
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007 385

Self-Organizing and Self-Evolving Neurons:
A New Neural Network for Optimization

Sitao Wu and Tommy W. S. Chow, Senior Member, IEEE

Abstract—A self-organizing and self-evolving agents (SOSENs)
neural network is proposed. Each neuron of the SOSENs evolves
itself with a simulated annealing (SA) algorithm. The self-evolving
behavior of each neuron is a local improvement that results in
speeding up the convergence. The chance of reaching the global
optimum is increased because multiple SAs are run in a searching
space. Optimum results obtained by the SOSENs are better
in average than those obtained by a single SA. Experimental
results show that the SOSENs have less temperature changes
than the SA to reach the global minimum. Every neuron ex-
hibits a self-organizing behavior, which is similar to those of the
self-organizing map (SOM), particle swarm optimization (PSO),
and self-organizing migrating algorithm (SOMA). At last, the
computational time of parallel SOSENs can be less than the SA.

Index Terms—Particle swarm optimization (PSO), self-
organizing and self-evolving neurons (SOSENs), self-
organizing map (SOM), simulated annealing (SA).

I. INTRODUCTION

SIMULATED ANNEALING (SA) is a kind of stochastic op-
timization method introduced by Kirkpatrick et al. [1]. It

is derived from the analogy of statistical mechanics and has
been widely used in many large-scale optimization problems
[2], [3]. However, it has a drawback of being computationally
demanding. The ways of relieving its computational problem
can be viewed from two directions. First, it is to parallelize the
SA. Second, it is to hybridize the SA with other optimization
algorithms like genetic algorithm (GA).

The operation of traditional SA algorithm is inherently
serial and is difficult to be implemented in parallel because
only a single solution evolves itself with time. This has made
the speeding up of computational operation difficult. Since
the last 20 years, efforts have been made for parallelizing the
SA (PSA). The PSA can be mainly divided into four types:
1) data parallelism, 2) speculative algorithm, 3) multiple move,
and 4) multiple independent runs (MIR) [4]. Data parallelism
means that data is decomposed into small subsets distributed
among processors [5]–[7]. Each processor handles its corre-
sponding data subset and performs SA on it. However, data
parallelism is problem-dependant and requires subsets to be
loosely coupled. In speculative algorithms [8], steps of an-

Manuscript received March 9, 2005; revised January 17, 2006; accepted
September 10, 2006. This work was supported by the City University of Hong
Kong under an SRG Grant 7001846-570.

The authors are with the Department of Electronic Engineering, City Univer-
sity of Hong Kong, Kowloon SAR, Hong Kong (e-mail: eetchow@cityu.edu.
hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2006.887556

nealing are pipelined. Thus, subsequent decisions may affect
the rejection of prior calculations. Multiple move parallelism
allows evaluating multiple solutions belonging to a single
Markov chain simultaneously on different processors [9], [10].
MIR parallelism computes several Markov chains, or parts of
them, on different processors [4], [10]–[13]. The PSA can be
implemented in parallel machines with single instruction mul-
tiple data, multiple instruction multiple data, shared memory,
and distributed memory. Despite all these efforts, they have not
radically changed the serial nature of the SA method [14].

In contrast to the SA, GA [15] uses a population of candi-
date solutions. The mechanism of GA is based on natural ge-
netics and natural selection. As the entire candidate solutions
can be easily distributed in a parallel way across processors, im-
plementing GA in parallel is straightforward compared to the
SA. However, there is no established convergence proof for the
GA [16], whereas the property of convergence to global minima
is theoretically proved for the SA method. The convergence of
GA generally appears to be problem-dependent. Thus, many
different methods were proposed. Also, the GA is not suitable
for real-valued optimization problems because of the bit-string
representations of real numbers.

The SA and GA can be hybridized into one new algorithm
exhibiting the advantages of both the SA and GA. One of the
hybrid algorithms is the genetic simulated annealing (GSA) pro-
posed in [14], [17]–[21]. The population-based GSA algorithm
hybridizes the GA and SA into one algorithm. The main dif-
ference between the GSA and GA is that the newly generated
candidate solutions by the GSA are probabilistically accepted as
child candidate solutions like the SA approach. This is different
from the case of GA that uses roulette wheel selection. As the
GSA still has the concept of parents and offspring, it is clearly
more similar in nature to the GA than to the SA. Like the GA,
the GSA needs to handle the problem of chromosome coding,
which is not comfortable in handling real numbers. Apart from
the GA, there are other population-based evolutionary optimiza-
tion algorithms, such as genetic programming [22], evolution
strategies [23], evolutionary programming [24], ant system [25],
differential evolution (DE) [26], particle swarm optimization
(PSO) [27], etc. Among these evolutionary algorithms, candi-
dates cooperate and compete with each other during the course
of optimization. The best solution is found in the final stage. All
the candidate solutions can be considered as self-organized in-
telligent objects.

In this paper, a new neural network, called self-organizing
and self-evolving neurons (SOSENs), is proposed. It is a popu-
lation-based algorithm running a single SA in each neuron. As a

1045-9227/$25.00 © 2007 IEEE

386 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007

result, the optimization results can be enhanced compared with
a single SA. The time of temperature changes by the SOSENs
can also be reduced compared with that using the SA to reach
the optimum value. The SOSENs are related to evolutionary
algorithms because their self-organizing behavior is like the
crossover operator in the GA. The self-evolving of the SOSENs
is like the mutation operator in the GA. The SOSENs are also
related to the MIR type PSA because their neurons run multiple
Markov chains. The MIR-type PSA algorithms select the best
solution, or mix the solutions according to the Boltzmann
distribution for the synchronization at the next temperature
[4], [10]–[13]. However, in the SOSENs, the synchronization
mechanism is different in a way that new weights of all neurons
are selected from the neighbors of the best neuron at the current
temperature. In this paper, the SOSENs are studied from an
evolutionary perspective and they are implemented in serial
machines.

Like the GSA, the SOSENs can be considered as a combi-
nation of the SA and population-based evolutionary algorithms,
but they have no concept of parents and offspring compared with
the GSA. Each of their neuron learns by itself (self-evolving)
with a SA, and learns from other neurons by cooperation and
competition (self-organizing) after certain time. The behavior
of self-evolving, or local improvement, has been adopted in
memetic algorithm (MA) [28] and a hybrid genetic algorithm
[29]. The self-organizing behavior of the SOSENs is similar to
the SOM [30], [47], [50]. It is also similar to the PSO [27] and
the self-organizing migrating algorithm (SOMA) [31], two re-
cently developed population-based optimization algorithms. In
the case of PSO, one parent particle generates one new child par-
ticle. For SOMA, one parent individual generates a series of new
child individuals at the same time in a deterministic way and se-
lects the best one. The self-organizing behavior is subsequently
followed in the next step for the PSO and SOMA. Thus, both of
them exhibit no self-evolving behavior. In the case of SOSENs,
most of the original SA algorithm is not changed. The only
change lies with the weights of neurons that are updated after
the cooperation and competition caused by the self-organizing
behavior, when simulated annealing in all candidates reaches
the equilibrium at a certain temperature. Results obtained by the
SOSENs can be better than running a single SA because input
space is largely searched using multiple neurons. The time of
temperature changes can be less than that of the SA to reach
the optimum value. When each neuron of the SOSENs is dis-
tributed in processors of parallel machines, computation time is
less than SA. Compared with other versatile evolutionary opti-
mization algorithms, the SOSENs can deliver comparable per-
formance or even better performance dependent on evaluation
criteria and applications.

In this paper, Section II briefs the SA, and other algorithms.
Section III describes the derivation, architecture, and implemen-
tation of the SOSENs. Section IV shows how the SOSENs op-
timize 16 synthetic continuous functions. In Sections V and VI,
they are applied to the traveling salesman problem and fixed
channel allocation (FCA) in mobile communications. Conclu-
sion and discussion are given in Section VII.

II. BACKGROUND

A. Simulated Annealing Algorithm

The SA is a flexible optimization algorithm originating in sta-
tistical mechanics [1]. It ensures that a new search will not be
stuck in local minima. The mechanism of escaping from local
minima is performed by a process to physical annealing. It al-
lows “uphill moves” to higher cost at higher temperature to pre-
vent optimization from being stuck in a local minimum. The
general pseudocodes of the SA algorithm for searching global
minimum are as follows:

1) Randomly initialize the solution .

2) Set the initial temperature .

3) Until equilibrium is reached, do:

Generate a new solution from the neighborhood
of .

Let and be the values of the cost function at
and , respectively.

If , accept new solution .

Else if a random number
, accept new solution .

4) If stop criterion is valid, stop.

5) Reduce the temperature cooling .

6) Go to 3).

B. Self-Organizing Map

The self-organizing map (SOM) [30], [48], [49] is well
known with its ability to perform vector quantization while
being able to preserve the topology of given data. It consists
of neurons located at a regular low dimensional [usually
two-dimensional (2-D)] grid. The SOM algorithm is iterative.
Each neuron has a feature vector in a

-dimensional input space. At each training step , a sample
data vector is randomly chosen from a training set. Dis-
tances between and all feature vectors are computed. The
winning neuron is the neuron with the feature vector
closest to

(1)

where is the number of neurons, and is the feature vector
of the th neuron.

A set of neighboring neurons of the winning neuron is de-
noted as , which decreases its neighboring radius of
the winning neuron with time. is defined as the neigh-
borhood function around the winning neuron at time . It is a
nonincreasing function with time and with the distance between
neuron and the winning neuron . Usually, is chosen as
a Gaussian function

(2)

WU AND CHOW: SOSENS: NEW NEURAL NETWORK FOR OPTIMIZATION 387

where and are the coordinates of the neurons and
in the output grid, respectively.
The sequential weight-updating rule in the SOM algorithm

can be written as

otherwise
(3)

where is the learning rate decreasing with time. Note that
(3) represents the self-organizing behavior, i.e., cooperation and
competition.

C. PSO

The PSO [27] is a population-based optimization algorithm
using multiple candidate solutions to find the global optimum of
a search space. It is inspired mainly by social behavior of flock
organisms, such as swarms of birds or schools of fishes. The
population is called a swarm and an individual is called a par-
ticle. A particle moves with an adaptive speed with an attempt
to find the global optimum through cooperating and competing
with other particles. When a specific particle finds the best so-
lution, other particles move closer to it.

Let the position vector and the velocity vector of particle
in the -dimensional space be and

respectively. Let be the
best position previously encountered by particle , and

be the best position of all particles. Then, the
new velocity and the new position of particle are modified [27],
[32] by

(4)

(5)

where is a positive parameter called inertia weight, and
are positive constants called cognitive and social parameters

respectively, and is a random number uniformly dis-
tributed in the range of [0, 1]. Note that (4) and (5) represent the
self-organizing behavior, i.e., cooperation and competition.

D. DE

The DE [26] is also a population-based optimization algo-
rithm. It uses floating-point encoding. Its parameter perturba-
tion is self-adjusted by utilizing the information from popula-
tions themselves. To start with its self-adjusted population re-
production scheme, let the position vector of the th population
in the -dimensional space be . Then, the
candidate vector of the th population for
the next generation is generated by (6), as shown at the bottom
of the page, where , and are three randomly selected
population indices such that is a
random number selected for the th dimension, is

a random dimension for the th population, and
and are real constants. Equation (6) ensures that

is different from in at least one dimension. After muta-
tion by (6), the next generation of is selected by

if
otherwise

(7)

where is the target function to be minimized. Equations
(6) and (7) represent the self-organizing behavior of cooperation
and competition.

E. SOMA

The SOMA [31] is another population-based optimization
method. Its mechanism is similar to that of the PSO. How-
ever, the local optimum, represented by in the PSO, is not
considered in the SOMA. Furthermore, not all the dimensions
of an individual are modified during the course of self-orga-
nizing. The modified dimensions are randomly selected. Let
the position vectors of individual and the best individual
in the -dimensional space be and

, respectively. First, a SOMA generates an in-
teger vector

(8)

where is random number for the th dimension,
is a predefined constant satisfying , and is used

for the purpose of perturbation. The SOMA then generates a
series of data points along the direction between individual

and the best one

(9)

where is the th movement defined as
is the step size and is less than a

maximum movement length Max len. The data point with the
best value among all is selected as the new candidate of
individual . Note that if the parameters and in (4) are set
to zeros, the updating rule (5) of PSO is similar to the updating
rule (9) of SOMA. In fact, (9) embodies the self-organizing
behavior of cooperation and competition.

F. Self-Evolving

Both the PSO and SOMA algorithms exhibit the behavior of
cooperation and competition, but new candidate solutions are
not well fine-tuned to a state of near local optimum. This results
in a long computational time or slow convergence. If each can-
didate solution is moved toward local optimum by self-evolving
before cooperation and competition, the improvement is accu-
mulative which results in speeding up the convergence. Self-
evolving is adopted in [28] and [29] and is called local improve-
ment. Let be the best solution of an individual and

if or
otherwise

(6)

388 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007

Fig. 1. Architecture of SOSENs.

be an operator that changes to one of its neighboring
points. The pseudocode of self-evolving or local improvement
is illustrated as follows.

Procedure of self-evolving or local improvement

Repeat

If is better than in local optimum

End if

Until termination criterion for self-evolving or local
improvement is satisfied.

III. SOSENS

The architecture of SOSENs is similar to the SOM. They also
have input and output layers. Like the SOM, they consist of
output neurons located at a usually 2-D rectangular or hexagonal
grid. An example of a rectangular SOSENs network with 6 6
neurons is shown in Fig. 1. Since the objective of SOSENs is
to perform optimization, inputs and weights of neurons have
different meanings from the traditional SOM. Inputs of SOSENs
are the weight of a winner neuron representing the best solution
at a time, while weights of neurons are the candidate solutions
in population-based optimization algorithms. The final optimum
solution is found among the weights of neurons in the SOSENs.

As discussed previously, the basic principle of the SOSENs
includes two important properties. The mechanism of self-orga-
nizing has been used by some population-based optimization al-
gorithms, such as GA, PSO, and SOMA; however, self-evolving
is not adopted in these algorithms. On the other hand, a self-
evolving mechanism has been adopted in MA [28], which is a
GA hybridization with local search technique. If self-evolving
is allowed in population-based optimization algorithms, opti-
mization time will be reduced because self-evolving is a local
improvement that fine-tunes the next candidate solution to the
proximity of a local optimum, instead of randomly evolving.
Given sufficient time for self-evolving, all neurons will be even-
tually self-organized. In fact, each neuron of SOSENs acts as an

intelligent object that performs a single SA algorithm, cooper-
ates, and competes with each other. Weights of neurons are up-
dated toward the winner neuron that has the best optimization
value at a time. Let be the weight of the th neuron of
neurons, i.e., the th candidate solution of an optimization task.
The detailed optimization procedure of SOSENs is as follows.

1) Randomly initialize the weight of the th neuron
, which satisfies certain optimization constraint.

2) Begin a SA process for each neuron at temperature
.

3) Under certain optimization constraint, each neuron evolves
by a SA at temperature .

4) When all SAs reach their equilibrium at temperature ,
find the winner neuron with the best optimum value
among all the neurons.
Update the weights of other neurons toward
the winner neuron according to the distances between
them and the winner neuron on the fixed 2-D grid. The
solution of the winner neuron keeps unchanged. Under
certain optimization constraint, the updating rule of all the
neurons are as follows:

(10)

where is the learning rate that is fixed over time and
is the fixed neighborhood function defined by

(11)

where and are the 2-D coordinates of neurons
and in the 2-D grid, respectively, is the neighborhood

radius, and is a contraction coefficient.
5) If certain stop criterion is satisfied, stop. Otherwise, de-

crease the temperature , go to 3).
The fixed learning rate is in the range of [0, 1]. In this

paper, is set to 1 and satisfactory results are obtained for all
the investigated problems. The neighborhood radius can be
set to a range that affects all neurons in SOSENs. Large value
of is used for easy optimization problem (smooth optimiza-
tion surface) while small value of is used for hard optimiza-
tion problem (complicated optimization surface). The number
of neurons can be set to smaller values when the optimiza-
tion problem is easy. Larger value of can be used when hard
problem is to be optimized. The contraction coefficient con-
trols the extent of candidates being updated toward the winner
neuron. A smaller value of will generate a larger effect of
pushing neurons toward the winner neuron. Usually, can be
chosen as 1. For very complicated optimization problems, can
be much less than 1 for escaping from a local minimum. Also,
the distance between a neuron and the winner neuron affects the
extent of that neuron being updated towards the winner in the so-
lution space. That is, if a neuron is the one nearest (or farthest)
to the winner candidate , the extent of updating is the largest
(or least) to the winner candidate in the solution space.

Self-evolving and self-organizing in a size 3 3 SOSENs is
illustrated in Fig. 2 for solving a 2-D optimization problem. The
initial positions of all the nine neurons are illustrated in Fig. 2(a).

WU AND CHOW: SOSENS: NEW NEURAL NETWORK FOR OPTIMIZATION 389

Fig. 2. Optimization process of SOSENs. (a) Solid circles are the initial positions of neurons and solid lines are the connections between neighboring neurons.
Dotted circles are the positions of neurons and dotted lines are the connections between neighboring neurons when all SAs of SOSENs evolve and reach the
equilibrium at temperature T . Note that neuron 3 is the winner candidate since its position is the nearest candidate to the global minimum (around�0.4). (b) The
new positions of other neurons are self-organized around the winner neuron. The extent of updating is according to the distances between them and the winner
neuron on the 2-D output grid.

Fig. 3. Three-dimensional examples of (a) Rastrigin’s function, (b) Schwefel’s function, (c) Egg holder, and (d) Rana’s function.

Then, all neurons evolve to their respective local optima by its
SA, as shown in Fig. 2(a). After self-evolving, all the candidates
are self-organized towards the neuron with the best optimum
value at a time, as illustrated in Fig. 2(b).

IV. EXPERIMENTAL RESULTS OF SOSENS ON 16
SYNTHETIC TEST FUNCTIONS

In this section, 16 synthetic functions listed in Table I are
tested [31]. The performances of the SOSENs on continuous
variables are compared with the PSO, DE, SOMA, and SA. The

SOSENs are implemented serially. That is, at a certain temper-
ature, all the SAs in the SOSENs are performed in a way of
one by one. The three-dimensional (3-D) examples of Rastrigin,
Schwefel, Egg holder, and Rana’s functions with two variables
are shown in Fig. 3.

All the 16 test functions have variables. In this paper, is
set to 100. Five optimization algorithms, the PSO, DE, SOMA,
SA, and SOSENs (size 6 6), are applied to the optimization
(minimization) problems. The common parameters of a single
SA and SAs in the SOSENs are the same. The stopping criteria

390 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007

TABLE I
SIXTEEN TEST FUNCTIONS

of both the SOSENs and SA are the difference between the cur-
rent best value and the last best one being less than 10 . The
neighborhood radius is set to 6. All the parameters of the SA
and the SOSENs are listed in Table II. The parameters of the
PSO, DE, and SOMA are selected by trials and errors such that
they can produce good results. The numbers of population of
PSO, DE, and SOMA for the first, third, and fourth functions
are 20, while they are all 60 for the other functions.

For all the five optimization algorithms, they are repeated
100 times for each test function. The performance of the five
algorithms with their corresponding minimum and mean cost
values are listed in Table III. The numbers of temperature
changes in the SA and SOSENs are also listed in Table III. All

the five algorithms achieve similar performance. For the test
function 2 (Rosenbrock), which is difficult to optimize [31],
the SA and SOSENs exhibit much lower cost values than the
other three algorithms. From the average results (mean value)
listed in Table III, the PSO achieves the best results on two
functions among the five algorithms. The DE, SOMA, SA, and
SOSENs achieve the best on two, seven, two, and three func-
tions, respectively. The SOMA may appear to be the best by
rank, but we can perform comparison in another way. From the
average results listed in Table III, if we choose the best result
for each function among the five algorithms and compute the
difference of each result to the best for each algorithm, as listed
in Table IV, the average difference to the best for the SOSENs

WU AND CHOW: SOSENS: NEW NEURAL NETWORK FOR OPTIMIZATION 391

TABLE II
PARAMETERS OF SA AND SOSENS FOR THE 16 TEST FUNCTIONS

is the lowest on the 16 functions. From this perspective, the
SOSENs deliver the best results.

The times of temperature change by the SOSENs is about
in average of that by SA. This reduction is due to the fact that
there are many candidates simultaneously searching the entire
space while there is only one candidate used to search the space
in the case of SA. Apparently, the SOSENs can find the global
optimum more “efficiently” with less number of temperature
changes compared with SA under the same stopping criterion.
It is also worth noting that the times of temperature changes in
SOSENs can be further reduced when more candidates are used.
The actual central processing unit (CPU) time of serially imple-
mented SOSENs is about eight times of that of the SA if the
common parameters of SOSEN and SA are the same. It is diffi-
cult to compare the SOSENs to other three algorithms for actual
CPU time because they are all parameter dependent. However,
all the five methods can generate results in reasonable length of
time. If the SOSENs are implemented in a parallel system, the
computational time can be significantly less compared with a
single SA.

V. EXPERIMENTAL RESULTS OF SOSENS ON TRAVELING

SALESMAN PROBLEM

The SOSENs are used for solving the traveling salesman
problem (TSP). In this case, SOSENs are used for discrete
data. The TSP is a well-known optimization problem that is
nondeterministic polynomial-time (NP)-hard. The TSP is a very
important issue because it can be extended to other engineering

problems such as vehicle routing, scheduling problem, printed
circuit board design, etc. Among the methods used for solving
the TSP, evolutionary algorithms appears to be very promising
[33], [34]. In this paper, we consider the most-popular 2-D
Euclidean TSP.

Assume that there is cities, whose 2-D coordinates are ex-
pressed by . The cost function of TSP
becomes

(12)

In order to find the local optimum for the TSP, some effective
heuristic methods have been proposed. The three well-known
methods are the 2-Opt [35], 3-Opt [36], and Lin–Kernighan
(LK) algorithm [37]. The 2-Opt is the simplest one but the LK
is much better than the other two. The neighborhood of a candi-
date generated by the LK has less cost value than the 2-Opt or
3-Opt. The LK has been considered the clear winner for local
search algorithms [33]. Thus, it is used for generating neighbor-
hood of a candidate by the SA or SAs in the SOSENs. Assume
that there are neurons for the SOSENs. The procedures of the
SOSENs for solving the TSP are as follows.

1) Initialize each neuron which is an or-
dered list of cities.

2) Begin a SA process for each neuron at temperature
.

392 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007

TABLE III
COMPARISON RESULTS FOR PSO, DE, SOMA, SA, AND SOSENS ON THE 16 TEST FUNCTIONS

3) Each neuron evolves itself by SA at temperature . The
neighborhood of a neuron is generated by LK.

4) When all SAs reach their equilibrium, find the winner can-
didate with the lowest value of the cost function (12).

5) Update the candidates toward the winner can-
didate according to the distances between them and the
winner candidate on the 2-D output grid. The solution of
the winner candidate keeps unchanged. The solutions of

direct neighboring candidates around the winner candidate
use LK once. The other nondirect neighboring candidates

use multiple LKs, i.e., a chain of consecutive LKs. The
farther the distance to the winner candidate on the 2-D
output grid, the more the number of multiple LKs is. If the
distance between candidate and the winner candidate
on the 2-D output grid is defined as , the number of
multiple LKs is , where is a function that

WU AND CHOW: SOSENS: NEW NEURAL NETWORK FOR OPTIMIZATION 393

TABLE IV
DIFFERENCE TO THE BEST RESULTS FOR PSO, DE, SOMA, SA, AND SOSENS ON THE 16 TEST FUNCTIONS

TABLE V
COMPARISON FOR HESEA, LKH, SA, AND SOSENS ON THE 11 TSP BENCHMARK PROBLEMS

takes the integer part of real number . Thus, all the can-
didates are updated by LKs.

6) If certain stopping criterion is satisfied, stop. Otherwise,
decrease the temperature for all candidates, go to 3).

The single SA algorithm for the TSP is equivalent to the
SOSENs network with only one neuron and without step 4).
For SOSENs, a 3 3 network size is used for the 11 bench-
mark problems of Travelling Salesman LIBrary (TSPLIB) [39].

394 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007

The optimum value of them is listed in Table V. The numbers
of cities range from 318 to 4461. Four optimization algorithms,
heterogeneous selection evolutionary algorithm (HeSEA) [34]
(a genetic algorithm), Lin–Kernighan heuristic (LKH) [38] (an
improved LK algorithm), SA, and SOSENs are compared. The
performances of all these algorithms are evaluated by error de-
fined by

Error
average optimum

optimum
(13)

The common parameters of the single SA and SAs in the
SOSENs are the same. The number of iterations in a temperature
for the SA and SOSENs is set to five for all the TSP problems.
The stopping criterion for the SA and SOSENs is that the current
best value reaches the optimum one, or the time of temperature
changes reaches a predefined maximum number , which is set
to five times of the number of cities for each problem.1 The op-
timization task for each problem by all the four algorithms is re-
peated 20 times. All the results are listed in Table V. All the four
algorithms achieve comparable performance on the 11 prob-
lems. For all the 11 problems, the optimum values are reached
by the SOSENs in all 20 trials. However, for the “vm1084” and
“u2152” problems, the SA cannot consistently reach to the op-
timum values in all 20 trials. The LKH cannot consistently reach
to the optimum values for the “lin318,” “vm1084,” and “u2152”
problems. The HeSEA cannot consistently reach to the optimum
values for the “fnl4461” problem. Furthermore, the SOSENs
need about of the times of temperature changes in average
compared to the SA to reach the optimum values. In an extreme
case of the “pcb1173” problem, the SOSENs need 20.5 average
temperature changes while the SA needs 415.0 changes. If the
SOSENs are implemented in parallel machines, there will be
greatly computational time reduction.

VI. EXPERIMENTAL RESULTS OF SOSENS ON FCA

In this section, we demonstrate the performance of the
SOSENs using a real application of a FCA in wireless cellular
systems. The SOSENs are also used for discrete data. In the
universal mobile telecommunications system (UMTS) terres-
trial radio access network (UTRAN), a geographical region is
spatially divided into a number of cells. Research on how to ef-
ficiently utilize the scarce radio spectrum resource to satisfy the
increasing users has become an exigent issue. Several types of
channel assignment strategies have been proposed in different
literatures. They can be classified into three types [40]: 1) FCA,
2) dynamic channel allocation (DCA), and 3) hybrid channel
allocation (HCA). In FCA [41], a set of nominal channels is
permanently assigned to each cell and there is no interference
for these assigned channels. The predefined channel assignment
is according to the estimated traffic load in each cell. If no un-
used nominal channels in a cell are available, a new call in that
cell is blocked. It has been shown that the FCA is a generalized
graph coloring problem [42] and is, therefore, NP-hard. Many
methods have been proposed to provide near-optimal solutions.
The FCA can be divided into four categories: 1) minimum order
FCA, 2) minimum span FCA, 3) minimum interference FCA,

1The results delivered by the LKH are generated by an executable file from
http://www.akira.ruc.dk/~keld/research/lkh/. The results of the HeSEA are cited
from [34].

and 4) minimum blocking FCA [43]. In this paper, minimum
span FCA is used.

Minimum span FCA assigns channels so that no interferences
occurs and tries to minimize frequency span. It can be expressed
by

minimize: the difference of the highest frequency and

the lowest frequency

s. t. demand constraint and no interference

Assume that there are cells for a cellular system. The
demand constraint vector for all cells is represented by

, where is the current channel demand
for the th cell. A compatibility matrix is introduced by
considering the cochannel, adjacent and cosite interferences.
The diagonal element of indicates that any two channels
assigned to cell must be at least channels apart from each
other to avoid cosite interference. The off-diagonal element

means that any two channels assigned to
cell and must be at least channels apart from each
other to avoid cochannel or adjacent interferences. For the th

call in the th cell , a frequency
is assigned. Note that is represented by an integer

and the lowest frequency is represented by 0. Any different
assigned frequencies should satisfy , where

.
Then, minimum span FCA can be formulated in by

minimize (14)

In the SOSENs, we use frequency-exhaustive strategy [44] to
generate a neuron without violating the interference constraint.
The weight of a neuron is an ordered call list. For generating a
neighborhood of a neuron, we use the local search (LS) strategy
in [44]. First, a call in the th cell is randomly selected. Then,
another call in the other cells is also randomly selected. Finally,
the two selected frequencies are exchanged in the ordered call
list and they determine the assignment by the frequency-exhaus-
tive strategy.

The optimization procedures of the SOSENs for minimum-
span FCA is like that for the TSP listed in Section V. One dif-
ference is that the weight of each neuron is ordered call list for
the FCA. Another difference lies with the neighboring neurons
that are updated by one or multiple LSs for the FCA. The last
difference is that the cost function is (12) for FCA.

The single SA algorithm for the FCA is just the SOSENs with
only one candidate and without step 4). The SOSENs and SA
are performed on a Philadelphia, PA, benchmark cellular system
in [45]. There are total of 21 cells in the system. There are total
of eight problems with different interference constraints and de-
mand vectors. The lower bounds of minimum spans for the eight
problems have been extensively studied. All the configurations
and lower bounds for the eight problems can be seen in [45].
The compatibility matrix can be derived from the configura-
tions. Simulations are conducted for 20 times by the SOSENs
and SA. For the SOSENs network, a 2 2 size is used. The
common parameters of the single SA and SAs in SOSENs are
the same. The number of iteration at a fixed temperature for the
SA and SOSENs is set to 500 for all the eight problems. The
stopping criterion for them is that the current best value reaches
the lower bound, or the time of temperature changes reaches a

WU AND CHOW: SOSENS: NEW NEURAL NETWORK FOR OPTIMIZATION 395

TABLE VI
COMPARISON FOR PFGA, SA, AND SOSENS ON THE EIGHT PHILADELPHIA BENCHMARK PROBLEMS

predefined maximum number , which is set to 500 for all the
eight problems.

The comparative results of the SA, SOSENs, and parameter-
free genetic algorithm (PFGA) [45] (a genetic algorithm) are
listed in Table VI. They show that the SA and SOSENs can de-
liver comparable performance with the PFGA except problem 6.
Except problem 3, the PFGA can reach the optimum values in
all the trials. For problems 1, 2, 7, and 8, both the SOSENs and
SA reach the lower bounds in all 20 trials. Compared to the SA,
the SOSENs need about times of temperature changes in av-
erage to reach the lower bound. For problems 4 and 5, both the
SOSENs and SA can reach the lower bounds in some of the 20
trials. However, the SOSENs achieve a little better average min-
imum span than the SA with about 85% times of temperature
changes. For problem 3 and 6, both the SOSENs and SA cannot
reach the lower bounds in all 20 trials within the predefined
500. However, the SOSENs achieve a little lower average min-
imum span than the SA. For problem 3, the average minimum
span by the SOSENs is even lower the PfGA, but for problem 6,
both the SA and SOSENs have a larger average minimum span
than the PfGA. The average minimum span generated by the SA
and SOSENs is about 16 more than the optimum value. Thus,
both the SA and SOSENs are not good for problem 6. As mul-
tiple SAs are used to search the whole input space in the case of
SOSENs, the chance of finding the global optimum is increased.
Thus, SOSENs can have less temperature changes to reach the
lower bound, or have lower frequency span in average than the
SA. This means that when the SOSENs are implemented in par-
allel machines, the computational time can be largely reduced.

VII. CONCLUSION AND DISCUSSION

The SA is a serial optimization algorithm while the SOSENs
are a population-based optimization algorithm using multiple
SAs with self-evolving and self-organizing. When SOSENs
have only one candidate, they have no self-organizing behavior
and are thus equivalent to the SA. As multiple SAs are used
to search the whole input space in the case of SOSENs, the
optimization results are better in average than the SA for the
cost values or the number of temperature changes. Although
SOSENs use multiple SAs and thus are computationally heavier
than a single SA as a whole, they require much less number
of temperature changes for completing the optimization. As a

result, when they are implemented by parallel machines, the
optimization time can be largely reduced compared with a
single SA. Furthermore, compared with the complex and tricky
parallel implementation of serial SA, the proposed SOSENs can
be implemented directly or easily in a parallel system because
they are naturally a population-based optimization algorithm.

Although the mechanism of SOSENs is based on SA, tabu
search algorithm [46] may be an alternative option to be uti-
lized in each candidate. In this case, each candidate runs the
tabu search algorithm with self-evolving and self-organizing.
The tabu search, however, is a local search algorithm that cannot
guarantee global optimum convergence. Also, the tabu search
algorithm needs a tabu list to memorize the recently found so-
lutions in order to search for the local optimum. Apparently,
tabu-based SOSENs approach will be rather computationally
demanding. Thus, tabu search algorithm is not recommended
in the SOSENs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers’
useful suggestions that greatly improved the format of this
paper.

REFERENCES

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[2] S. A. Kravitz and R. A. Rutenbar, “Placement by simulated annealing
on a multiprocessor,” IEEE Trans. Computer-Aided Design Integr. Cir-
cuits Syst., vol. 6, no. 4, pp. 534–549, Jul. 1987.

[3] M. Duque-Antón, D. Kunz, and B. Rüber, “Channel assignment for
cellular radio using simulated annealing,” IEEE Trans. Veh. Technol.,
vol. 42, no. 1, pp. 14–21, Feb. 1993.

[4] A. Bevilacqua, “A methodological approach to parallel simulated an-
nealing on an SMP system,” J. Parallel Distrib. Comput., vol. 62, pp.
1548–1570, 2002.

[5] J. R. A. Allwright and D. B. Carpenter, “A distributed implementation
of simulated annealing for the traveling sales man problem,” Parallel
Comput., vol. 10, pp. 335–338, 1989.

[6] P. Banerjee, M. Jones, and J. Sargent, “Parallel simulated annealing
algorithms for cell placement on hypercube multiprocessors,” IEEE
Trans. Parallel Distrib. Syst., vol. 1, no. 1, pp. 91–106, Jan. 1990.

[7] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A parallel
simulated annealing algorithm for the place of macro-cell,” IEEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 6, no. 5, pp.
838–847, May 1987.

[8] Sohn, “Parallel N-ary speculative computation of simulated annealing,”
IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 10, pp. 997–1005, Oct.
1995.

396 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007

[9] P. R. Ragot and G. Dreyfus, “A problem independent parallel imple-
mentation of simulated annealing: Models and experiments,” IEEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 9, no. 8, pp.
827–835, Aug. 1990.

[10] R. Diekmann, R. Lüling, and J. Simon, “Problem independent dis-
tributed simulated annealing and its applications,” in Lecture Notes in
Economics and Mathematical Systems. Berlin, Germany: Springer-
Verlag, 1993, vol. 396, pp. 17–44.

[11] S. Gupta and L. Bic, “Distributed adaptive simulated annealing for syn-
thesis design space exploration” Univ. California, Irvine, CA, Tech.
Rep. 99-05, 1999.

[12] S. M. Bhandarkar, S. Machaka, S. Chirravuri, and J. Arlond, “Parallel
Computing for chromosome reconstruction via ordering of DNA se-
quences,” Parallel Comput., vol. 24, no. 12–13, pp. 1177–1204, 1998.

[13] K.-W. Chu, Y. Deng, and J. Reinitz, “Parallel simulated annealing by
mixing of states,” J. Comput. Phys., vol. 148, pp. 646–662, 1999.

[14] H. Chen, N. S. Flann, and D. W. Watson, “Parallel genetic simulated
annealing: A massively parallel SIMD algorithm,” IEEE Trans. Par-
allel Distrib. Syst., vol. 9, no. 2, pp. 126–136, Feb. 1998.

[15] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin, Germany: Springer-Verlag, 1994.

[16] G. Rudolf, “Convergence properties of canonical genetic algorithms,”
IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 96–101, Jan. 1994.

[17] K. Jeong and J. J. Lee, “Adaptive simulated annealing genetic algo-
rithm for system identification,” Eng. Applicat. Artif. Intell., vol. 9, no.
5, pp. 523–532, 1996.

[18] H. C. Huang, J. S. Pan, Z. M. Lu, S. H. Sun, and H. M. Hang, “Vector
quantization based on genetic simulated annealing,” Signal Process.,
vol. 81, pp. 1513–1523, 2001.

[19] M. Kolonko, “Some new results on simulated annealing applied to job
shop scheduling problem,” Eur. J. Oper. Res., vol. 113, pp. 123–136,
1999.

[20] P. Wong and S. Y. W. Wong, “Hybrid genetic/simulated annealing ap-
proach to short-term multiple-fuel-constrained generation scheduling,”
IEEE Trans. Power Syst., vol. 12, no. 2, pp. 776–784, May 1997.

[21] M. E. Aydin and T. C. Fogarty, “A distributed evolutionary simulated
annealing algorithm for combinational optimization problems,” J.
Heuristics, vol. 10, pp. 269–292, 2004.

[22] R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[23] H.-G. Beyer, The Theory of Evolution Strategies. Berlin, Germany:
Springer-Verlag, 2001.

[24] D. Fogel, Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. Piscataway, NJ: IEEE Press, 1996.

[25] Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[26] J. Lampinen and R. Storn, “Differential evolution,” in New Optimiza-
tion Techniques in Engineering, G. Onwubolu and B. V. Babu, Eds.
Heidelberg, Germany: Springer-Verlag, 2004, pp. 123–166.

[27] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. Neural Netw., Perth, Australia, Nov. 1995, pp.
1942–1948.

[28] P. Moscato, C. Cotta, and A. Mendes, “Memetic algorithms,” in New
Optimization Techniques in Engineering, G. Onwubolu and B. V.
Babu, Eds. Heidelberg, Germany: Springer-Verlag, 2004, pp. 53–85.

[29] I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for
feature selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no.
11, pp. 1424–1437, Nov. 2004.

[30] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer-
Verlag, 1997.

[31] Zelinka, “SOMA-self-organizing migrating algorithm,” in New Op-
timization Techniques in Engineering, G. Onwubolu and B. V. Babu,
Eds. Heidelberg, Germany: Springer-Verlag, 2004, pp. 167–217.

[32] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm opti-
mization,” in Proc. IEEE Int. Congr. Evol. Comput., 1999, vol. 3, pp.
101–106.

[33] S. Jung and B.-R. Moon, “Toward minimal restriction of genetic en-
coding and crossovers for the two-dimensional euclidean TSP,” IEEE
Trans. Evol. Comput., vol. 6, no. 6, pp. 557–565, Dec. 2002.

[34] H.-K. Tsai, J.-M. Yang, Y.-F. Tsai, and C.-Y. Kao, “An evolutionary
algorithm for large traveling salesman problems,” IEEE Trans. Syst.,
Man, Cybern., B, Cybern., vol. 34, no. 4, pp. 1718–1829, Aug. 2004.

[35] H. Braun, “On traveling salesman problems by genetic algorithm,”
in Proc. Workshop Parallel Problem Solving from Nature, 1990, pp.
129–133.

[36] P. Jog, J. Suh, and D. Gucht, “The effect of population size, heuristic
crossover and local improvement on a genetic algorithm for the trav-
eling salesman problem,” in Proc. 3rd Int. Conf. Genetic Algorithms,
1989, pp. 110–115.

[37] S. Lin and B. Kernighan, “An effective heuristic algorithm for the trav-
eling salesman problem,” Oper. Res., vol. 21, no. 4598, pp. 498–516,
1973.

[38] Helsgaun, “An effective implementation of the lin-kernighan traveling
salesman heuristic,” Eur. J. Oper. Res., vol. 126, pp. 106–130, 2000.

[39] G. Reinelt, “TSPLIB-A traveling salesman library,” ORSA J. Comput.,
vol. 3, pp. 376–384, 1991.

[40] Katzela and M. Naghshineh, “Channel assignment schemes for cellular
mobile telecommunication systems: A comprehensive survey,” IEEE
Personal Commun., vol. 3, no. 3, pp. 10–30, Jun. 1996.

[41] W. C. Y. Lee, Mobile Cellular Telecommunications Systems. New
York: McGraw-Hill, 1989.

[42] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe, “Channel assign-
ment problem in a cellular system and a new coloring problem of net-
works,” IEICE Trans. Commun. Electron. Inf. Syst., vol. 74, no. 10, pp.
2983–2989, 1991.

[43] H. G. Sandalidis and P. Stavroulakis, “Heuristics for solving fixed-
channel assignment problems,” in Handbook of Wireless Networks and
Mobile Computing, Stojmenovic, Ed. New York: Wiley, 2002, pp.
51–70.

[44] W. Wang and C. K. Rushforth, “An adaptive local-search algorithm for
the channel-assignment problem (CAP),” IEEE Trans. Veh. Technol.,
vol. 45, no. 3, pp. 459–466, Aug. 1995.

[45] S. Matsui, I. Watanabe, and K.-I. Tokoro, “Application of the param-
eter-free genetic algorithm to the fixed channel assignment problem,”
Syst. Comput. Jpn., vol. 36, no. 4, pp. 350–359, 2005.

[46] F. Glover and M. Laguna, Tabu Search. Boston, MA: Kluwer, 1997.
[47] S. Wu and T. W. S. Chow, “PRSOM: A new visualization method by

hybridizing multi-dimensional scaling and self-organizing map,” IEEE
Trans. Neural Netw., vol. 16, no. 6, pp. 1362–1380, Nov. 2005.

[48] E. Berglund and J. Sitte, “The parameterless self-organizing map algo-
rithm,” IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 305–316, Mar.
2006.

[49] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 586–600, May 2000.

[50] T. W. S. Chow and S. Wu, “An online cellular probabilistic self-or-
ganizing map for static and dynamical data sets,” IEEE Trans. Circuit
Syst. I, Reg. Papers, vol. 51, no. 4, pp. 732–747, Apr. 2004.

Sitao Wu received the B.E. and M.E. degrees from
the Department of Electrical Engineering, Southwest
Jiaotong University, Chengdu, P.R. China, in 1996
and 1999, respectively, and the Ph.D. degree from the
Department of Electronic Engineering, City Univer-
sity of Hong Kong, Hong Kong, P.R. China, in 2004.

His research interest areas are neural networks,
pattern recognition, and their applications.

Tommy W. S. Chow (M’94–SM’03) received the
B.Sc. (First Honors) degree and the Ph.D. degree
from the Department of Electrical and Electronic
Engineering, University of Sunderland, Sunderland,
U.K., in 1984 and 1988, respectively, working on
a collaborative project between The International
Research and Development, Newcastle Upon Tyne,
U.K. and the Ministry of Defense (Navy) U.K. He
undertook his Trainee with Reyrolle Technology,
U.K.

He is a Professor in the Department of Electronic
Engineering at the City University of Hong Kong, Hong Kong, P.R. China.
He has been working on different consultancy projects with the Mass Transit
Railway, Kowloon-Canton Railway Corporation, Hong Kong. He has also
conducted other collaborative projects with the Kong Electric Co. Ltd, and
Royal Observatory Hong Kong, and the MTR Hong Kong on the application
of neural networks for machine fault detection and forecasting. He is an author
and coauthor of numerous published works, including book chapters, and over
100 journal articles related to his research. His main research has been in the
area of learning theory and optimizations, system identification, and machine
fault diagnostics.

Dr. Chow received the Best Paper Award in the 2002 IEEE Industrial Elec-
tronics Society Annual Meeting in Seville, Spain. He was the Chairman of Hong
Kong Institute of Engineers, Control Automation and Instrumentation Division
1997–1998.

