

genes originally given in a microarray dataset are

irrelevant to certain tasks, a widely used gene pre-

filtering strategy is used to eliminate the irrelevant or

the largely insignificant genes before the commence-

ment of gene selection. This is an effective way to

relieve the computational burden. In our study, we

firstly use the gene pre-filtering strategy to remove

irrelevant genes, implying more informative genes are

kept. We set the number of remained genes to 200,

which is very sufficient for including all the possible

informative genes. As a result, the maximal length of

chromosome encoding in our proposed scheme is 200.

The initial population is randomly generated.

3.2. Fitness Evaluation

The objective of gene selection is to optimize an

evaluation criterion. In this study, we use a Bayesian

discriminant based criterion (BD) [16] as the

evaluation criterion. The fitness of a chromosome C

is defined as fitness (C) =BD(XC), where XC is the

corresponding feature subset of C.

3.3. Selection, Replacement, and Stop

The chromosome selection for the next generation is

conducted on the basis of fitness. The selection

mechanism should ensure that fitter chromosomes

have a higher probability of survival. Our design

uses the rank-based selection scheme. The individu-

als in the population are sorted in terms of their

fitness in descending order, and the ith individual is

assigned a probability of selection by a linear

function. A larger value of probability enforces a

stronger selection pressure. We selected two parent

chromosomes using the above method. The cross-

over operation generates a new chromosome (off-

spring) out of the two parents. The mutation

operation slightly perturbs the offspring. If the

offspring chromosome is superior to both parents, it

replaces the parent. If it is in between the two

parents, it replaces the inferior parent; otherwise, the

most inferior chromosome in the population is

replaced. When the number of running generations

reaches the preset value, the genetic algorithm stops.

3.4. Crossover and Mutation

The standard single point crossover and mutation

operators is used. It chooses one cutting points at

random and alternately copies each segment out of

the two parents. The operations are exemplified in

Fig. 1.

The parents_ chromosome P1 and P2 consist of

five genes. At the third gene two parents crossover

each other, which means that the fourth and the fifth

genes of the two parents exchange with each other.

After the crossover of two parents, the mutation is

applied to the offspring. As only the best 200

features are selected at the pre-filter procedure, the

numbers of 200 selected best features are stored in

memory units encoded by number 1 to 200. The

mutation procedures are as follows:

Step 1. Randomly generate N numbers within [0, 1]

to be stored in the first column of matrix M.

N numbers within [1,L] are stored in the

second column of matrix M. N numbers

within [1,200] are stored in the third column

of matrix M, where N is the number of

population, and L is the length of the

Figure 1. An example of one point crossover.
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chromosome encoding. The second column

of matrix M is the position of chromosome

of an individual gene being mutated, while

the third column is the mutation results,

which correspond to the gene position, with

values ranged between 1 to 200. Figure 2a

shows a typical content of matrix M.

Step 2. Compare the N numbers located at the first

column of matrix M with mutation proba-

bility Pm. If a number is less than Pm, return

1, otherwise, return 0. Those returned values

are stored in the first column of matrix M as

shown in Fig. 2b. As a result, this will form

a vector including only 1 and 0. If an element

of this vector is 1, then the corresponding

individual of population will mutate.

For instance, from Fig. 2, we know that

the second individual will mutate. The 15th

gene will mutate. The result of mutation is

stored at the 100th memory unit. Suppose

the value being stored at the 100th memory

unit is 451, the result of mutation is the

451th gene.

3.5. Parameters

There is no general systematic parameter optimiza-

tion approach for GA. The parameters of GA depend

on the given tasks, but tuning the GA parameters to

appropriate values for a specific data set may give

rise to an improved performance. In our study, the

following parameter set was chosen.

Population size 50

Pc (crossover probability) 0.8

Pm (mutation rate) 0.3

Ger (maximum generation) 300

3.6. Flowchart of Genetic Algorithms

The computational complexity of the SFS is O(M2),

where M is the number of genes. A microarray gene

expression dataset generally contains information of

thousands or ten thousands genes. Clearly, directly

handling a huge gene set may cost an unbearable

computational burden. Given by the fact that most

genes originally given in a microarray dataset are

irrelevant to certain tasks, a widely used pre-

filtering-gene strategy is used to eliminate the

irrelevant or insignificantly relevant genes before

the commencement of gene selection. This is an

effective way to relieve the computational burden. In

details, for each given gene g, BD(g) is calculated

based on Eq. (1). The genes with small values of BD

are considered irrelevant and eliminated. In such as

way, a huge gene set can be safely reduced.

With the simple pre-filter operation, our proposed

GA based gene selection procedures are as follows.

Step 1 (Pre-filter) Calculate the BD of each given

gene, and rank these genes in a descending

order of BD. Keep the top two hundred

genes for the following selection process.

Step 2 (Initialization) randomly generate N individ-

uals as the initial population.

Step 3 (Gene selection) Repeat the following until

the maximal generation reaches.

(a) (Selection) the fitter chromosomes are select-

ed from the N individuals in the population

for evolution. The fitness of a chromosome C

is defined as fitness (C) =BD(XC),the selection

of the fitter chromosomes is based on the

fitness value.

(b) (Crossover) choose one cutting points at

random and alternately copies each segment

out of the two parents.

(c) (Mutation) determines which bit of character

string of a individual in population will

mutate, and change it as another gene.
Figure 2. The content of matrix M. a Typical content of matrix

M. b Returned values stored in the first column of matrix M.
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4. Experimental Results

Our proposed GA based gene selection method is

evaluated through comparing with several related

methods, namely, the conventional SFS, support

machine learning recursive feature elimination

scheme (SVM RFE) [15], and the another GA based

gene selection method. SVM RFE, a typical embed-

ded feature selection model, begins with the training

of an SVM (of linear kernel) with all the given

features. According to the parameters of the trained

SVM, features are ranked in terms of their impor-

tance. This enables half of the features to be

eliminated. The training-SVM-eliminating-half-of-

features process repeats until no feature is left. In

order to further validate the effect of GA, we also

implement another kind of GA, which uses the same

genetic operators but different selection operator

(roulette wheel selection operator). In this paper,

we call it GA1 in the following discussions.

Prior to gene selection, each gene variable is

preprocessed having zero mean and unit variance.

Our focus is placed on comparing the SFS with our

proposed GA. But detailed comparative performance

between the BD based gene (feature) selection

models and other related methods, for instance,

mutual information based ones, SVM based ap-

proach, and distribution-based method, can be found

in [16].

Different gene selection methods are compared on

several cancer diagnosis datasets. In these real

datasets, no a priori knowledge is available. We rely

on experimental classification results to assess the

quality of gene selection results. Using a selected

gene subset, certain classifiers are constructed on

training data that are also used for gene selection.

Then, we evaluate the built classifiers on the testing

dataset. Good classification results must indicate a

respectable gene subset. We use four typical classi-

fiers including a multilayer perception model (MLP),

a support vector machine models (SVM), and a 3-

nearest neighbor rule classifier (3-NN). The MLP

used in our study is available at http://www.ncrg.

aston.ac.uk/netlab/. For convenience, we set the

number of hidden neurons to 6 for all the investi-

gated examples. It is worth noting that slightly

different number of hidden neurons does not have

an effect on the overall performance. The number of

training cycles is set to 100 to ease the problem of

overfitting. The other learning parameters are set

with default values. The SVM models used in this

study are available at http://www.isis.ecs.soton.ac.uk/

resources/ svminfo. In this study we employed only

the SVM model with BLinear^ kernel (SVM-L).

The following gene expression datasets are in-

cluded in our study.

(a) Colon tumor classification The original raw

data are published at http://www.research.i2r.a-

star.edu.sg/rp/. It is noted that there are two

methods used to pre-process the Colon cancer

dataset. One method is to take the logarithm of

all values to diminish the data value. It ignores

the data when it contains zeros [8, 10, 15].

Another method only normalizes the feature

vectors without taking the logarithm of all values

[16, 34]. In our experiment, the latter method is

used. This dataset contains 62 samples collected

from colon-cancer patients. Among these sam-

ples, 40 samples are tumor, and 22 are labeled

Bnormal^. There are 2,000 genes selected based

on the confidence in the measured expression

levels. We split the 62 samples into ten disjoint

groups. In each evaluation, one group was used

for testing while the other nine groups were used

for training. The investigations were repeated on

tenfold of training and testing data to deliver

reliable evaluations.

(b) Prostate cancer classification The objective of

this task is to distinguish prostate cancer cases

from non-cancer cases. The original raw data are

published at http://www.genome.wi.mit.edu/

mpr/prostate. This dataset consists of 102 sam-

ples from the same experimental conditions.

Each sample is described using 12,600 genes.

We split the 102 samples into ten disjoint

groups—one group was used for testing while

the other nine groups were used for training.

Similar to the last example, the studies on this

dataset were repeated on tenfold of training and

testing data. The results are summarized and

presented in this paper.

(c) Leukemia subtype classification This dataset,

which are available at http://www.broad.mit.edu/

cgibin/cancer/datasets.cgi, are used for perform-

ing leukemia subtype classification. The given

samples are labeled with ALL, MLL or AML.

Training data contains 57 samples—20 labeled

with ALL, 17 with MLL and 20 with AML. In the

test data, there are 15 samples—4 ALL samples,
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3MLL ones and 8 AML ones. There are no SVM-

related results in this example because the SVM

models we employed are designed to deal with

two-class data only.

(d) Effect of GA parameters In the gene selection

method which GA serves as a searching engine,

many parameters, for example, population size,

maximum generation number, crossover proba-

bility Pc and mutation rate Pm etc, exhibit

different effect on the performance of gene

selection. In this section, we evaluate their effect

on gene selection using colon cancer dataset.

First, we keep Pc and Pmas constants. The

population size is ranged from 20 to 200, and the

maximum generation number varies from 300 to

600 in order to maintain stable gene selection

results. Figure 3 shows that GA all reaches

convergence after 300 generations when number

of selected genes is 10, 20 and 30 respectively.

To let the maximum generation number as 300 is

found to be appropriate. The variation of

population size and maximum generation num-

ber posed unnoticeable effect on gene selection

results. Secondly, we maintain the population

size and maximum generation number to 50 and

300 respectively. Crossover probability, Pc, and

mutation rate, Pm, vary from 0.1 to 0.8 respec-

tively. Figure 4 shows the classification accuracy

of 3NN, SVM-L and MLP when the gene

number is 10. From Fig. 4, we can conclude

that both the Pc and Pm exhibit significant effect

on gene selection results. In the above presented

results, the best GA parameters set were used to

conduct the simulations. The parameters set

were as follows:

Population size 50

Pc (crossover probability) 0.8

Pm (mutation rate) 0.3

Ger (maximum generation) 300

(e) Comparisons of SFS and GA To demonstrate

the merits of our developed strategies, the GA

are compared with other methods, especially

with the SFS, in terms of classification accuracy.

In the colon cancer dataset and prostate cancer

dataset, we divide all the dataset into tenfolds.

Among them, ninefolds are used for selecting

Figure 3. a Fitness value over generation number when gene num-

ber is 10. b Fitness value over generation number when gene number

is 20. c Fitness value over generation number when gene number

is 30.
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features and training classifier. The other fold is

used for performing classification test. The

whole feature selection, training classifiers and

classification runs on a given dataset with tenfold

Cross Validation method. As leukemia subtype

dataset has fixed training and classification data-

set, the whole feature selection, training classi-

fiers and classification are only run once on the

Figure 4. a Classification accuracy of 3NN on colon cancer

dataset, with our proposed method when Pc and Pm ranging

from 0.1 to 0.8 and gene number is 10. b Classification accuracy

of SVM on colon cancer dataset, with our proposed method

when Pc and Pm ranging from 0.1 to 0.8 and gene number is 10.

c Classification accuracy of MLP on colon cancer dataset, with

our proposed method when Pc and Pm ranging from 0.1 to 0.8

and gene number is 10.

Figure 5. Comparison between SFS, SVM-RFE, GA and GA1

in terms of classification accuracy on the colon cancer classifica-

tion data. In these figures, the y-axes are the classification

accuracy, and the x-axes are the number of the selected genes.

Figure 6. Comparison between SFS, SVM-RFE, GA and GA1

in terms of classification accuracy on the prostate cancer

classification data. In these figures, the y-axes are the classification

accuracy, and the x-axes are the number of the selected genes.
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dataset. The comparative results are presented in

Fig. 5 for colon cancer classification, in Fig. 6

for prostate cancer classification and in Fig. 7 for

leukemia subtype classification.

In most examples, such as the ones about colon

cancer and prostate cancer, the proposed GA

scheme outperforms the conventional SFS and

shows comparative performance with the SVM-

RFE method. Clearly, this is attributed to the

proposed GA searching strategies. In addition,

GA1 delivers similar results with our proposed GA

method.

(f) Detailed results on prostate cancer Apart from the

above machine-learning-based evaluations, we

check the obtained results from the biological point

of views. In Table 1, one gene result of the GA is

listed. The functions of these genes range from cell

adhesion (VCL, NELL2) to immune response (DF,

C7), from cellular transport (MRC2, RBP1) to

regulation of transcription (LMO3), from protein

kinase activity (ILK) to hormone activity (IGF1).

Figure 7. Comparison between SFS, SVM-RFE, GA and GA1

in terms of classification accuracy on for leukemia subtype

classification data. In these figures, the y-axes are the classification

accuracy, and the x-axes are the number of the selected genes.

Table 1. The genes that are identified WMSFS to be related with the prostate cancer.

Order of

selection

Gene

symbol Gene title Relation with prostate cancer

1 VCL Vinculin Vinculin, a cytoskeletal protein, can regulate the ability of cancer cell to

move away from tumors. It may contribute to metastatic process of

prostate cancer.

2 DF D component of

complement (adipsin)

Adipsin, a member of the trypsin family of peptidases, is a component of the

alternative complement pathway playing an important part

in humoral suppression of infectious agents.

Uzma et al. [30] find out this gene up-regulates in the samples with prostate

diseases, such as prostate cancer. Also, [6] suggest it a good cancer marker.

3 MRC2 Mannose receptor, C type 2

4 NELL2 NEL-like 2 (chicken) The close correlation of this gene to prostate cancer is also suggested

in other studies ([30, 33]).

5 RBP1 Retinol binding protein

1, cellular

Retinoids are involved in cell growth, differentiation, and carcinogenesis.

This gene has been found to overexpress in prostate carcinoma [18].

6 C7 Complement component 7 This gene takes part in androgen-regulated processes that play important roles

in malignant transformation of prostate gland [30].

7 IGF1 Homeodomain interacting

protein kinase 3

The role that this gene plays in prostate development and carcinogenesis

has been well-recognized and widely examimed [5].

8 ILK Integrin-linked kinase This gene overexpression can suppress anoikis, promote anchorage-independent

cell cycle progression, and induce tumorigenesis and invasion [14].

9 GAGEC1 G antigen, family C, 1 The protein encoded in this gene is PAGE4, which is a Cytoplasmic protein

and is prostate associated.

10 LMO3 LIM domain only 3

(rhombotin-like 2)

The protein encoded in this gene is a LIM-only protein (LMO), which is

involved in cell fate determination. This gene has been noted to upregulate

in the prostate cancer samples [30].
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We note that almost all of these selected genes

have been associated with development and diag-

nosis of prostate cancer—some of them are well-

known prostate-cancer-associated genes, such as

IGF1, GAGEC1, RBP1, DF, NELL2, ILK, etc.,

and others have been suggested to overexpress in

prostate cancer samples, for example, C7, LMO3.

5. Conclusion

A genetic algorithms based gene selection method

working together with Bayesian discriminant cost

function is proposed for performing gene selection.

As GA is a kind of random search method, which

can find the optimal or near optimal solution, the

overall performance of gene selection is substantially

enhanced compared with using conventional SFS

search engine. The results obtained on real data

demonstrate that the proposed strategies deliver very

promising improvement on gene selection.

It is worth noting that the proposed strategy is only

applicable to one representative gene selection mod-

el—BD based genetic algorithms search. In future

work, we will extend these strategies to other gene

selection models and further evaluate their merits and

limitations.
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