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Abstract

Image classification is a challenging problem of computer vision. Conventional image classification methods use flat image features

with fixed dimensions, which are extracted from a whole image. Such features are computationally effective but are crude representation

of the image content. This paper proposes a new image classification approach through a tree-structured feature set. In this approach, the

image content is organized in a two-level tree, where the root node at the top level represents the whole image and the child nodes at the

bottom level represent the homogeneous regions of the image. The tree-structured representation combines both the global and the local

features through the root and the child nodes. The tree-structured feature data are then processed by a two-level self-organizing map

(SOM), which consists of an unsupervised SOM for processing image regions and a supervising concurrent SOM (CSOM) classifier for

the overall classification of images. The proposed method incorporates both global image features and local region-based features to

improve the performance of image classification. Experimental results show that this approach performs better than conventional

approaches.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, content-based image classification and retrie-
val received increasing attention through numerous appli-
cations [8,10–13,21] in the field of education,
entertainment, military, and biomedicine. With the im-
mense growth of computational power and the continu-
ously declining hardware cost, image retrieval, image
classification, and pattern recognition have become more
demanding in the area of computer vision. The success of
solving such problem lies in the issues of object-based
image understanding, proper representation of image
contents, and suitable learning algorithms. Traditionally,
flat image features (fixed length features extracted from
whole image), such as color, texture, and their combina-
tions [8,10,12,13,17], are used for image retrieval and
classification. Color histogram, which can be extracted
e front matter r 2006 Elsevier B.V. All rights reserved.
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efficiently, is the most popular feature. Color histogram is
generally insensitive to small changes in camera positions,
but it is a very coarse representation in a sense that it
discards other important features like textures, shapes,
sizes, and positions of the objects. Thus, color histogram
lacks spatial information and is sensitive to intensity
variation, color distortion, and cropping. As a result,
images with similar histogram may exhibit substantially
different semantics [14]. To overcome the limitation of
color histogram, color layout approach was introduced to
partition an image into blocks. Subsequently, the average
colors [16], or Daubechies’ wavelet coefficients, [25] of
those blocks were used as features. The shape, the position,
and the texture information can be maintained at a proper
resolution, but the retrieval performance is sensitive to the
procedures of shifting, cropping, or scaling, because local
properties are emphasized. Gabor filter [10] is widely
adopted to extract texture features from images and it has
been shown to be an efficient approach for performing
image retrieval and classification. Combination of color
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and texture features [17] is shown to be more effective in
describing image content compared with color or texture
alone. All these flat vector-type image features are excellent
in comparing the overall image similarity, but they are still
unable to describe the high level and the object-based
property of the image content.

A meaningful image representation is the key for
performing classification of images. Region-based ap-
proaches [3,9,20,21,24] were introduced for a better
understanding of image contents. In the region-based
approaches, instead of extracting features from the whole
image, the image is first decomposed into regions for the
subsequent features extraction. The similarity between two
images is expressed as all the possible combinations of the
similarities among their regions. However, region-based
approach has been limited to image retrieval application
for two main reasons. First, the comparison of two images
is not as straightforward as comparing two feature vectors.
Second, traditional neural learning is not directly applic-
able to such non-flat structured data. Therefore, one query
image must be compared with every other image of the
database. Tree-structured representation is shown to be an
effective approach for image processing and image analysis
[19]. There are evidences indicating that region-based
image representation can be better encoded using a tree
representation. Some successful works can be found in
[1,2,15,18,26]. In [15,26], binary space partition (BSP) tree
representation is used for coding images in terms of
segmented regions. Recent works in [1,2,18] indicate that
the BSP tree-based region-oriented image representation
can be effective for image processing, classification, and
retrieval. Though BSP provides efficient processing of data,
partitioning a region into two sub-regions in BSP does not
always provide a meaningful representation of the objects
in a real image. Height of the BSP tree grows linearly with
the number of objects in the image that lacks clarity in
representing image contents.

In this paper, an improved image classification approach
is proposed. Image contents are represented by integrating
both the global image features and the local region-based
features. Fig. 1 briefly illustrates the proposed approach.
A two-level tree hierarchically contains all image features,
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Fig. 1. Overview of the 2-layer SOM-based classification
where the root node represents the whole image and the
child nodes represent the image regions. Thus, the global
and local image features are represented by the root and
child nodes, respectively. Two-level self-organizing map
(SOM) networks are used to process the tree-structured
data. First, all image regions of the whole database are
processed by an unsupervised SOM. After the completion
of training, image regions are compressed by the positions
of winner neurons on the SOM map. The position vectors
together with the global image features are then used to
classify the images through a concurrent self-organizing
maps (CSOM) classifier [11]. Experimental results indicate
that the proposed method delivers better results in the
application of image classification. It is also worth noting
that the proposed method is able to maintain the
computational cost at a reasonably low level.
This paper is organized as follows. In Section 2, the

representation and the feature extraction of image contents
are described. Section 3 elaborates a two-layer SOM-based
image classification system. Section 4 presents the experi-
mental results and discussions. Finally, conclusion is drawn
in Section 5.
2. Representation of image contents

Feature extraction and representation is important in the
sense that they serve as dimensionality reduction for
enabling the analysis of image contents. However, features
should also reflect the high-level semantic (perceived by
human) in addition to visual similarity obtained by global
features like color histogram. Thus, different region-based
approaches were proposed to provide a better under-
standing of image semantic. In this work, a composite
region-based image representation is developed to integrate
both the visual and regional properties of the image
content. To extract regional features, JSEG, a color image
segmentation method [6], is used. In brief, JSEG first
quantizes colors of an image to several representative
classes. It then labels pixels with the color classes to form a
class map of the image. At last, the image is segmented
using multi-scale J-images [6]. Experimental results showed
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Fig. 2. Representation of image contents by integrating global features and local region-based features (a) whole image (b) segmented regions, and (c) tree

representation of the image.
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that JSEG provides good segmentation on a variety of
color images [5].

After image segmentation, the image is decomposed into
a number of homogeneous regions. In Fig. 2, it shows that
the image is represented by a two-level tree, where the root
node represents the whole image and child nodes represent
the region-based objects. The root node is assigned to the
global feature, which is the color histogram in this case.
Local region-based features, such as color moment,
texture, size, and shape, are assigned to the child nodes.
This enables global and local image features to be
integrated through a tree structure. Hue, saturation, and
value (HSV) color space is used to calculate the color
histograms. The histogram of each channel is computed as
follows:

hG ¼
nG

nT
; G ¼ 1; 2; . . . ; q, (1)

where G represents a quantized level of an HSV color
channel, nG is the total number of pixels in that level, nT is
the total number of pixels, and q is the number of
quantized levels. To avoid computational burden, only 16
or 8 quantized levels are used to calculate the histograms of
each of the 3 HSV channels. The complete histogram
vector is represented as follows:

Hq ¼ hH1; . . . ; hHq; hS1; . . . ; hSq; hV1; . . . ; hVq

� �
.

The HSV color space is also used to calculate the
first and the second-order color moments of the image
region:

CM2 ¼ mc1 mc2 mc3 sc1 sc2 sc3
� �

,

where mc1, mc2, and mc3 are the means of the three channels
of a region, and sc1, sc2, and sc3 are their corresponding
standard deviations. We also used the third-order moment
for the whole image:

CM3 ¼ mc1 mc2 mc3 sc1 sc2 sc3 gc1 gc2 gc3
� �

,

where gc1, gc2, and gc3 represent the skewness of each color.
Three features are used to describe the shape properties

of a region. They are normalized inertia [24] with orders
from 1 to 3. For a region M in Euclidean space <2, the
normalized inertia of order a is

IaðMÞ ¼

P
ðx;yÞ2M ðx� x̄Þ2 þ ðy� ȳÞ2

� �a=2
fnMg

1þa=2
, (2)

where ðx̄; ȳÞ is the centroid of the region, and nM is the
number of pixels in the region M. The three shape features
are represented as

S ¼ ½s1 s2 s3� ¼
I1ðMÞ

Io1
;

I2ðMÞ

Io2
;

I3ðMÞ

Io3

� �
, (3)

where Io1 ; Io2 ; Io3 are the minimum normalized inertia
achieved by circular area. The size feature of a region M

in the image I is defined as

AðMÞ ¼
nM

nT
, (4)

where nM is the number of pixels in a region M, and nT is
the total number of pixels in the image. Gabor filter is the
most commonly used method in extracting texture features.
It is a group of wavelets that capture energy at a specific
scale (frequency) and a specific direction. It provides a
localized frequency description and captures the local
features/energy of the signal. Texture features can then be
extracted from this group of energy distributions. The scale
and orientation tunable property of Gabor filter makes it
especially useful for texture analysis. The details can be
found in [7,10]. Suppose Guv(x, y) is a discrete Gabor
wavelet transform for a given image I(x, y) at uth scale and
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vth orientation, means and standard deviations of Guv(x, y)
are computed to represent the Gabor features:

muv ¼
1

PQ

X
x

X
y

jGuvðx; yÞj, (5)

suv ¼
1

PQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

X
y
jGuvðx; yÞj � muv

q
, (6)

where P�Q is the size of image. The complete Gabor
features is then represented as

GU ;V ¼ m00;s00;m01;s01; . . . ;m0ðU�1Þ;s0ðV�1Þ;
�
. . . ;mðU�1ÞðV�1Þ;sðU�1ÞðV�1Þ

�
.

In this study, another smaller set of wavelet features are
used for the image regions that have been successfully used
in region-based image retrieval [24]. This set contains the
moments of wavelet coefficients in high-frequency bands as
a texture feature representing energy in the high-frequency
bands by Haar wavelet transform. After one-level wavelet
transform of the intensity image, a 4� 4 image block is
decomposed into the four frequency bands, namely LL,
LH, HL, and HH bands [4]. Each band contains 2� 2
coefficients. Suppose the coefficients in the LH band are
(a1, a2, a3, a4), the texture feature of that block in the LH

band is computed as

t1 ¼
1
4

a2
1 þ a2

2 þ a2
3 þ a2

4

	 
� �1=2
. (7)

The other two features t2 and t3 are computed similarly
from the HL and HH bands. The mean and standard
deviation in the LH, HL, and HH bands are thus used as
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3. Image classification by two-layer SOM networks

3.1. Encoding of data

Traditional neural network-based classifiers only deal
with fixed vector-type input data. In this application, the
tree-structured image data cannot be encoded with fixed
input vector simply by adding features of all nodes. It is
because the number of segmented regions is not fixed for
every image and the simple addition of nodes’ features can
result in too high a dimensional input vector. To solve this
problem, we use the SOM’s property of dimensionality
reduction. The child nodes’ (regions) features are first
processed by a SOM to reduce the dimension of the final
input vector. Thus, special arrangement of a two-layer
SOM network is used to process the tree. The bottom layer
consists of a SOM network to process the child nodes,
while the top layer that consists of a CSOM classifier
processes the root nodes. Fig. 3 demonstrates the proces-
sing of tree-structured data. To start the training process,
the bottom SOM layer is first trained by the child node
inputs from all tree data. After the completion of training,
each child node is associated with its best-matched neuron
on the SOM. Positions of these neurons are then used for
inputs encoding the root node together with the features of
the root nodes. The root nodes, the final identity of the
images, are then processed with the CSOM classifier [11].
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Thus, the bottom layer SOM is used for region encoding,
while the top layer CSOM is used for image classification
task.

In this paper, a tree structure is represented by a set of
nodes as G ¼ fN1;N2; . . . ;NT g, where T is the total
number of nodes of the tree, N1 is the root node, and others
are child nodes. Input encoding of a 2nd level (child) node
(N2 to NT) can be simply represented as X  ff 1;
f 2; . . . ; f mg, where f represents a feature value, and m is
the number of features used for the image regions.
However, the root node encoding is represented by
X  ff 1; f 2; . . . ; f k; p1; p2; . . . ; pcmax

g, where k is the
total number of global features, and pi( ¼ [xi, yi]

T) is a 2-
D position vector. The position vectors contain the
positions of the best-matching neurons on the SOM map
for all the child nodes of the tree. The value of cmax is equal
to or greater than the maximum number of the child nodes
found in the database. Thus, some pi can contain zero
vectors for a root node when the number of its child nodes
is less than cmax. These position vectors are sorted
according to their spatial positions on the SOM map,
which is discussed in the following section.

3.2. Training process

The training process runs in a bottom up fashion. First,
all the child nodes are collected from the whole database
and are fed for training the bottom layer SOM. The input
vectors of the root nodes are formed prior to the training of
the CSOM. In CSOM [11], instead of using a big SOM
map, N smaller SOMs are used for the classification of N

classes of data. Each SOM of the CSOM is labeled and
trained only with one specific class of data (Fig. 3c).
Training is performed in the same way as the ordinary
SOM. In the recognition/classification phase, the test
pattern is compared with every SOM of CSOM. The
SOM that provides the lowest quantization error indicates
the class of the test pattern. The overall training process of
the two-layer SOM network can be summarized as follows:
SOM training algorithm

Step 1.
 Randomly initialize the weight vector of bottom

layer SOM. Collect all child nodes as the training
inputs for bottom layer SOM.
Step 2.
 Set Iteration ¼ 0.

Step 3.
 Randomly select an input data.

Step 4.
 Find a winner neuron on the SOM for the input

data using similarity measure.

Step 5.
 Set the learning rate and the neighborhood

function according to iteration number.

Step 6.
 Update the winner neuron and its neighbors on

the SOM map.

Step 7.
 Set Iteration ¼ Iteration+1

Step 8.
 If Iteration reaches its maximum value go to next

step, otherwise go to Step 3.

Step 9.
 Find the final winner neuron for each child node

and save the information.
Step 10.
 Make up the input vectors for root nodes by
combining features and child positions.
Step 11.
 Randomly initialize the weight vector of each
SOM of the CSOM.
Step 12.
 Set class j ¼ 1.

Step 13.
 Select the jth SOM of CSOM as active SOM for

training. Select root nodes only from the jth class
as the training input data.
Step 14.
 Do Steps (2–8) for training the jth SOM of
CSOM.
Step 15.
 Set j ¼ j+1. If j4N (N is the number of classes)
go to Step 16, otherwise go to Step 13.
Step 16.
 End program.
The basic steps involved in the above training procedure
are elaborated below:

Initialization: The weight vector W ¼ ½w1; w2; . . . ;wm�
T

of each neuron of the bottom layer SOM is randomly
initialized with a value ranged between 0 and 1, where m is
the total number of features used for child nodes. However,
for the neurons of the CSOM, the dimension of the weight
vector W ¼ ½w1; w2; . . . ; wk; p1fwx1

; wy1g; p2fwx2
;wy2g

. . . pcmax
fwxcmax

;wycmax
g�T is equal to ðk þ 2� cmaxÞ, where

k is the number of features used for root nodes. From our
practical experience, a good choice of cmax lies between Z
and 2Z, provided cmaxXCmax, where Cmax is the maximum
number of child nodes found on the database, and Z�Z is
the size of the bottom layer SOM. In the case of 2ZoCmax,
cmax can simply be set to Cmax. In our studied database,
Cmax is found to be 22 and cmax is set to 66.

Similarity matching and winner neuron: For an input
node X, the best-matching neuron on the SOM is found by
using the following maximum similarity criterion:

ðxw; ywÞ ¼ arg max
x;y

SðX ;W x;yÞ; x; y ¼ 1; 2; . . . ;Z,

(8)

where (xw,yw) is the position of the winner neuron on the
SOM map, Z is the size of SOM layer, and S is the
similarity measure between a root node X and the weight
vector W of a neuron.

SðX ;W Þ ¼
1

k

Xk

i¼1

1� absðf i � wiÞ
� �

þ
1Pcmax

j¼1

S px
j

� �Xcmax

j¼1

S px
j

� �
1� d px

j ; p
w
j

� �n o
ð9Þ

where,

S px
j

� �
¼

1 if px
j að0; 0Þ;

0 otherwise;

(

where d( � ) is the Euclidean distance, px
j and pw

j are the
position vector in X and W, respectively. The first part in
Eq. (9) is the similarity measure in global feature space,
while the second part contains the similarity measure in the
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local region-based feature space. It should be noted that
these global and local similarities are weighted equally.
Inclusion of the mean operator in each part enables them
to be evaluated equally independent of the number of
features or child positions. For the child nodes, the
similarity function becomes

SðX ;W Þ ¼
1

m

Xm

i¼1

1� absðf i � wiÞ
� �

. (10)
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Updating: After the winner neuron is found for the input
node X, the weight vectors are updated as follows:

W x;yðtþ 1Þ ¼W x;yðtÞ þ ZðtÞ hx;y;xw;ywðtÞ ½X ðtÞ �W x;yðtÞ�,

x; y ¼ 1; 2; . . . ; Z, ð11Þ

where t is the iteration number, ZðtÞ is the learning rate
parameter, and h(t) is the neighborhood function centered
on winning neuron at position (xw, yw). Both Z(t) and
h(t) decrease gradually during the learning process.
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The neighborhood function is:

hx;y;xw ;yw
ðtÞ ¼ exp �

ðx� xwÞ
2
þ ðy� ywÞ

2
� �

2s2ðtÞ

 !
, (12)

where s(t) is the width of the neighborhood function that
decreases with iteration.

sðtÞ ¼ s0 exp �
t

t1

 �
, (13)

where s0 is the initial width, t1 ¼ t2= log s0
	 


, and t2 is the
maximum number of iterations. The learning rate can be
selected by

ZðtÞ ¼ Z0 exp �
t

t2

 �
, (14)

where Z0 is the initial learning rate.
Making inputs for root nodes: After the training is

complete for the bottom layer SOM, each of the second
level child nodes is associated with the best-matched
neuron. Positions of these neurons p1; p2; . . . ; pc

� �
are

combined with the global features of root nodes to make
the inputs for the root nodes. Prior to the use of position
vectors, they are normalized through dividing a position
Fig. 5. Samples of the diffe
vector by the length of the square SOM grid. Before
the position vectors are combined with the global features,
the position vectors are sorted according to their spatial
positions on the SOM map and are replaced with a
fixed length vector fp1; p2; . . . ; pcmax

g. The purpose of this
sorting lies in the similarity matching between two position
sets of children nodes that appears in the second part
of Eq. (9). The basic idea is to compare a child node from
the first set with only one similar child node from
another set. Thus, by performing the sorting procedure,
the two position sets can be compared by a meaningful
and fast ‘‘one to one’’ matching (see Fig. 4(g), instead
of ‘‘many to many’’ matching (see Fig. 4f). The sorting of
the position vectors is conducted using a simple
1-dimensional SOM that has cmax number of neurons.
This 1-dimensional SOM is trained by all the position
vectors (p ¼ {x, y}) of the child nodes over the
database. The neurons’ weights are saved for latter use.
At last, the following sorting procedures are
applied to obtain the sorted position vector,

ps
1; ps

2; . . . ; ps
cmax

h i
. Fig. 4 shows that the trained weights

of the neurons of the 1-dimensional SOM follow the data
clusters in a spatially ordered sequence.
rent classes of images.
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Table 2

Classification performances achieved by different feature sets

Classification performance (in percentage) on testing set

T.W.S. Chow, M.K.M. Rahman / Neurocomputing 70 (2007) 1040–1050 1047
Sorting process for a set of position vectors
fp1; p2; . . . ; pcg using 1D SOM of cmax neurons:

Set ps
j  ½0; 0�, j ¼ 1; . . . ; cmax

Loop for each pi, i ¼ 1y c

done ’0
Find winner neuron j for pi

While done ¼ 0
If ps

j ¼ ½0; 0� (p
s
j is not occupied before)

ps
j  pi

done ’1
else

Find next best-matched neuron l and set j’l

End while
Table

Lists o

Flat fe

FF1

FF2

FF3

Region

RF1

RF2

RF3

Tree-st
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TS2

TS3

TS4

TS5

The fe
1

f th

atur

fea

ruc

atur
e fe

e se

tur

ture

es u
Average Image classes
End
1 2 3 4 5 6 7 8 9 10

Flat feature sets
After the two-layer SOM network has been trained, the
classification of a query image is quite simple. First, the tree
FF1 69 62 66 56 84 100 70 88 76 32 56

FF2 70 64 64 60 98 98 58 98 84 22 56

FF3 68 64 60 60 84 98 70 86 70 30 54

Region feature sets

RF1 51 42 14 6 80 54 56 96 74 8 76

RF2 63 56 46 40 86 92 60 84 62 34 70

RF3 56 46 4 34 62 64 56 86 98 22 88

Tree-structured feature sets

TS1 80 80 64 54 82 100 82 96 100 48 92

TS2 81 80 50 72 92 100 82 94 98 48 90

TS3 78 76 36 64 78 100 86 90 100 52 94

TS4 78 74 52 66 84 100 86 84 100 48 88

TS5 80 78 52 60 86 100 80 90 100 60 92
data for the query image are extracted. Second, the child nodes
are processed in the bottom SOM layer and the positions

p1ðx1; y1Þ; p2ðx2; y2Þ; . . . ; pcðxc; ycÞ
� �

of their winner neu-

rons are found. The sorted position vector ps
1; p

s
2; . . . ; p

s
cmax

h i
is then formed using the 1-dimensional SOM described
in the above procedures. Finally, appending this
position vector to global features forms the input vector

f 1; f 2; . . . ; f k; ps
1; p

s
2; . . . ; p

s
cmax

h i
for the root node. The

root node input is then compared at CSOM, where each SOM
is labeled with one class only. The query is then assigned to the
class of a SOM block containing the best-matched neuron.
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4. Results

To evaluate the proposed approach, an image database
consisting of 1000 images was used in this study. The
images were categorized into 10 classes, each containing
100 images. The 10 classes are namely ‘‘people’’, ‘‘beach’’,
Features

Color moments+Gabor texture [CM3 G4,6]
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‘‘buildings’’, ‘‘busses’’, ‘‘dinosaurs’’, ‘‘elephants’’, ‘‘flow-
ers’’, ‘‘horses’’, ‘‘mountains’’ and ‘‘food’’ (Fig. 5). Before
extracting the features, each image was resized into 10,000
pixels (approximate) while maintaining their original
width-height ratio. The image database was divided into
two equal parts, namely training and testing image sets. In
order to evaluate the generalization capability of the
proposed approach, only the training set was used in the
training process. The training and the testing sets are
evaluated separately for the classification results.

We have also used a traditional set of flat image features
extracted over the whole image. In addition, we compared
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our proposed approach with the purely region-based
approach in which the same tree structure of our method
is used without assigning global features to root node.
Different feature combinations were investigated for use as
region features in our approach. As a global feature, color
histogram was used as the root node’s attribute. Table 1
summarizes only the best-performing feature sets, while
others are excluded due to their poor classification
performance. SOMs are trained separately for evaluating
each feature set, and the features used in each set are
detailed in Table 1. The flat image features include color
histogram [8,12], binary histogram [8], Gabor texture
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Table 3

The relative computational time required for different feature sets

Training time (min) Testing time per query (sec)

Flat/Region feature sets

FF1 1.7813 0.0907

FF2 14.1882 1.2154

RF2 30.7367 0.1532

Tree-structured feature sets

TS1 71.3647 0.4249
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features [7,10], and color moments [22]. For color and
binary histograms, 64 bins were used for each of the HSV
channels that were found the best performing for this data
set. As the common practice, 4 scales and 6 orientations
were used for Gabor texture features. Means and standard
deviations of the complex-valued output from Gabor filters
were used that make the feature dimensions 48. For the flat
global features, 9 color moments of a different order from
the 3 HSV color channels were used. The first moment
stored the average color of the images. The second and the
third moments stored the standard deviation and skewness
of each color. However, we used smaller dimensions of
features in the proposed tree structure to reduce the
computational cost. Only 16 and 8 bins were used in the
color histogram for the global and the region feature,
respectively. Also, Gabor texture features were calculated
using 1 scale and 6 orientations for the regions. Three
shapes and one size feature (region based) were used in all
combinations of the tree-structured features. For all the flat
feature sets, a one-layer CSOM classifier was used. It
should be noted that the additional bottom layer SOM
used in the proposed approach was only to encode the
image regions, but not for performing classification. A
40� 40 size was used in the bottom layer SOM for region
encoding and 10� 10 size was used for each SOM in the
top layer CSOM. In our experiment, the above SOM sizes
appeared to be a good choice in compromising the
performance and the computational cost. For all the cases,
training was run for (10�Nd) iterations (Nd is the number
of training data) with the initial learning rate set to 0.3 and
the initial radius of the neighborhood function set to half
of the lattice dimension.

Table 2 summarizes the image classification results on
different image classes using different feature sets. As
shown in the table, the average performance of the tree-
structured feature sets on the testing sets are around 80%,
while the flat feature sets achieve around 70% and the
purely region feature sets are around 60%. It is worth
analyzing the class results using the image semantics of
different classes. It is noticed from Fig. 5 that the image
classes 2, 3, and 9 are scenery-like images where a high
variation of semantics took place. The rest of the 10 classes
are close images focusing on specific objects like human,
elephants, flowers, horses, etc. Apparently, objects that
appeared in the latter group contain almost unique features
that are well perceived using region-based approach.
Table 2 indicates that the region-based features perform
moderately well on object-oriented close images. But they
perform badly on the scene-like images, whereas global flat
features perform much better. Fig. 6(a) compares the
performance of a flat feature set (FF2) with the tree-
structured feature set (TS1) for each image class, both on
the training and the testing image sets. Fig. 6(b)
summarizes the average performance over all the classes
of different feature sets on the training and the testing sets.
It is observed for both the training and the testing sets that
performances of all the tree-structured feature sets are
about 10% higher than that of the flat feature sets and
10–20% higher than that of the purely region feature sets.
The obtained results using tree-structured feature sets show
clear improvement over the traditional flat features because
the flat features are crude representations of the image
contents. The flat features are unable to deliver object-
based image properties, while the proposed tree-structured
features are able to encode the image contents in a better
way by integrating the global and the region-based image
characteristics.
The computational times for different feature sets are

detailed in Table 3. All the implementations were performed
in a Pentium III 1GHz PC using MATLAB. The proposed
approach requires additional training time for image
regions. The testing time per query is, however, negligible,
which makes the proposed approach suitable for real-time
application. At last, the robustness of the proposed
approach is tested against different types of image altera-
tions. The images of the same scene can be different
depending on the camera settings and the environmental
conditions. For instance, image blurring can take place due
to the improper camera focus, darkening, or brightening due
to improper exposure/lighting conditions, etc. The perfor-
mance evaluation was then further extended under different
kinds of image alteration conducted by the software
‘‘FotoCanvas, version 1.1, ACD system’’ [23]. To evaluate
the performance under these image alterations, image
samples were randomly selected from all classes and the
average classification accuracy on each alteration was
calculated. Fig. 6(c–f) shows the classification performance
against the gamma correction, brightness change, image
rotation, and contrast change. The obtained results corro-
borate the robustness of the tree-structured features under
those conditions.
5. Conclusion

An improved image classification approach is proposed
by integrating both global and local image features through
a two-level tree. The child nodes of the tree contain the
region-based local features, while the root node contains
the global features. The region-based features exhibit
object-oriented properties of image contents that are
overlooked by the global image features. In the proposed
architecture, a two-layer SOM network is used to process
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the tree-integrated features. When the system is performing
image classification, this type of arrangement enables us to
process object-based properties of the image contents as
well as the global image features. As a result, the proposed
approach can enhance the classification performance. Also,
it is worth noting that this approach is not computationally
demanding, which makes it suitable for real-time applica-
tion. Our study shows that tree-structured features are
robust under different kinds of image alteration.
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