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Abstract

A new multi-layer self-organizing map (MLSOM) is proposed for unsupervised processing tree-structured data. The MLSOM is
an improved self-organizing map for handling structured data. By introducing multiple SOM layers, the MLSOM can overcome the
computational speed and visualization problems of SOM for structured data (SOM-SD). Node data in different levels of a tree are processed
in different layers of the MLSOM. Root nodes are dedicatedly processed on the top SOM layer enabling the MLSOM a better utilization
of SOM map compared with the SOM-SD. Thus, the MLSOM exhibits better data organization, clustering, visualization, and classification
results of tree-structured data. Experimental results on three different data sets demonstrate that the proposed MLSOM approach can be
more efficient and effective than the SOM-SD.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Neural networks have been successfully applied in a
large variety of areas such as pattern recognition, etc. [1].
However, most of the traditional neural networks handle
vector-type data with a fixed length. In real world, there
are other complex data that cannot be represented by sim-
ple vector-type data. One type of these complex data can
be usually represented by structures, in which one datum is
composed of several hierarchical and related components.
For instance, an image can be segmented into several re-
gions that may be further recursively segmented into several
sub-regions. As a result, the image → region → sub-region
data representation is in a form of hierarchical tree structure.
How to efficiently and effectively process complex struc-
tured data have become a pressing and challenging issue
for researchers. Recently, there have been different neural
network models proposed for tackling structured data like
trees, lists, graphs etc. [2–6]. Another method proposed by
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Ref. [7] recursively used a multi-layer perceptron (MLP)
neural network through each node of the whole data struc-
ture. The neural network is called recursive MLP. Its train-
ing steps were called back-propagation through structure
[8]. It was shown that recursive MLP was able to repre-
sent and classify structured patterns [9,10]. Some recent
recursive MLP neural networks are holographic reduced
representations (HRR) [5], recursive auto-associative mem-
ory (RAAM) [11], labeled RAAM (LRAAM) [12–14], and
recurrent and folding networks [15–17]. Despite all these
work on using MLP, a long-term dependency problem arises
from the recursive MLP neural networks in the case of deep
graph [18,19], that is, if data graphs have deep structures,
the training of recursive MLP cannot be effective.

Self-organizing map (SOM) is an unsupervised neural
network approach that can be used to handle structured
data. Apart from classification task, SOM provides addi-
tional analyses of data that cannot be performed by super-
vised models. Applications of the SOM can be found in
the areas of retrieval, clustering, visualization and classifi-
cation [19–23]. In Ref. [21], a two-layer SOM network has
been used for processing a fixed two-level tree data, which
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was specialized for application of image retrieval. To pro-
cess generic tree data with arbitrary level, a recent neural
network approach was proposed for processing structured
data [24]. The network is called SOM for structured data
(SOM-SD). Similar to recursive MLP neural network, a sin-
gle SOM layer is recursively used for all the nodes of data
graphs. However, due to architectural weakness, the SOM-
SD suffers from several drawbacks which will be discussed
in Section 2.2 in detail. The major problem of SOM-SD is its
poor visualization map because a small fraction of neurons
are used by root nodes representing tree data. This problem
is also crucial for using the SOM-SD in other applications
such as retrieval, clustering and classification.

In this paper, a new multi-layer self-organizing map (ML-
SOM) is proposed for processing tree-structured data. Ba-
sically it is an improvement of the SOM-SD. The MLSOM
uses multiple SOM layers instead of a single SOM layer
in the SOM-SD. The nodes at each level of trees are pre-
sented to the corresponding SOM layer for training. Such
arrangement enables the MLSOM to avoid a “varying SOM
input”, which causes computational burden to the SOM-SD.
The MLSOM is also significantly efficient compared with
the SOM-SD. This is especially noticeable when node fea-
tures are of different types and length at different levels of
trees. In the MLSOM, root nodes, used for representing the
tree data, are processed on a dedicated top SOM layer of
the MLSOM. The number of all the root nodes determines
the size of the top SOM layer at which neurons are used
for visualization. Therefore, data visualization can be more
effectively displayed in an appropriate 2-D top SOM layer,
compared with a huge SOM map in the SOM-SD. Exper-
imental results corroborate that MLSOM is much efficient
compared with the SOM-SD in terms of data organization,
clustering, visualization, and classification of tree-structured
data.

The rest of this paper is organized as follows. Section 2
briefly describes the basic SOM and SOM-SD. Section 3
details the proposed MLSOM for processing tree-structured
data. Section 4 presents experimental results and discus-
sions. Finally the conclusion is drawn in Section 5.

2. Preliminaries

2.1. The self-organizing map

The basic SOM consists of M neurons located usually on
a 2-D grid that is either hexagonal or rectangular. Each neu-
ron i has a d-dimensional feature vector wi =[wi1, . . . , wid ].
The iterative SOM training algorithm can be stated as
follows.

Step 1: Set iteration t = 0.
Step 2: Randomly select a sample data vector x(t) from

a training set.
Step 3: Compute the distances between x(t) and all feature

vectors. The winning neuron, denoted by c, is the neuron

with the feature vector closest to x(t)

c = arg min
i

‖x(t) − wi‖, i ∈ {1, . . . , M}. (1)

Step 4: Update the winner neuron and its neighbor neu-
rons to move its feature vector towards the data vector. The
weight-updating rule in the sequential SOM algorithm can
be written as

wi(t+1) =
{

wi(t)+�(t)hic(t)(x(t)−wi(t)) ∀ i ∈ Nc,

wi(t) otherwise,
(2)

�(t) is the learning rate which decreases monotonically with
iteration t.

�(t) = �0 · exp

(
−� · t

�

)
, (3)

where �0 is the initial learning rate, and � is an exponential
decay constant. Nc is a set of neighboring neurons of the
winning neuron, and hic(t) is the neighborhood kernel func-
tion that defines the closeness of a neighborhood neuron to
the winning neuron c at position (xc, yc). The neighborhood
function hic(t) also decreases gradually during the learning
process.

hic(t) = exp

(
−[(xi − xc)

2 + (yi − yc)
2]

2�2(t)

)
, (4)

where �(t) is the width of the neighborhood function that
decreases with iteration

�(t) = �0 · exp

(
− t

�
· log �0

)
, (5)

where �0 is the initial width, � is a time constant which is
set equal to the maximum number of iterations.

Step 5: Stop if the maximum iteration is reached. Other-
wise set t = t + 1 and go to step 2.

Through the above iterative training procedures, differ-
ent neurons become representative of different data samples.
The feature vectors of neurons become topologically or-
dered, i.e., two neurons having similar feature vector lies in
neighbor of the SOM output grid. Such organized map can be
used for a number of tasks such as dimensionality reduction,
data quantization, visualization, clustering and retrieval.

2.2. The SOM-SD

The SOM-SD [24] is an extension of the basic SOM such
that tree-structured data can be processed through recur-
sively use of the SOM. A tree-structured datum consists of
a set of nodes organized in different levels, of which root
node lies on the top and leaf nodes appear at the bottom.
Except the leaf nodes, all other nodes have two types of at-
tributes: feature vector, and “child-vector”, a vector point-
ing to its children nodes. During the course of training, the
nodes of a tree data are presented to an SOM in bottom-up
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fashion, i.e., bottom-layer nodes are processed first, and root
nodes are processed last because the positions of the winner
neurons of the child nodes are used as the ‘child-vector’ for
SOM input representation. Fig. 1 illustrates the encoding of a
simple two-level tree datum into SOM-SD. First, the winner
neurons of two leaf nodes are found on the SOM map. The
positions of the winner neurons are then used together with
root node’s feature vector for the input representation of the
root node. Any node in an intermediate level is processed in
the same way.

Thus, the inputs of the shared SOM are the combination
of the features of the current node and the output vectors of
its children nodes. Assume that c is the maximum number
of children nodes of a node in all the training data graphs.
Then an input of the shared SOM can be denoted by a
n + 2c dimensional vector [u, p1, . . . , pc], where u is the n
dimensional feature vector of the current node, pi is the 2-D
position vector of the ith child node of the current node on
the 2-D SOM output grid. If the current node has less than
i children, pi is filled with a vector [−1, −1]. Similarly, the
weight vector of the SOM-SD is also a n + 2c dimensional
vector.

After understanding the mapping of a graph into a 2-D
SOM map, the basic two training steps of the SOM-SD can
be described as follows.

Step 1 (Competition): For a node input v(t) at iteration t,
the nearest neuron a from v is found by slightly modifying
Eq. (1) as

a = arg min
i

‖�(v(t) − wi)‖, (6)

where wi is the weight vector of neuron i with dimensions
n+2c, � is a (n+2c)× (n+2c) diagonal matrix to balance
the importance between u and p1, . . . , pc in the SOM input
representation.

Step 2 (Cooperation): The weight vectors of neurons are
updated such that all neurons are dragged toward v(t) to
some extent by Eq. (2).

The above process is repeated until maximum numbers of
iterations are reached. The difference of the SOM-SD from
the basic SOM for vector type data is that an input tree data
consists of many nodes. To process a node in the SOM-
SD, a special care has to be taken such that child nodes are
already processed and (p1, . . . , pc) are available. Hence, for
each data bottom layer nodes are processed first and the root
nodes are processed last. Also, during each update in step 2,
the child vectors (p1, . . . , pc) in v(t) can be changed, hence
they need to be recomputed in step 1.

In general, the SOM-SD has been successfully applied
in symbol data such as policeman, ships and houses [24].
The SOM-SD, however, still experiences three basic prob-
lems associated with it. First, it is the computational speed.
According to the example shown in Fig. 1, the values of
p1, . . . , pc in the SOM input representation at each node are
not determined before training. During the course of train-
ing, the values of p1, . . . , pc are changed from time to time

and are needed to be recomputed. Furthermore, the num-
ber of nodes of trees is much more than that of trees. Since
all the nodes are the inputs of the SOM-SD, the size of
the SOM in SOM-SD should be very large. This made the
computational speed of the SOM-SD very slow, i.e., it cost
over seven days for the training of a SOM-SD with 29 864
nodes (or 3750 trees) [19]. Second, there is a major prob-
lem of visualizing data on a 2-D SOM output grid. It is not
effective and efficient because the activated neurons by root
nodes (or graphs) occupy only a small fraction of the total
output grid (Fig. 2). Many non-activated neurons of a SOM
are useless for visualization and represent the information
of non-root nodes. Third, a problem arises with the SOM-
SD when node features are different in types and length at
different levels depending on application. Since all nodes
are processed in a single SOM, the feature length of a neu-
ron’s weight vector needs to be n = max({nk}k=1,...,L). In
such a case, we can use a dummy feature (similar to null
pointer in child vector in Fig. 1) to make node features all
equal. This, however, is a waste of computation. More im-
portantly, the different natures of feature at different levels
have an adverse effect on the topological ordering neurons
because the same weight vector is used to represent different
attributes.

3. The MLSOM for tree-structured data

The MLSOM is proposed for handling tree-structured
data. It is an improved model of the SOM-SD in a way
that it delivers better visualization effect and faster compu-
tational speed. The node attributes at different levels of trees
are ordinal-type node features. Unlike the SOM-SD that has
only one SOM layer to process all the node data, the ML-
SOM uses multiple SOM layers to process tree-structured
data. The comparative mapping of nodes of a tree between
the SOM-SD and MLSOM are shown in Fig. 2. The num-
ber of SOM layers is equal to the maximum levels of trees.
If there are maximum L levels in all the tree structures, we
generate L groups of data and corresponding L SOM layers.
The ith (i=1, . . . , L) group of data is composed of all the ith
level nodes in all the tree structures. The basic idea of ML-
SOM is that the SOM training is performed in a way of level
by level, that is, the Lth level group of data is firstly trained
by the Lth SOM layer. Similar to the SOM-SD, the SOM
outputs of child nodes are used for the input representation
(child vector) of a parent node. After the Lth SOM output
information is filled in the (L-1)th SOM input representa-
tion, the (L-1)th SOM layer is then trained. This procedure
repeats until the first level group of data is trained by the
first SOM layer. Finally, the visualization of tree-structured
data can be performed on the first SOM layer. The basic flow
chart of training steps by MLSOM is illustrated in Fig. 3.
The following describes the SOM input representation and
MLSOM training in details.
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Fig. 1. Describing SOM-SD architecture how nodes are being mapped from leaf node to root node. The numbers in the big circles denote the sequence
of the node processing.

Root nodes 

Intermediate 
nodes

Last level 
nodes

Main part for Data 
Visualization/Clustering

SOM-SD model 

Multi-layer SOM model Tree data

Fig. 2. The comparative data mapping and visualization in SOM-SD and multi-layer SOM model.

3.1. SOM input representation

Assume that the maximum number of children nodes of
a node at the kth level in all the training data trees are ck ,
the maximum levels in all the tree structures is L and the
SOM output is a 2-D rectangular grid. It is noted that cL =0
as leaf nodes at the bottom layer have no children nodes.
Similar to the SOM-SD, each SOM input representation at
a SOM layer consists of two parts: (1) the n-dimensional
feature vector u of the current node; (2) 2-D position vectors
p1, . . . , pck

of its children nodes at the SOM layer below the
current SOM one. For non-leaf nodes, some pi may be set
to [0,0] since the number of children nodes of a node may
be less than ck . The lowest values of horizontal or vertical
positions on the 2-D SOM output map are set to be larger
than 0.

In the SOM-SD, the ordering of children nodes of a node
is defined, while the ordering may not be predefined in real
world applications. In the case of MLSOM, an ordering al-
gorithm is proposed if the ordering of children is not pre-
defined. Suppose that the nodes at the kth level need to be

ordered before appending their position vectors to the SOM
input representation at the (k-1)th SOM layer. After the com-
pletion of training the kth SOM layer, all the 2-D output
positions of the nodes at kth level are obtained. The basic
idea of our ordering algorithm is to use all these 2-D po-
sition vectors to train a 1-D SOM. The number of neurons
in the 1-D SOM is set to ck-1, i.e., the maximum number
of children nodes of a node at the (k-1)th level. After the
completion of training of the 1-D SOM, each training da-
tum is assigned to a neuron index of the 1-D SOM. The
neuron index is then used in the SOM input representation
of pi(i ∈ {1, . . . , c}) of parent nodes at the (k-1)th SOM
layer. This procedure is illustrated in Fig. 4, where the maxi-
mum number of children nodes of a node at the (k-1)th level
is six. Therefore, the number of 1-D SOM neurons used
for the training of output positions at the kth SOM layer is
six. After the completion of training of the 1-D SOM, the
2-D weight vectors of all six neurons are marked in cir-
cles with index labels as shown in Fig. 4, and the neighbor-
ing neurons are connected with a solid line. Consider three
nodes at the kth level: A, B and C. pA, pB and pc are their
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After the Lth SOM ouput information is filled in

the (L−1)th SOM input representation, the (L−1)th

The Lth SOM layer is trained with the input data 

of all the Lth level nodes

After the(L−1)th SOM ouput information is filled

in the (L−2)th SOM input representation, the 

(L−2)th SOM layer is trained

After the 2nd SOMouput information is filled in

the1st  SOM input representation, the 1st SOM 

layer is trained

SOM layer is trained

Fig. 3. The basic flow chart of training steps by MLSOM.

corresponding output positions on the kth SOM layer. The
three nodes are the children nodes of a parent node at the
(k-1) level. The 2-D position vectors pA, pB and pc are
marked in cross symbols as shown in Fig. 4. The proposed
ordering algorithm just assigns pA to its nearest neuron,
i.e., neuron index 3. Then pB is assigned to neuron index 2
and pc to neuron index 6. Therefore, the SOM input repre-
sentation [p1, p2, p3, p4, p5, p6] of their parent node at the
(k-1) level are [0, pB, pA, 0, 0, pc], where 0 is [0,0]. This
ordering can make the later similarity measurement more
reasonable.

3.2. MLSOM training

Assume that each node at the kth level of trees has a nk

dimensional feature vector. The maximum of children nodes

Fig. 4. The illustration of the ordering of children nodes of a node.

of a node at the kth level is ck . The maximum levels of
trees and maximum layers of the MLSOM are all L. The
input data for the kth SOM layer are all nk + 2ck di-
mensional vectors. There are mk neurons at the kth SOM
layer. The weights of neurons at the kth SOM layer are
also nk + 2ck dimensional vectors. Then the learning
steps of MLSOM for tree-structured data are described as
follows.

Step 1: Set the current level k of trees and the current
layer k of a MLSOM to be L (bottom level and bottom
layer).

Step 2: Normalize the 2-D positions of neurons in each
SOM layer to be in the range of ((0, 1], (0, 1]).

Step3: Set iteration t to be 0. Collect all the nodes at the kth
level nodes of trees to be the training data for the kth SOM
layer. The ordered 2-D SOM output positions of children
nodes of the nodes at the kth level are filled in the SOM input
representation at the kth SOM layer. Therefore, the nk +2ck

dimensional vectors are generated for the inputs of the kth
SOM layer. And normalize the values in each dimension of
them to be in the range of [0,1]. Randomly initialize the
nk + 2ck dimensional vectors for the mk weights at the kth
SOM layer.

Step 4: Randomly select a vector x from the nk + 2ck

dimensional vectors for the inputs of the kth SOM
layer.

Step 5: Find the winner neuron a at the kth SOM
layer:

a = arg max
i

‖S(x, wk
i )‖, i = 1, . . . , mk , (7)

where S(x, wk
i ) is the similarity measurement of x and wk

i ,
wk

i is the weight vector of the ith neuron at the kth SOM
layer. The similarity measurement of x and wk

i is defined as
follows:

S(x, wk
i ) = �

nk

nk∑
j=1

{1 − abs(xj − wk
ij )} + 1 − �∑ck

j=1 �(x2j+nk−1, x2j+nk
)

∑ck

j=1

{
�(x2j+nk−1, x2j+nk

)

×
[

1 −
√

(x2j+nk−1 − wk
i(2j+nk−1))

2 + (x2j+nk
− wk

i(2j+nk)
)2
]}

, (8)
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where xj is the jth value of x, wk
ij is the jth value of wk

i , �
is weighting parameters, �(x, y) is a function such that

�(x, y) =
{ = 1 if x �= 0 and y �= 0,

= 0 otherwise.

The first term in Eq. (4) considers the features of the current
node whilst the second one considers the compressed fea-
tures of its children nodes. The weighting parameter � deter-
mines the emphasis on global features (that appears at root
nodes or higher level) or local feature (that appears lower
part of tree). The choice of � is problem-dependent. An equal
weighting (� = 1) is used in this work unless specified.

Step 6: Update the weights of neurons at the kth SOM
layer by

wk
i = wk

i + �(t)hia(t)(x − wk
i ), i = 1, . . . , mk , (9)

where �(t) is the learning rate at iteration t, hia(t) is the
neighborhood function around the winner node a.

Step 7: Increase the iteration by t = t + 1.
Step 8: If the maximum number of iterations is reached,

the training at the kth SOM layer stops. Otherwise go to
step 4.

Step 9: If the ordering of children nodes of a node is not
predefined, the 2-D SOM output positions of nodes at the
kth level are ordered by an ordering algorithm mention in
Section 3.1. Otherwise, go to step 10.

Step 10: If k is equal to 1 (top level of trees or top SOM
layer), the training of MLSOM stops. Otherwise, k = k-1,
go to step 3.

From the above training steps, the second parts of the
SOM input representation are fixed before training. The
nodes at each level are fed into the corresponding layer
for training. Therefore, the computational complexity of the
MLSOM for one epoch (all tree-structured data are input to

MLSOM once) is O
(∑L

k=1 Nkmk(nk + 2ck)
)

, where Nk

is the number of nodes at the kth level of trees, mk is the
number of neurons at the kth SOM layer, and the number
of input features of a node at the kth level is nk , and ck is
the maximum number of children nodes of all trees at the
kth level. The computational complexity of the SOM-SD for
one epoch is O(Nmc(n + 2c)) [19], where N is the number
of all the nodes of trees, m is the number of neurons at the
single SOM layer, n is the number of features at each node,
and c is the maximum number of children nodes of all trees.
Now we consider that the SOM-SD and MLSOM with same
number of neurons are used for the same tree-structured
data. Since m=∑L

i=1 mk , N =∑L
i=1 Nk , n�nk and c�ck ,(∑L

k=1 Nkmk(nk + 2ck)
)

< (Nmc(n+ 2c)) should be satis-

fied. Therefore, the computation time can be greatly reduced
by MLSOM for a large training tree-structured data.

3.3. Data visualization and classification by MLSOM

The top SOM layer in the MLSOM plays an important
role for visualization of the tree-structured data. The root

node of a tree-structured data represents the whole data, and
data visualization can be performed through their associated
neurons on the top SOM layer. After the completion of train-
ing, the top SOM layer can be used for data visualization
using the following procedures:

Procedures for data visualization:
1. For each tree data, find the winner neuron of the root

node on the top SOM layer as follows:
Loop from the bottom to top layer
1. Select all the nodes at the same level as the SOM layer
2. Find the winner neuron for each node on the current
SOM layer and append the winner neuron’s position vec-
tor to the input vector of its parent node.
End

2. Save all the positions (x, y) of winner neurons from the
root nodes of all tree data against the index of data.

3. Plot the data on those positions of the SOM grid. Use
different symbols for different classes of data if class
information is available.

By finding a winner neuron of the root node, tree-
structured data are associated with that neuron on the top
SOM layer. All the data can be then shown on the SOM
grid using the positions of their winner neurons. Some use-
ful information, such as clustering tendency, can be further
detected from such visualization on the top SOM layer.

The visualization gives us qualitative results of the SOM.
For quantitative evaluation of the SOM performance, fol-
lowing three numerical assessments are used.

3.3.1. Average unit disorder
Average unit disorder (AUD) [25] has been used to as-

sess the quality of the ordering of the SOM independent
of the application, and without using the class information.
The AUD indicates the degree by which spatially close neu-
rons are assigned values that are similar in the input space.
The lower the value of AUD, the better the quality of self-
organization. The Unit Disorder for a neuron i is defined as
follows.

UDi =
∑

j=1,m (Iij /Oij )∑
j=1,m (1/Oij )

, (10)

where m is the number of neurons on the SOM map, in-
put distance Iij is the average absolute difference between
weight vectors of two neurons i and j, and output distance
Oij is the Euclidean distance of those two neurons on the
SOM grid. The AUD is then calculated as follows:

AUD = 1

m

m∑
i=1

[UDi]. (11)

3.3.2. Overall Cluster Goodness
This Overall cluster goodness (OCD) is calculated with

the use of class information of the data. OCD indicates how
well separated are the data of different classes on the SOM
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output. OCD results in a higher value when different classes
form distinct clusters on the SOM visualization map. After
the SOM training, the data of each class are represented by a
group of representative neurons, which are shown on the vi-
sualization map of SOM. Using these representative neurons
the OCD is measured in terms of two factors: (1) clusters’
compactness; and (2) clusters’ separation. This measurement
is very similar to the work in Ref. [26]. Let [wxi, wyi] is
the normalized position vector of the winner neuron for ith
data, and {rx1, ry2, . . . rxr , ryr , . . . rxRc , ryRc

} are a set of
normalized position vectors for Rc number of representa-
tive neurons of class c. The clusters’ compactness Cc is then
defined as follows:

Cc = 1

C

∑
c=1,...,C

∑
r=1,...,Rc

dencr , (12)

where C is the total number of classes and density dencr of
a representative neuron r in class c is defined as

dencr = 1

Nc

∑
i=1,...,Nc

fir ,

fir =
{

1 if
√

(wxi − rxr )
2 + (wyi − ryr )

2 < stdev,
0 otherwise.

(13)

Nc is the total number of data in cth class and stdev is defined
as follows:

stdev =
√√√√ 1

C

∑
c=1,...,C

[std(wx)2 + std(wy)2],

where std stands for “standard deviation”. The clusters’ sep-
aration is simply defined by the average distance among the
centers of clusters as follows:

Cs = 2

C(C − 1)

∑
c=1,...,(C−1)

∑
c2=(c+1),...,C

×
√

(mxc − mxc2)
2 + (myc − myc2

)2, (14)

where (mxc, myc) is the center of cth cluster obtained by
the mean of all (wxi , wyi ) data of that cth class. The overall
cluster goodness is then formulated as

OCG = Cc × Cs. (15)

3.3.3. Average classification accuracy
The MLSOM can be further used for classification. A

neuron at the top SOM layer can be labeled with a class
that most associated tree-structured data belong to. In the
case of tie, the class is chosen randomly. If a neuron is not
assigned any datum, we just search the nearest neuron and
the neuron is labeled with the class that the most structured
data associated with the nearest neurons belong to. Thus, the
SOM map is labeled by assigning data classes to all neurons.
The labeled SOM map, called “class map”, can be used for
classification. When a testing tree-structured datum is fed to

a MLSOM, a best-matching neuron at the top SOM layer can
be found according to Eq. (7). As the best-matching neuron
is already labeled with a class, the testing datum is classified
to that class. Average classification accuracy (ACA) is then
found by

ACA = Number of data correctly classified

Number of data tested
× 100. (16)

4. Experimental results

In this section, three data sets were used to demonstrate
the effectiveness and efficiency of the proposed MLSOM
for handling tree-structured data. The first data set consists
of synthetic “human” symbols. The data set can be divided
into four well-separated categories and further 12 classes
that can be used to demonstrate the better visualization effect
of the MLSOM, compared with the SOM-SD. The second
data set consists of documents and the third data set consists
of real flower images. These two real data sets were used
to demonstrate the better visualization and classification re-
sults of the MLSOM compared with the SOM-SD. All the
presented simulations were performed using MATLAB 6.5
on a PC with P-4 1.3 GHz and 512 M memory. For the ML-
SOM and SOM-SD, the initial learning rate was set to 0.3
for the training of a SOM layer. The initial radius of the
neighborhood function was set to half-length of the square
grid at a SOM layer. The number of total training epochs
(one epoch means that all the input data are fed into neural
networks once) for a SOM layer was set to 10. Thus, the
total number of iterations is equal to the number of nodes
multiplied by the number of epochs. The values of the above
parameters were observed to be a good choice. This will be
clarified using the experimental results in Section 4.3.

4.1. Synthetic “human” symbol data set

The first data set consists of 432 synthetic “human” sym-
bols. There are four categories in the symbol data. Each cat-
egory of the “human” symbols has 108 data. The example
from each category can be seen in Fig. 5. Furthermore, each
category can be equally divided into three classes accord-
ing to the positions of “human” arms. Thus, there are totally
12 classes and each class contains 36 data. The difference
among the 12 classes can be seen in Table 1.

A tree structure is extracted from each symbol in the data
set. The maximum number of levels in a tree is four as
shown in Fig. 5. Therefore, the MLSOM has four corre-
sponding SOM layers. The root node of a tree represents
the whole “human” symbol. The second level nodes of a
tree represent the local regions of a “human” symbol such
as head, body, lower part, etc. The third level nodes of a
tree represent the local regions of the second level nodes.
And the fourth level nodes of a tree represent the local re-
gions of the third level nodes. For example, in category
1 as shown in Fig. 5(a), the second level node “head” is
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Fig. 5. Examples from four categories of the synthetic “human” symbol data: (a) Category 1; (b) Category 2; (c) Category 3; and (d) Category 4.

Table 1
Description of four categories and 12 classes of the synthetic “human” symbol data set

The second level nodes that Class Features of nodes (left-arm and right-arm)
differentiate among categories that differentiate among classes

Category 1 Body, head, long-skirt, lower-part, left-arm, right-arm 1 Arms are placed naturally
2 Arms are raised above
3 Arms are holding load/objects

Category 2 Body, head, lower-part, left-arm, right-arm 4 Arms are placed naturally
5 Arms are raised above
6 Arms are holding load/objects

Category 3 Long-dress, head, left-arm, right-arm, shoe, shoe 7 Arms are placed naturally
8 Arms are raised above
9 Arms are holding load/objects

Category 4 Long-dress, face, large-hat, left-arm, right-arm, shoe, shoe 10 Arms are placed naturally
11 Arms are raised above
12 Arms are holding load/objects

composed of “hair” and “face” nodes at the third level. Each
node of a tree is denoted by four features: (1) size; (2) shape;
(3) the horizontal coordinate; and (4) the vertical coordi-
nate. For a non-leaf node, its children nodes have been al-
ready ordered by us. For an example shown in Fig. 5(a), a
root node in categories 1 has six children nodes. The sec-
ond part of the SOM input at the root node is represented

by [pBody, pHead, pSkirt , pLower part , pL arm, pR arm]. As
shown in Fig. 5(a), the second part of the SOM input at the
“head” node is represented by [pf ace,phair ,0, . . . , 0]. As
shown in Fig. 5(b), the second part of the SOM input at the
“head” nodeisrepresentedby[pf ace,phair ,pBeard ,0, . . . , 0].
Therefore, the ordering procedure mentioned in Section 3.1
is not used in the synthetic “human” symbol data. The node
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Table 2
Description of four categories of the first document data set

Some discriminative keywords of different categories (a
keyword not necessarily appeared in all documents of the
related category)

Category 1 Health, recipe, instruction, meat, cook, food,
Category 2 Hair, skin, cosmetic, beauty, fashion, care, model
Category 3 Family, guard, dog, pet, home, breed, protect
Category 4 Facial, feature, recognition, image, face, search, database

distribution and the maximum number of child node at dif-
ferent level are detailed in Table 2.

According to the numbers of nodes at different levels of
trees, the sizes of the corresponding the first, second, third
and fourth SOM layers in MLSOM were firstly set to 5 × 5,
10 × 10, 12 × 12 and 5 × 5, respectively. The SOM-SD was
also used for comparison with a 17 × 17 SOM due to the
large size of all nodes. The visualization of the MLSOM and
SOM-SD is shown in Fig. 6(a) and (d), respectively, where
different categories are represented by different symbols and
different classes in a category are represented by the same
symbol but different symbol sizes. In the case of MLSOM,
the four categories are well separated from other categories.
The classes in categories 1 and 2 can be separated from other
classes. But some classes (e.g., classes 7, 9–12) in categories
3 and 4 are overlapped by the other classes. Ten activated
neurons at the top SOM layer are fully distributed on the
2-D grid. In the SOM-SD, only five neurons are activated and
concentrated at the top-right corner of the 2-D grid. Like the
MLSOM, the four categories can be well separated. But only
class 11 is separated from other classes. The other classes are
totally overlapped. The visualization of the SOM-SD is not
good since the visualization area for data (top-right corner)
occupies a small part of the whole SOM output grid. There
are still a lot of neurons not utilized for the visualization of
data.

If the SOM sizes at the first, second, third and fourth
SOM layer in the MLSOM are increased to 10 × 10, 20 ×
20, 24 × 24, and 10 × 10, respectively, the visualization
of the MLSOM becomes more precise and clear as shown
in Fig. 6(b). Nineteen neurons at the top SOM layer are
activated for visualization. Each category is well separated
from other categories. And each class in a category can
be well separated from any other classes. For the SOM-
SD, if the single SOM size is increased to 35 × 35, the
visualization result is shown in Fig. 6(e). Still there are only
five neurons activated for visualization. The four categories
are still separated from other categories. But only class 5 is
separated from other classes. The other classes are totally
overlapped. Similarly, the visualization of SOM-SD is not
good due to the low utilization of neurons for visualization.

If the SOM sizes at the first, second, third and fourth SOM
layer in the MLSOM are increased to 15 × 15, 30 × 30,
36 × 36, and 15 × 15, respectively, the visualization be-
comes much more precise as shown in Fig. 6(c) than the

case shown in Fig. 6(b). There are totally 26 neurons acti-
vated for visualization. Different categories and classes are
well separated in the visualization, and each class can be
represented by one or more neurons. For the SOM-SD with
a 50 ×50 SOM size, the visualization is shown in Fig. 6 (f).
The precision is improved a little. The four categories are
still well-separated. Only classes 10 and 12 cannot be sepa-
rated from each other. Other classes are well-separated. For
a very large SOM grid with 2500 neurons, only 16 neurons
are utilized for visualization. Therefore, the visualization of
the SOM-SD is still not satisfactory since the 12 classes
cannot be well separated.

From the above experiments, the size of the top SOM
size can be easily adjusted according to users’ precision
requirement of visualization for the MLSOM. However, for
the SOM-SD, even if the size of the single SOM is greatly
increased, it is difficult to obtain a more precise visualization
because all the nodes are used for the single SOM layer and
the number of root nodes is a very small fraction of the total
nodes.

From the visualization using the MLSOM, we can learn
some clustering tendency of 12 classes. For example, in
Fig. 6(c), the 12 classes are well separated from each other
for MLSOM. From the visualization, each class can form
its individual cluster. But for SOM-SD, only the clustering
tendency of four categories can be detected (e.g., Fig. 6(f))
even if a very large map size (i.e., 50 × 50) is used.

4.2. The document data set

At first we considered a document data set of four classes
for a detailed experimental analysis. Later, we increased
the data set to 40 classes to evaluate classification accuracy
on larger data set. The first document data set consists of
400 text documents in ‘html’ format downloaded from the
web. The document data are divided into four categories and
each category contains 100 documents. Some discrimina-
tive features of these four categories are listed in Table 2. A
three-level tree-structured data were extracted in a manner
that the root node represents the whole document, the sec-
ond level nodes represent different pages, and the third level
nodes represent the paragraphs of the pages. Fig. 7 illustrates
tree-structured feature representation of a document. Node
features at different level are represented by histogram of
automatically generated keywords. Two documents having
similar word-histograms at root nodes can be completely
different in terms of semantics/context. It is because of dif-
ferent orientations of the same set of words throughout the
document, which is reflected by the discriminative lower
parts of the tree data (second/third level modes). Thus, tree-
structured features can help a better analysis of the docu-
ments. To extract the document features, text are separated
from html tags, and stop words (set of common words like
“the”, “is” etc.) are removed. Porter stemming algorithm
[27] is used to extract stem of each word, and stems are used
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Fig. 6. Visualization of the synthetic “human” symbol data. (a) MLSOM (5 × 5 – 12 × 12 – 10 × 10 – 5 × 5); (b) MLSOM 10 × 10 – 24 × 24 – 20 × 20
– 10 × 10); (c) MLSOM (15 × 15 – 36 × 36 – 30 × 30 – 15 × 15); (d) SOM-SD (17 × 17); (e) SOM-SD (35 × 35); and (f) SOM-SD (50 × 50).
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for feature extraction instead of original words. Then a word
list is build up for the whole data set which stores term fre-
quency fT (the frequency of a word in all documents) and
document frequency fd (the number of documents a word
appeared). A weight of each word is then calculated from
inverse document frequency idf and fT , which is very sim-
ilar to the term weighting in vector space model [28].

Wterm = idf ×√
fT , (17)

where idf = 1/e((8Nc/N)(N/fd−2)), Nc is the number of data
in a class, and N is the total number of data in whole data
set. Words having higher weights are selected first as impor-
tant words and different numbers of keywords are selected
for nodes at different level as shown in Fig. 7. Using the

Pages 

Whole 
document 

N1 

N2 
N3 

N5 N4 N6 N7 N8 N9 

Feature: Histogram
of 25 keywords

Feature: Histogram
of 50 keywords

Feature: Histogram
of 100 keywords Paragraphs 

Fig. 7. Illustration for the tree-structured feature representation of a doc-
ument.

Table 3
Distribution of nodes in three data sets that are used in the experiment

Level 1 2 3 4 All levels

1. The synthetic “human” symbol data set (totally 432 tree-structured data)
Maximum number of children nodes 7 3 2 0 7

Total number of nodes in training set 432 2592 3204 432 6660

2a. The document data set (4 classes, totally 400 tree-structured data)
Maximum number of children nodes 18 57 0 — 57

Total number of nodes in training set 200 452 2989 — 3641
Total number of nodes in testing set 200 433 2824 — 3457

2b. The document data set (40 classes, totally 4000 tree-structured data)
Maximum number of children nodes 69 127 0 — 127

Total number of nodes in training set 2000 3297 15 937 — 21 234
Total number of nodes in testing set 2000 3308 16 084 — 21 392

3a. The flower image data set (12 classes, totally 480 tree-structured data)
Maximum number of children nodes 4 8 0 — 8

Total number of nodes in training set 240 555 1425 — 2220
Total number of nodes in testing set 240 549 1342 — 2131

3b. The flower image data set (36 classes, totally 1440 tree-structured data)
Maximum number of children nodes 4 8 0 — 8

Total number of nodes in training set 720 1592 4181 — 6493
Total number of nodes in testing set 720 1573 4150 — 6443

html tags, the documents are partitioned into pages, and the
pages are partitioned into paragraphs. As a paragraph con-
tains fewer words, more keywords are used to describe the
third level nodes. Histogram of a document/page/paragraph
is computed as follows:

HT = [h1h2h3 . . . . . . hT ], ht = nt∑
t=1,...,T

nt

, (18)

where T is the total number of keywords used, and nt is the
frequency of tth keyword.

Node distribution of document data set is listed in
Table 3. For a non-leaf node, the children nodes have not
been already ordered. Therefore, the ordering procedure
mentioned in Section 3.1 was used for children node at
the first and second SOM layer. In the MLSOM, the num-
bers of features of nodes at different levels of trees, i.e.,
nk(k = 1, 2, 3), can be different. But in the SOM-SD, the
numbers of features of nodes at different levels of trees
should be the same. In order to make the SOM-SD suitable
for processing the structured data extracted from docu-
ments, the number of node features in SOM-SD is chosen
to be the maximum number (i.e., 100) of features of nodes
at all the levels of trees. If the number of features of a node
is less than 100, we just append zeros to the end of its fea-
tures. Thus, the number of features of nodes at all the levels
can be the same value of 100 for the SOM-SD. In addition,
children nodes in the SOM-SD are ordered according to
their output positions on the single SOM layer from top to
bottom and from left to right.

For training of the MLSOM and SOM-SD 200 documents
are used, each category containing 50 documents. The
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rest 200 documents are used as a testing set in the evalua-
tion of classification accuracy. After the training of SOM,
the visualization of the training data set using a MLSOM
(20 × 20–24 × 24–28 × 28) and a SOM-SD (40 × 40) are
shown in Fig. 8(a) and (b), respectively. Once again, with a
smaller grid of 20 × 20, MLSOM can deliver much better
visualization for the four categories of documents. Different
categories formed almost separate clusters on the SOM from
which ‘distinct class boundaries’ can be drawn for analysis
of new data. On the other hand, even with a bigger SOM
grid of 40 × 40 fewer neurons are activated on the SOM-
SD leading to a poor visualization. Fig. 8(c) and (d) show
the class maps for the MLSOM and SOM-SD, respectively.
Class map shows labels of neurons as discussed in Section
3.3.3. Ignoring few isolated neurons, the MLSOM formed
four distinct class regions. On the other hand, class regions
are mostly subdivided into more than one part on the SOM-
SD. Visualization of testing data set using the MLSOM and
SOM-SD are shown in Fig. 8(c) and (d), respectively. A
comparative inspection on Fig. 8 explains that data analysis
is much effective and easier on the MLSOM. With distinct
class regions it is easier to comprehend the nature of new
data from their mapping on the SOM. Using the class maps
the classification results on the training and the testing sets
are summarized in Table 4. With a much less computation,
the MLSOM achieved better classification accuracy than the
SOM-SD. Obviously, the higher accuracy is related to the
better class map of the MLSOM.

We have also summarized some quantitative performance
measure against the SOM size, which is the most crucial
among SOM parameters. Fig. 9 summarizes the AUD, OCG
and ACA performance of the MLSOM and SOM-SD for
different SOM size. A lower AUD value reflects a better re-
lationship between a low-dimensional SOM output and high
dimensional input data. Thus, a better understanding and
analysis of data is possible with a lower AUD value. Fig 9(a)
shows that the MLSOM can deliver consistently better AUD
value at different SOM sizes compared with the SOM-SD.
The higher AUD value of SOM-SD can be explained by
the mixing up of different levels’ nodes in the same SOM
layer. The OCG value reflects the clustering tendency of
the data on the SOM, which in turn indicates the quality of
visualization. Fig. 9(b) shows the OCG performance on doc-
ument data set against different SOM sizes. Finally, ACA
is plotted against the SOM sizes in Fig. 9(c) and (d) for the
training and the testing sets, respectively. It can be noticed
that the performance of SOM-SD rapidly decreases with the
decrease in SOM size. In contrast, the MLSOM maintains
a stable and superior performance at different SOM sizes.

To evaluate classification performance on a larger data set,
we increased the document classes from four classes to 40
classes, each class containing 100 documents. This data set is
made much harder for classification task as the classes share
many discriminative keywords among themselves, which is
different from the case of the previous database described in
Table 2. Tree structured features were made up using word

histogram of 1000 keywords in each level. Because the fea-
ture dimension was too big, we used standard PCA (prin-
cipal components analysis) to compress the feature of first,
second and third level nodes into a reduced dimension of
100, 150 and 200, respectively. Using this data set, the clas-
sification performance of the MLSOM and SOM are sum-
marized in Table 4. The SOM-SD performed rather poorly
by delivering a classification accuracy of 19% and 15% on
the training and the testing sets, respectively. On the other
hand, the MLSOM delivered a much respectable classifica-
tion accuracy of 70% and 52% on the training and testing
sets, respectively. Also, it should be noted that the training
time of the SOM-SD is 33 times higher than that of the ML-
SOM. The performance of the SOM-SD can be further in-
creased by increasing the SOM size but at a cost of extreme
computational time.

4.3. Flower image data set

The first flower data set consists of 480 real flower im-
ages. There are totally 12 different species of flowers. The
image samples from 12 different flower species are shown
in Fig. 10. Each species has 40 flower images. All the flower
images were divided into training and testing sets. The total
number of flower images used for training is 240 and that
for testing is 240. A flower image is represented by a three-
level tree, which is generated by image segmentation. The
root node of a tree represents the whole image. The second
level nodes of a tree represent local regions such as back-
ground and flowers. The third level nodes of a tree represent
more specific local regions such as each individual flower.

For the experiment on this data set, structured data were
extracted from the flower in a tree representation. Tree-
based representation is shown to be useful in image analysis
[29,30] because it includes the spatial relationship among
various objects in an image. Fig. 11 demonstrates how a
flower image is represented by a three-level tree through
a two-level image partitioning. In the first level partition-
ing shown in Fig. 11(b), three HSV channels of the im-
age are used to cluster image pixels in the color domain.
Fig. 11(c) demonstrates the second-level partitioning in the
image, where non-connected regions with similar color are
obtained. The extracted features from the image or regions
serve as the features of nodes of a tree. Color histogram
(16 bins for each of HSV channels) is used as the features
of root nodes. The color moments, i.e., 3 averages and 3
standard deviations of HSV channels, are used for region
features of the second level nodes. In order to describe the
shape features used for non-root nodes, normalized inertia
of orders 1–3 are used [31]. Moments of Haar wavelet co-
efficients in three different frequency bands are used as tex-
ture features (3 averages and 3 standard deviations) of the
third level nodes. Details of these feature extractions can
be found in [31,32]. Therefore, the root nodes are denoted
by 48(=16 × 3) features of color histograms. The second
level nodes of a tree are denoted by 10 features: 6 features
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Fig. 8. Visualization of the four categories of document from training set (a) MLSOM (20 × 20 – 24 × 24 – 28 × 28) and (b) SOM-SD (40 × 40); and
class map of document database formed on (c) MLSOM and (d) SOM-SD. Visualization of testing set (e) MLSOM and (f) SOM-SD.
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Table 4
Training time and classification performance using the flower image data set and the document data set

Methods SOM size Training time Classification accuracy

(in minutes) On training data On testing data

1. The document data set (4 classes)
MLSOM 20 × 20–24 × 24–28 × 28 16.8 94 81

30 × 30–36 × 36–42 × 42 69.5 96 84
SOM-SD 30 × 30 258.2 82 70

40 × 40 611.7 88 76

2. The document data set (40 classes)
MLSOM 30 × 30–36 × 36–42 × 42 291.9 70 52
SOM-SD 40 × 40 9833.3 19 15

3. The flower image data set (12 classes)
MLSOM 20 × 20–24 × 24–28 × 28 6.7 95 86

40 × 40–48 × 48–56 × 56 14.5 100 93
SOM-SD 30 × 30 30.1 87 71

80 × 80 184.0 90 75

4. The flower image data set (36 classes)
MLSOM 20 × 20–24 × 24–28 × 28 8.2 90 81
SOM-SD 30 × 30 153.9 69 58

of color moments, 1 feature of size, 3 features of shapes.
The third level nodes of a tree are denoted by 10 features: 6
features of textures, 1 features of size, 3 features of shapes.
The ordering procedure mentioned in Section 3.1 was used
for a non-leaf node at the first and second SOM layer, where
the children nodes have not been already ordered. Table 3
summarizes the node distribution at different levels as well
as the maximum number of child node. Similar to the doc-
ument data set, the number of node features in SOM-SD is
chosen to be the maximum number (i.e., 48) of features of
nodes at all the levels of trees.

According to the numbers of nodes at different levels of
trees, the sizes of the corresponding the first, second and
third SOM layers in the MLSOM were empirically set to
10 × 10, 12 × 12 and 14 × 14, respectively. SOM-SD was
used for comparison with a 20 × 20 SOM due to the large
number of all the nodes. After the completion of training,
the visualization of 12 flower species on the SOM is shown
in Fig. 12(a) and (d) for the MLSOM and SOM-SD, respec-
tively. As seen from Fig. 12(a), almost all the neurons at the
top SOM layer were used for visualization. There is some
overlapping among all the 12 flower species. As seen from
Fig. 12(d), in SOM-SD, the 12 flower species are mapped
into a small area of the single SOM map. All species are
heavily overlapped.

If the SOM map sizes at the first, second and third SOM
layer of the MLSOM are increased to 20 × 20, 24 × 24 and
28×28, respectively, the visualization becomes more precise
and clear as shown in Fig. 12(b). Some species (i.e., species
2 and 10) are separated from other species. There is still
some overlapping among other species. For the SOM-SD, if
the single SOM size is increased to 40×40, the visualization
result is shown in Fig. 12(e). Still, there is a small area of

the single SOM layer for visualization. The flower species
are also heavily overlapped.

If the SOM sizes at the first, second and third SOM layer
of the MLSOM are increased to 40×40, 48×48 and 56×56,
respectively, the visualization becomes much more precise
as shown in Fig. 12(c) than the case shown in Fig. 12(b). All
the 12 species are well separated from other species. Species
6, 7 and 11 form distinct clusters. For the SOM-SD, if the
single SOM size is increased to a very large size 80 × 80,
the visualization result is shown in Fig. 12(f). Some neurons
with species 10 form a cluster. There is some overlapping
among all 12 species due to the small area for visualization
on the single SOM layer. Compared with data set 1, the
worse visualization of the SOM-SD for the flower data set
can be explained by the third problem mentioned at the end
of Section 2.2, i.e., node features are different in types and
length at different levels. In addition, the ordering of child
nodes in the MLSOM is more meaningful compared with
the SOM-SD, because the SOM outputs of child nodes are
fixed during the training process.

We also performed classification on the 12 flower species
for the MLSOM and SOM-SD. The classification results for
different SOM sizes are summarized in Table 4. The results
show that with much lesser computational costs, the ML-
SOM delivers better classification performance on both the
training and testing data sets than the SOM-SD. The better
classification accuracy can be easily explained with the su-
perior visualization of tree-structured data on the MLSOM
map. In Table 4, we have also included flower classification
results using a larger data set of 36 flower species. Similar
to previous data set, each species contains 40 image data,
and the data set equally divided into the training and the
testing set. The node distribution of this data set is shown in
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Fig. 9. Quantitative performance comparisons against SOM size (top layer for MLSOM) using the document database. Average classification accuracy
against SOM size (length of square SOM grid): (c) training set and (d) testing set. (a) average unit disorder against SOM size. (b) overall cluster.

Table 3. Once again, the MLSOM delivers superior results
in terms of classification accuracy and computational time.

We also used the flower data set of 12 species to analyze
the comparative results between the MLSOM and SOM-SD
under different SOM settings such as different initializations,
learning rate and number of epochs. The size used for the
MLSOM and the SOM-SD were 20 × 20–24 × 24–28 × 28
and 30 × 30, respectively. The initial learning rate and the
number of training epochs are set to 0.3 and 10, respectively
as default setting. Fig 13(a) shows the classification accu-
racy using five random initializations of SOM weight vec-
tors before training. Results of the MLSOM and SOM-SD
are more or less similar under five initializations indicating
a stable training of both models. Fig. 13(b) shows the results
under five different initial learning rates. An initial learning
rate of 0.3 or higher seems to be a good choice for both
networks. Finally, results under different number of training

epochs are shown in Fig. 13(c) that indicate 10 epochs are
fairly good enough. In all the cases, the MLSOM consis-
tently delivers better performance than the SOM-SD in both
training and testing set.

For comparative neural network sizes, the computational
training time for the MLSOM is compared with that of the
SOM-SD. These are listed in Table 4. Clearly the MLSOM
is also significantly much faster than the SOM-SD. The most
important factor contributes to the relatively fast training
process is that 48 features were used for all the nodes in
the SOM-SD whilst only 10 features were used for non-root
nodes in the MLSOM.

The computational time difference between two methods
in Table 4 can be easily comprehended by comparing the

computational complexity of MLSOM O
(∑L

k=1 Nkmk

(nk+2ck)
)

, and SOM-SD O(Nmc(n + 2c)) as discussed in
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Fig. 10. Samples from 12 different species of flower images.

Fig. 11. Demonstration of a tree-structure from a flower image. (a)–(c) partitioning flower images; and (d) tree-structured image representation.

Section 3.2. In an extreme case, we can consider a SOM
size for each layer of MLSOM equal to the size of SOM-
SD (m = mk)k=1,...,L, and nk and ck are same for all levels
(c = ck, n = nk)k=1,...,L. The computational complex-

ity of the MLSOM becomes O
(∑L

k=1 Nkm(n + 2c)
)

⇒
O
(
m(n + 2c)

∑L
k=1 Nk) ⇒ O(Nm(n + 2c)

)
. This means

that with L times more neurons the computation com-

plexity of MLSOM is still less than that of the SOM-SD
O(Nmc(n + 2c)). Comparative computational demand of
the SOM-SD further increases with the difference be-
tween n and nk , and with the difference between c and
ck at different levels. In other words, when the feature
length (nk) and the number of child nodes (ck) are not the
same at different levels, the SOM-SD needs to pay some
extra cost.
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Fig. 12. Visualization of 12 different flower species by (a) MLSOM (10 × 10 – 12 × 12 – 14 × 14); (b) MLSOM (20 × 20 – 24 × 24 – 28 × 28);
(c) MLSOM (40 × 40 – 48 × 48 – 56 × 56); (d) SOM-SD (20 × 20); (e) SOM-SD (40 × 40); and (f) SOM-SD (80 × 80).
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Fig. 13. Comparative classification accuracy between MLSOM and SOM-SD under different settings: (a) SOM initializations; (b) initial learning rate;
and (c) number of training epochs.

5. Conclusion

A new SOM structure is proposed for processing tree-
structured data. Unlike the SOM-SD that processes all the
nodes of tree in a single SOM layer, the proposed MLSOM
uses multiple SOM layers in a way that it processes all the
nodes at a certain level in the corresponding SOM layer.
Thus, the output of the MLSOM is not adversely affected
like the SOM-SD when node features at different level of
the tree have different nature and length. Another architec-
tural advantage of the MLSOM over SOM-SD is that it does
not require pre-processed ordering of the child nodes in the
tree-structured data. Unlike the SOM-SD, the input of the
MLSOM does not change with time during training process,
and the number neurons used for data visualization are not
adversely affected by total number of nodes. All these fea-

tures enable the MLSOM to provide a much efficient train-
ing and organization of tree-structured data. Our studied re-
sults indicate that the MLSOM delivers significantly better
visualization effects compared with the SOM-SD. It is also
worth noting that the MLSOM is much computationally ef-
ficient than the SOM-SD. The classification performance
delivered from the MLSOM is superior to that of the SOM-
SD. Experimental results corroborate that the MLSOM is a
very efficient approach for processing tree-structured data
in terms of visualization, clustering and classification.
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