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Abstract. This paper focuses on enhancing the effectiveness of filter feature 
selection models from two aspects. One is to modify feature searching engines 
based on optimization theory, and the other is to improve the regularization 
capability using point injection techniques. The second topic is undoubtedly 
important in the situations where overfitting is likely to be met, for example, the 
ones with only small sample sets available.  Synthetic and real data are used to 
demonstrate the contribution of our proposed strategies.  

1   Introduction 

As computer technology advances rapidly, data are accumulated in an enormous 
speed unprecedentedly experienced in human history.  In some advanced engineering 
and physical science applications, most conventional computational methods have 
already experienced difficulty in handling the enormous data size.  In handling these 
data sets, feature selection is an essential and widely used technique.  It reduces the 
size of features through eliminating irrelevant and redundant features, and thus results 
with increased accuracy, enhanced efficiency, and improved scalability for 
classification and other applications such as data mining (Han, 2001). Feature 
selection is especially important when one is handling a huge data set with 
dimensions up to thousands.  

A feature selection framework generally consists of two parts: a searching engine 
used to determine the promising feature subset candidates and a criterion used to 
determine the best candidate (Liu, 1998; Molina, 2002). Currently, there are several 
searching engines: ranking, optimal searching, heuristic searching and stochastic 
searching. Among these engines, heuristic searching, which can easily be 
implemented and is able to deliver respectable results (Pudil, 1994), is widely used.  
Feature selection models can be broadly categorized as filter model, wrapper model, 
and embedded model according to their evaluation criteria. Filter models explore 
various types of statistical information, such as distribution probabilities underlying 
data. Wrapper and embedded models are classifier-specified and the selected features 
may vary with different classifiers.  Given a feature subset, say S, wrapper and 
embedded models firstly require to build a classifier based on S. Wrapper models then 
rely on the performance of the built classifier to determine the goodness of S, while 
embedded models make use of the parameters of the built classifier to assess S.  
Wrapper models are usually more computationally expensive than filter models.   
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In a filter model, good feature selection results rely on a respectable evaluation 
criterion and an appropriate searching strategy. The former issue has been heavily 
investigated. Various types of information, including mutual information (Battit, 
1994; Bonnlander, 1996; Chow, 2005), correlation (Hall 1999), etc., have been 
explored for evaluating features. By comparison, there are fewer studies focused on 
searching engines. Also, most of those studies are completely designed in discrete 
feature domains. For example, sequential forward searching (SFS), a typical heuristic 
searching scheme, identifies k important features from unselected features and places 
them into a selected feature subset in each iteration. To improve SFS, a stepwise 
strategy is designed – in each iteration, selecting k “good” unselected features is 
followed by deleting r “worst” selected features (r < k) (Pudil, 1994). And Al-Ani et 
al., (2000) employ “elite” selected features, not all of them, to identify important 
features from unselected ones. These algorithms, studied in a discrete feature space, 
depend on the testing of more feature combinations in order to deliver improved 
results. Clearly, more testing will increase the computational complexity. 

Given a set of n samples D = {(x1,y1), (x2,y2), …, (xn,yn)} which is drawn from a 
joint distribution P on X×Y, a feature selection process is per se a learning process in 
the domain of X×Y to optimize the employed feature evaluation criterion, say  
L(x,y)~P(x, y). As P is unknown, L(x,y)~P(x, y) has to be substituted by L(x,y)∈D(x, y). 
Clearly, when D cannot correctly represent P, this substitution may cause overfitting 
in which the selected features are unable to deal with testing data satisfactorily despite 
performing splendidly on the training data D (Bishop, 1995). In many applications, a 
machine learning process suffers from insufficient learning samples. For instance, in 
most microarray gene profile expression based cancer diagnosis data sets that may 
only consist of tens samples. With small sample sets, overfitting is likely to happen 
and this issue must be addressed accordingly. A wrapper/embedded feature selection 
models always involve with classification learning processes. Thus, the regularization 
techniques developed for classification learning can be directly employed in a 
wrapper/embedded model. For example, support vector machine and penalized Cox 
regression model, which have been argued to have high generalization capability, are 
employed in embedded models (Guyon, 2002; Gui, 2005). And an embedded feature 
selection model is trained based upon with regularized classification loss functions 
(Perkins, 2003). On the other hand, since filter schemes do not explicitly include a 
classification learning process, the regularization techniques developed for 
classification learning cannot be explored. In this sense, it is a need to design 
specified regularization strategies. To our knowledge, only a few attempts are done on 
this topic. In order to address problem of overfitting, a bootstrap framework has been 
adopted for mutual information estimation (Zhou, 2003). Under this framework, 
mutual information estimation should be conducted several times in order to deliver 
one result. The bootstrap framework is thus highly computationally demanding, 
which precludes it from being widely used.  

In this paper, we propose two strategies – the one is for improving the 
effectiveness of searching engines, and the other is for addressing the problem of 
overfitting. And we choose a typical filter feature selection model as example to 
demonstrate these strategies. In this filter model, the searching engine and the feature 
evaluation index are SFS (Devijver, 1982) and Bayesian discriminant criterion (BD) 
(Huang, 2005), respectively. We firstly analyze SFS according to the well-established 
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optimization theory (Bishop, 1995). The analysis of this type, which has been 
overlooked in previous studies, can reveal the shortcoming of conventional SFS – 
SFS is unable to perform optimization in a maximal way. To address this issue, we 
naturally come to the optimization theory. As a result, a modified SFS is proposed, 
which conducts the feature searching along the possible steepest optimization 
direction. To enhance the regularization capability, a point injection approach is 
proposed. This approach generates certain points according to the distribution of 
given samples, which is similar to the ones developed for classification learning. In 
our proposed approach, the injected points are just employed for evaluating the 
feature subsets. This mechanism is able to minimize the undesired side-effect of 
injected points.  

In the next section, the BD sequential forward searching (SFS) feature selection 
model is briefed. After that, our proposed strategies are described in section 3. Finally 
the proposed strategies are extensively evaluated.  

2   Bayesian Discriminat Based Sequential Forward Feature 
Searching Process  

Assume that the feature set of n-sample dataset D is F = {f1, f2, …, fM}. Also, each 
pattern (say, xi) falls into one of L categories, i.e., yi = ωk where 1≤ i ≤ n and 1 ≤ k ≤ L.  

2.1   Bayesian Discriminant Feature Evaluation 

In filter models, probability based feature evaluation criteria are commonly used. 
Bayesian discriminant criterion (BD), a typical probability based approach, is 
developed by Huang et al. (2005). With the dataset D, BD is defined as 
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where iy  means all the classes but class yi, and pS(.) represents a probability which is 

estimated in the data domain defined by S. As shown in (1), BD(S) directly measures 
the likelihood of given samples being correctly recognized in the data domain defined 
by S. A large BD(S), which indicates that most given samples can be correctly 
classified, is preferred.  

And in our study, the probabilities required by BD(S) are estimated with Parzen 
window (Parzen, 1962) which is modeled as  
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where κ and hi are the kernel function and the width of window, respectively. The 
parzen window estimator (2) or (3) has been shown to be able to converge the real 
probability when κ  and hi are selected properly (Parzen, 1962). κ is required to be a 

finite-value nonnegative function and satisfies 1),( =−∫ dxhxx iiκ . And the width of  



682 D. Huang and T.W.S. Chow 

κ , i.e. hi, is required to have 0lim =
∞→

h
n

 where n is the number of given samples. 

Following the common way, we choose Gaussian function as κ . That is,  
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where M is the dimension of x. And the window width hi is set with hi=2distance(xi,xj) 
where xj is the 3rd nearest neighbor of xi. We use Euclidean distance, i.e., 

T
jijiji xxxxxx ))((),(distance −−=  for two data vectors xi and xj. As to p(xi) of 

the equations (2) and (3), it is estimated with p(xi) = 1/n. With the equations (2) and 
(3) and based on p(y|x)=p(x,y)/p(x),  p(y|x) required by BD(S) is finally obtained.  

2.2   Sequential Forward Searching  

In a BD based feature selection process, the aim is to determine the feature subset S 
that can maximize BD(S) (1). In general, BD(S) is optimized in the following way: 
after a pool of feature subsets is suggested by a searching engine, BD of each 
suggested feature subset is calculated, and one with the largest BD is either outputted 
as the finial feature selection result or remembered as the reference to guide the 
subsequent feature selection process.  Many schemes for determining feature subset 
pools have been developed to trade the quality of optimization results with 
computational consumption. Among these schemes, the sequential forward searching 
(SFS) is the most popular one.  

The SFS firstly sets the selected feature set (denoted by S, below) empty and 
enriches S through iteratively adding k important features into it.  In each iteration, to 
select the k features, all the feature combinations {S, k unselected features} are 
examined, and the one with the largest BD is selected out to remember as a new S.  
Based upon this S, another iteration of feature selection is conducted. This process 
continues until certain stopping criteria are met.  

3   Modified Sequential Forward Searching Scheme 

3.1   Weighting-Sample  

The objective of feature selection is to optimize the employed evaluation criterion, for 
example, BD(S) (1) in this study, through adjusting S. To clearly explain our idea, we 
recast BD(S) (1) as  
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According to the optimization theory, the steepest direction of adjusting S to 
maximize (4) is determined by 
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It shows that, to optimize BD(S), the updating of S depends on the two terms, 
∂BD(S)/∂f((x,y),S) and ∂f((x,y),S)/∂S. The former one happens in a continuous domain, 
while the latter one is related to S and has to be tackled in a discrete feature domain. 
In this sense, (5) cannot be solved directly. To maximize BD(S), SFS tests all 
combinations of S and an unselected feature, and remains the one having the maximal 
BD. Clearly, SFS only considers the second term of (5), but overlooks the first term. It 
means that the searching direction of SFS is not in accordance with the steepest 
optimization one. This shortcoming may reduce the optimization effectiveness, and 
thus motivates our modification.  

Naturally, our proposed strategy is based on the optimization theory, i.e., equation 
(5). The second term of (5) is resolved by using any conventional discrete-domain 
searching scheme. We use SFS for this purpose. The first term of (5) can be directly 
calculated in the way of   
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This shows that ∂BD(S)/∂f((x,y),S), which is only related to x, is independent of the 
change making on S. With this observation, we use (6) as weights to samples. In such 
way, feature searching is conducted with the weighted samples, not the original ones.  

Assume that the dataset D is weighted by {w1,w2,…,wn}. With this weighted 
dataset, the criterion BD (1) and the probability estimations (2) and (3) are adjusted 
accordingly. The rule of p(xi)=1/n  is replaced by nwxp ii =)( . Also, we have 
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And the criterion BD is modified as 
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Apparently, it is natural to regard different samples may have different 
contributions to the learning processes. Currently, most machine learning algorithms 
have already incorporated this idea. For instance, the classification learning aims to 

minimize the mean square error ∑ −Λ=Λ
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model f, i.e., adjusting the parameter set ∧ of f. The steepest decent type algorithm, 
which is commonly used for classification learning, determines the updating direction 
with  
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where (xi,yi) is a given training sample. It is noted that the contribution of (xi,yi) is 
penalized by |f(xi,∧)-yi|. Another example is AdaBoosting (Hastie et al., 2001), a 
typical boosting learning algorithm. During the course of learning, AdaBoosting 

repeats weighting the sample (xi,yi)  with )( ii xfy
i ew −  where wi is the current weight to 

(xi,yi). Also, in order to reduce the risk of overfitting, it is intuitively expected that the 
negative samples (i.e., incorrectly-recognized ones) have more influence to the 
subsequent learning than positive ones do. In such a way, the convergence rate can be 
speeded up, and the problem of overfitting can be alleviated (Lampariello et al., 
2001). AdaBoosting clearly can meet this expectation. The equation (9), however, 
indicates that the steepest decent algorithm fell short on tackling overfitting in a way 
that the correctly-recognized patterns still carry large weights. This fact has motivated 
modifications on the gradient-based algorithms (Lampariello et al., 2001). Consider 
our proposed weighting-sample strategy, defined by equation (6). It penalizes the 
negative patterns heavily. Thus it will be helpful in alleviating the problem of 
overfitting.  

3.2   Point Injection  

Overfitting is caused by the deviation between the real optimization goal and the 
actual achievable optimization objective. The real goal of the BD based feature 
selection process is to maximize BDP(S) where P is the underlying probability. Since 
P is unknown in most cases, BDP(S) can not be actually defined, and thus has to be 
substituted with its empirical estimate BDD(S) (simplified as BD(S), like equation (1) 
does). When BD(S) cannot always reflect BDP(S) correctly, overfitting is caused.  To 
avoid overfitting, it is preferred that BDP(S) varies smoothly enough. 

In the area of classification/regression, overfitting can be tackled through 
modifying the employed empirical objective function with regularization terms. These 
regularization terms penalized the complex models. With them, the simple learned 
models can be obtained, and the likelihood of overfitting happens will thus be 
decreased (Bishop, 1995). The penalty terms, however, cannot always be built 
without thorough theoretical analysis. This is especially the case when the parameters 
or factors controlling smoothness of a training model are hard to determine. Another 
widely used regularization technique is point injection. It is known that smooth means 
that samples near to each other should correspond to similar performance, which is 
the rationale behind the techniques of point injection. In many literatures, this 
technique is referred as noise injection (Matsuoka 1992; Skurichina et al., 2000; 
Zagoruiko et al., 1976), but it is certainly expected that injected points are not real 
noise. Thus, to avoid the confusion, we use the term point injection instead of noise 
injection in this paper.  

Under the frameworks of classification/regression learning, injected points are 
always treated just like the original samples – a classifier/regression model is built 
upon the original samples as well as the injected points. This working mechanism 
requires high-quality points. Spherical Gaussian distributed points are generated 
around each training object (Bishop, 1995; Matsuoka 1992). Then, the undesirable 
fact that the added points may increase the complexity of the solved problem is 
revealed. To avoid this, high quality injected points, such as, k-NN direction points 
(Skurichina et al., 2000) and eigenvector direction points (Zagoruiko et al., 1976), are 
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suggested to replace Gaussian distributed points. Also, points are generated in a way 
of feature-knock-out (Wolf et al., 2004). With the injected points of improved quality, 
contributions of injected point techniques are naturally enhanced. In this study, we 
reduce the risk caused by point injection through adopting a different working 
mechanism. Under our mechanism, only the given samples are used for building the 
probability estimators required by our feature evaluation criterion BD, and the given 
samples as well as the injected points are employed for evaluating feature subsets. 
Without participating in the process of model-building, the undesirable impacts of 
injected points must be reduced. 

Around a pattern xi, a point injection technique adds v points which are generated 
from a distribution b(x-xi). v and b(x-xi) play important parts in a point injection 
scheme (Kim, 2002; Skurichina, 2000). In order to strike the balance between 
performance stability and computational efficiency, v can be determined. Also, it has 
been argued that, for the reasonable choice of v, such as v = 8, 10 or 20, the effect of 
point injection is slightly different (Skurichina, 2000). We thus set v = 10. As to b(x-
xi), the “width” of b(x-xi), which determines the variance of the injected points, is 
crucial. Since the aim of point injection is to test the properties of the region around 
xi, a large width of b(x-xi) is not expected. And a small width of b(x-xi) must 
correspond to the insignificant contribution.  

To determine an appropriate width, the simulation based strategies can be used 
(Skurichina, 2000). We develop an analytic approach to determine the width of b(x-
xi). This approach is inspired by the ideas mentioned in (Glick, 1985; Kim, 2002). 
Aiming to reduce the bias intrinsic to the re-substitution error estimation as much as 
possible (Glick, 1985), our approach depends on the joint distribution (X,C) to 
determine the width of b(x-xi). Around a given pattern, say xi, we generate several 
points around from Gaussian distribution N(xi,σi) where σi = di/2 and di is the distance 
of xi to the nearest samples, i.e.,  
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In this way, it can be guaranteed that x’ having ||xi-x’|| = di occurs with the close-zero 
probability.  

The given sample set D cannot cover each part of the whole data domain very well. 
In turn, the probability estimators built with these samples cannot describe every part 
of the data domain. In detail, there may exist the parts where the conditional 
probabilities p(x|y) for all classes are very small. According to the equation (8), it is 
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 for all classes ω. It indicates that, when all p(x|y) are small, 

a very little change of x will cause a large change of BD(S). The points of such type 
are not expected.   

For the originally given samples on which the probability models are built, at least 
one p(x|y) must be large enough. On the other hand, an injected point may be 
uncertain. That is, all the probabilities about it are very small. It is better to minimize 
the impact of uncertain points, although it can be argued that they may equally affect 
the quality of different feature subset candidates. With this idea, the way of 
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calculating BD(S) of injected points is modified. Suppose that, according to the given 
D, we generate dataset D’ for which we have  
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where |D’| means the cardinality of D’. y’i and w’ i are the weight and class label of x’i 
and are inherited from the corresponding sample in D. With part A, the impact of 
uncertain points will be limited, which satisfies our expectation.   

Below, contributions of the point injection strategy are assessed on a group of 3-
class and 8-feature synthetic datasets. In these data, the first four features are 
generated according to 

Class 1 ~ m samples from N((1, 1, -1, -1), σ), 
Class 2 ~ m samples from N((-1, -1, 1, 1), σ), 
Class 3 ~ m samples from N((1, -1, 1, -1), σ). 

And the other four features are randomly determined from normal distribution with 
zero means and unit variance. Clearly, among totally eight features, the first four are 
equally relevant to the classification task, and the others are irrelevant. Three feature 
selection methods are applied to this data to determine four salience features. They 
are the conventional SFS, SFS with the feature-knock-out and the proposed point 
injection approaches. Only if all relevant features are selected out, the selection 
results can be considered correct.  

Table 1. Comparisons on a synthetic data. These results demonstrate the merits of the proposed 
point injection strategy. 

 SFS SFS with feature-
knock-out strategy 

SFS with the point 
injection strategy 

m = 3 0.980 0.941 0.991 
 = 0.3 

m = 9 1.000 1.000 1.000 

m = 3 0.357 0.358 0.392 
 = 0.8 

m = 9 0.933 0.930 0.931 
 

Different settings of σ and m are investigated. For reliable estimation, in each 
setting, three feature selection methods are run on 10,000 datasets independently 
generated. And the correct results over 10,000 trials are counted. In Table 1, the 
correctness ratios are presented. It shows that the feature-knock-out point injection 
strategy cannot bring the improved feature selection results in this example. This may 
be because this strategy is originally designed for classification learning, not for 
feature selection. Turn to the proposed point injection strategy. Its advantage becomes 
more significant either when the sample size becomes small or when σ becomes 
large. All these conditions actually mean there is a high likelihood of overfitting since 
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a larger σ means a more complex problem. Thus, the presented results suggest that 
our approach can improve the generalization capability of SFS.  

3.3   Procedure  

With the above described weighting-sample and point injection strategies, the 
conventional BD based SFS feature selection models are modified as follows. 

Step 1. (Initialization) Set the selected feature set S empty. Also set the injected 
point set D’ empty. Also, for each sample, assign a weight of 1, i.e., wi = 1, 
1≤i≤n. 

Step 2. (Feature selection) From the feature set F, identify the feature fm which 
satisfying  

[ ]'|)(|)(maxarg DD
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m SfBDSfBDf +++=
∈

. 

The probability estimators required by BD are established with (7) based on the 
dataset D. And the BDs on D and D’ are defined in (8) and (11) 
respectively. Put the feature fm into S and delete it from F at the same time.  

Step 3. (Update the sample weights) Set wi based on equation (6). Then normalize 

wi as ∑ == n
j jii www

1
. 

Step 4. (Point-injection) Set D’ with empty. In the data domain described by S, 
conduct point injection around each sample in the following way.  

Around the pattern xi, produce 10 points based on the distribution N(xi,di/2) where 
di is defined by the equation (10). Place these points into D’. Also, the class 
label and the weight of these injected points are set with yi and wi, 
respectively.  

Step 5. If the size in S has reached the desired value, then Stop the whole process 
and output S, otherwise Go to step 2.  

4   Experimental Results 

Our modified SFS, called gradient and point injection based SFS (gp-SFS), is 
evaluated through comparing with several related methods, namely, the conventional 
SFS, support machine learning recursive feature elimination scheme (SVM RFE) 
(Guyon, 2002), and the conventional SFS with the feature-knock-out regularization 
technique (fko-SFS) (Wolf, 2004). SVM RFE, a typical embedded feature selection 
model, begins with the training of an SVM (of linear kernel) with all the given 
features. Then according to the parameters of the trained SVM, features are ranked in 
terms of importance, and half of the features are eliminated. The training-SVM-
eliminating-half-of-features process repeats until no feature is left. The feature-knock-
out point injection scheme is designed for classification learning in which a point x’ is 
added in each learning iteration. To generate x’, two samples (say x1 and x2) are 
randomly selected and a feature f is specified according to the newly-built model. And 
all information about x’ is set with that of x1, except that x’(f) = x2(f). We adopt this 
point injection scheme to modify the conventional SFS as fko-SFS.  
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To assess the quality of feature selection results, we rely on experimental 
classification results. In details, given a feature subset for examining, say S, certain 
classifiers are constructed using training data which is also used for feature selection. 
Then, based on the performance of these classifiers on a test dataset, the quality of S 
is evaluated. Respectable feature subsets should correspond to good classification 
results. For this evaluation purpose, four typical classifiers are employed. They are 
multiply percepton model (MLP), support vector machine model with linear kernel 
(SVM-L), the support vector machine model with RBF kernel (SVM-R) and the 3-NN 
rule classifier. The MLP used in our study is available at 
http://www.ncrg.aston.ac.uk/netlab/. For convenience, we set 6 hidden neurons of 
MLP for all examples.  It is worth noting that slightly different number of hidden 
neurons will not have effect on the overall performance. The number of training  
cycles is set with 100 in order to ease the concerns on overfitting. And other learning 
parameters are set with default values. SVM models are available at 
http://www.isis.ecs.soton.ac.uk/resources/ svminfo.  

4.1   Data  

Sonar classification. It consists of 208 samples. Each sample is described with 60 
features and falls into one of two classes, metal/rock. From 208 samples, 40 ones are 
randomly selected for training and the others are used for test.  
Vehicle classification. This is 4-class dataset for distinguishing the type of vehicle. 
There are totally 846 samples provided. Each sample is described with 18 features. 
We randomly select 80 samples for training. The remained 766 samples are used for 
testing.  
Colon tumor classification. This is a microarray data set and is built for colon 
tumor classification, which contains 62 samples collected from colon-cancer 
patients (Alon, 1999).  Among these samples, 40 samples are tumor, and 22 are 
labeled “normal”. There are 2,000 genes (features) selected based on the confidence 
in the measured expression levels. We randomly split the 62 samples into two 
disjoint groups – one group with 31 samples for training and the other one with 31 
samples for test.  
Prostate cancer classification. This is another microarray dataset, which are 
collected with the aims to prostate cancer cases from non-cancer cases (Singh, 2002). 
This dataset consists of 102 samples from the same experimental conditions. And 
each sample is described by using 12600 genes (features). We split the 102 samples 
into two disjoint groups – one group with 60 samples for training and the other with 
42 samples for testing.  

4.2   Results  

In each example, we repeat investigation on 10 different sets of training and test data. 
The presented results are the statistics of 10 different trials. Also, in each training 
data, the original ratios between different classes are roughly remained. For example,  
 



 An Excellent Feature Selection Model 689 

 
(a) 

 
(b) 

Fig. 1. Comparisons on UCI datasets. (a) sonar classification. (b) vehicle classification. 

during the investigation on the colon cancer classification, the original ratio between 
tumor and normal class, i.e., 40 normal vs. 22 tumor, is roughly kept in each training 
dataset. For each training dataset, we preprocess it so that each input variable has zero 
means and unit variance. And the same transformation is then applied to the 
corresponding test dataset.  

The computational complexity of SFS type models is O(M2) where M is the 
number of features. A microarray dataset generally contains information of thousands 
or ten thousands genes. Clearly, directly handling the huge gene sets cost SFSs 
unbearable computational burden. To improve the computational efficiency, and 
given by the fact that most genes originally given in a microarray dataset are  
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Fig. 2. Comparisons on the colon cancer classification data 

 

Fig. 3. Comparisons on the prostate cancer classification data 
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irrelevant to a specified task, a widely used pre-filtering-gene strategy is adopted in 
our study to eliminate the irrelevant and insignificantly relevant genes before the  
commencement of feature selection. In details, all the given features (genes) are 
ranked in a descend order of BD (8). And the one third top-ranked features are left 
behind for further feature selection.  

The comparative results are presented in Figure 1 (for sonar classification and for 
vehiecle classification), Figure 2 (for colon cancer classification) and Figure 3 (for 
prostate cancer classification).  In most cases, our modified SFS greatly outperform 
the conventional SFS. This is contributed by the gradient based and point injection 
strategies. Also, compared with fko-SFS and SVM RFE in which the problem of 
small-sample is tackled implicitly or explicitly, the proposed SFS still shows its 
advantages. The contributions of our study can thus be proved.  

5   Conclusions 

In this paper, two strategies are proposed to enhance the performance of filter feature 
selection models.  The first one is a graident based strategy which is used to enhance 
the searching effectivenss, and another is a new point-injection approach which is 
aimed to improve generalization ability. The results obtained on synthetic data and 
real data obivously demonstrate that these proposed strategies can bring a remarkable 
improvement. The proposed strategies are only applied to one representative filter 
model – BD based sequential forward searching. In furture work, we will extend these 
strategies to other filter models and further evaluate their merits and limitations. 
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