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Abstract This paper presents a new minimum classifi-
cation error (MCE)–mean square error (MSE) hybrid
cost function to enhance the classification ability and
speed up the learning process of radial basis function
(RBF)-based classifier. Contributed by the MCE func-
tion, the proposed cost function enables the RBF-based
classifier to achieve an excellent classification perfor-
mance compared with the conventional MSE function.
In addition, certain learning difficulties experienced by
the MCE algorithm can be solved in an efficient and
simple way. The presented results show that the pro-
posed method exhibits a substantially higher conver-
gence rate compared with the MCE function.
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1 Introduction

Neural-based classifiers have emerged in recent years
and have exhibited many advantages over conventional
statistical methods [1]. These include their learning
ability and distribution-free characteristics that make
neural-based classifiers less restrictive in performing
classification. Radial basis function (RBF) network is a
class of neural network providing the above advantages.
On top of those, RBF networks provide the following
salient features: (1) they exhibit an outstanding func-
tional approximation property [2]; (2) the two compo-
nents of RBF (non-linear and linear) can be separately
treated. With these properties, RBF network is known
to be a better classifier than multiplayer perceptrons

(MLPs) [3–5]. Accordingly, RBF network has been
applied to various real world classification tasks [6–8].

In order to enhance the classification ability and
convergence rate, many research activities were con-
ducted to modify the structure and learning algorithms
of RBF network. There are, however, relatively few
studies on modifying the cost function for the above
purposes. Hitherto, the mean square error (MSE)
function is the most commonly used cost function, al-
though there are reports showing that other cost func-
tions such as cross-entropy (CE) function are more
suitable than MSE function for training a neural-based
classifier [5, 9]. It is noted that when the above cost
functions are to be used in classification tasks, there are
differences between the objectives of training a neural
classification model and the requirements of the classi-
fication task. By minimising the above cost functions,
the training algorithms are aimed at making the output
of an RBF network approximate the discrete values
(such as 0 and 1) as much as possible. But a classification
task poses a special feature in that the classification
decision is generally made on the basis of hard decision
rules. In other words, we classify a given observation to
the class having the maximum output in order to mini-
mise the classification error probability. In this sense, the
requirements on the output of a classifier can be relaxed.
It is sufficient that the output of the classifier can cor-
rectly distinguish the class of a data pattern, while the
value of the output may not be required to approximate
the designated value (1 or 0) as much as possible. In a
training process based on the above-mentioned cost
function, the patterns that have been correctly recogni-
sed still have an unnecessary contribution to the sub-
sequent training process. This is likely to reduce the
convergence rate and cause overfitting [10]. In [10], the
above issue was addressed and an improved threshold
type MSE function was proposed to train RBF net-
works. Together with an appropriate algorithmic
scheme, certain improvement on the classification per-
formance was obtained. The convergence rate was sig-
nificantly speeded up than the algorithm used to
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optimise the MSE function. But it is also worth noting
that the convergence rate of this type of training algo-
rithm cannot be further accelerated because the linear
parameters of the RBF network cannot be optimised by
a much speedy linear least square (LLS) algorithm [5].

With the aim of enhancing the classification ability of
a neural classifier, another type of cost function, the
minimum classification error function (MCE), was
introduced and used in [11, 12]. Although the MCE
function enables the neural classifier to be constructed
directly to minimise the classification error, there is a
main difficulty in implementing MCE-based methods.
The selection of the smoothness parameter n of MCE
has a marked effect on training classifiers. A large n
results in a rather rugged error surface in which a lot of
local minima are very likely to cause sub-optimal results
of the MCE function. On the other hand, when n is set to
a small value, the error surface of the MCE becomes
smoother. The gradient of MCE, however, becomes
small at any point in that case, which results in a low
convergence rate. Although the overall performance of
the MCE can be adjusted by selecting an appropriate n,
it has never been easy because the effect of n varies with
the given problem. As a result, dynamical change of n
was introduced in an attempt to improve both the
classification performance and the convergence rate [13].
Basically, it is an algorithmic approach to adjust the
smoothness parameter n when the training proceeds.
Despite its promising results, this type of approach is
heuristic and problem dependent. Implementation of an
appropriate adaptive strategy has never been straight-
forward.

In this paper, we introduce a new type of hybrid cost
function, called the MCE–MSE function, which is a
combination of the MCE and MSE functions. The pro-
posed MCE–MSE function is capable of providing a
neutral property of maintaining the high classification
performance and fast convergence rate. Thus, the MCE–
MSE function provides an efficient and effective way to
overcome the problems experienced by the MSE and
MCE functions.When the classification error is relatively
large, the effect of MSE function helps speed up the
training process. In this way, the problem of the MCE-
based method having low convergence rate is addressed
in a simple way. The presented results show that the
proposed MCE–MSE based approach outperforms both
the MCE-based and the MSE-based approaches. In this
study, the parameters of RBF are adjusted in a popular
way. The LLS scheme is used for updating the linear
component of RBF networks. Moreover, the parameters
of the non-linear component of RBF networks are ad-
justed based on the MCE–MSE function. The results of
our study show that this hybrid training scheme based on
the newly introduced MCE–MSE function can produce
promising results in terms of classification performance
and convergence rate. The classification performance in
this paper is measured by the classification error. The
convergence rate is measured in terms of the number of
training epochs and the running time.

This paper is organised as follows. Section 2 gives the
background of this study. The hybrid MCE–MSE
function is introduced and evaluated in Sect. 3. The
MCE–MSE based method for training the RBF classi-
fier in detailed in Sect. 4. Our study results are presented
and discussed in Sect. 5. Finally, conclusions are drawn.

2 Background

2.1 RBF neural networks

Geometrically, RBF network is considered to partition
the whole input space by hyper-ellipsoids. In the inter-
polation theory, the RBFs are usually combined with a
polynomial term for functional approximation [14]. In
this paper, in order to enhance the classification accu-
racy on data sets having a complex distribution, RBF
network is combined with a simple polynomial. With
this type of RBF network, the input domain can be di-
vided in a more flexible and effective way when dealing
with complex classification problems.

The RBF neural network used in this paper has M
input units, H hidden units and J output units, as shown
in Fig. 1. For an input data pattern xi = (xi1, xi2, ...,
xiM), the output of the jth output units is presented as

yj ¼ fjðxiÞ ¼
XH

k¼1
wð2Þkj gkðxiÞ þ

XM

u¼1
wðlÞuj xiu þ bj; ð1Þ

where, as shown in Fig. 1, wkj
(2) is the weight between the

kth hidden unit and the jth output unit and wuj
(l) is the

weight between the uth input unit and the jth output unit.
Each basis function g(x) is determined by a centre vector
c and a width vector r. The basis function of the hidden
neuron is typically chosen as a Gaussian-like function:

gjðxiÞ ¼ exp �
XM

k¼1

xik � cjk
� �2

2r2
jk

 !
: ð2Þ

The above RBF network is defined by non-linear
parameters (H, c, r) and linear weights (W(2), W(l), B).
There are many supervised or unsupervised methods for
performing initialisation of H, c, r, such as SOM [15],
regression tree [16], k-means, SVM [17], etc. After ini-
tialising a network, the centres and the widths (c, r) can
be adjusted by gradient decent type learning methods [4,
8]. Linear weights W(2), W(l) and B, can be adjusted
using LLS, which is the most commonly used because it
is generally faster than the gradient paradigm and is able
to avoid the sub-optimal points [5].

2.2 Mean square error and minimum classification error

Assume that patterns in data set X = (x1, x2, ..., xN)¢
have fallen into J categories. In this paper, the classifiers
have J output units, i.e., one output unit corresponds to
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one class. For convenience, for a data pattern xi, let
ti = (ti1, ti2, ..., tiJ) and yi = (yi1, yi2, yi3, ..., yiJ) be the
output target and the actual output of a classifier,
respectively. For a pattern (say, xi) belonging to the class

clj (j = 1, 2, ..., J), it is defined that tik ¼
1 k ¼ j
0 k 6¼ j

�
:

Mean square error function Emse, commonly used for
training classifiers, can be expressed as

Emse ¼
1

2N

XN

i¼1

XJ

j¼1
tij � yij
� �2

: ð3Þ

As mentioned before, in (3), the classification decision
rules are not directly reflected. By minimising (3), the
output of the classifier approximates the target (1 or 0)
as close as possible.

Compared with the MSE function, a hard decision
rule is directly adopted in the MCE function [11, 12]. In
the MCE function, yi = (yi1, yi2, yi3, ..., yiJ) is consid-
ered as the outputs of a set of discriminant functions.
Generally, the class is determined as

x 2 clsk if ykðxÞ ¼ arg max
1�j�J

yjðxÞ:

Based on this type of decision rule, for x belonging to
the class clm, recognising x correctly requires that ym is
larger than the other ys. Also, the larger the difference
between ym and other ys, the smaller the misclassifica-
tion risk. Thus, the difference between ym and the
largest y can be used to measure the classification
ability of the discriminant function set just built. This is
the rationale behind the misclassification measure (4)
defined in [11]:

dðmÞðx;KÞ ¼ �ymðx;KÞ þ
1

M � 1

X

j;j 6¼m

yjðx;KÞp
" #1=p

; ð4Þ

where p is a positive constant and K the parameter set
of the discriminant functions. The small value of d (m)

indicates the small misclassification probability. With
different p, one can take all the potential class into con-
sideration to a different degree. When p is large enough,

we have argmax
j;j 6¼m
ðyjðx;KÞÞ � 1

M�1
P

j;j 6¼m
yjðx;KÞp

" #1=p

: In

other words, for a large p, (4) is able to directly reflect the
hard decision rule mentioned above. We set p = 10. For
convenience, we rewrite (4) in a form of output vector yi
and target vector ti:

dðmÞðxi;KÞ ¼ �ti � y0i þ
1

M � 1
ð1� tiÞ � ðyp

i Þ
0

� �1=p

; ð5Þ

where (•)¢ means the transpose of vector •. In (4) or (5),
d(m) < 0 indicates a correct class determination,
whereas d (m) ‡ 0 results in a misclassification determi-
nation. With d(m), the misclassification error function
(MCE) [11] is introduced as

‘ðxi;KÞ ¼
1

1þ e�nðdðmÞðxi;KÞÞ
; ð6Þ

where n > 0, and xi 2 clsm. Obviously, (6) increases
with the decrease in d(m). Optimising (6) is able to
directly maximise the classification ability of the
constructed model. Equation (6) is a smooth zero–one
function and can be optimised by gradient decent type
algorithms. The MCE on the whole data set X = {x1,
x2, ..., xN} is the mean of MCE results on all patterns,
i.e.

Emce ¼
1

N

XN

i¼1
‘ðxi;KÞ: ð7Þ

As mentioned above, MCE function (7) evaluates the
classification ability of a classifier in a direct way, which
is a clear advantage of using MCE (7) over MSE (3)
from the perspective of enhancing the classification
performance.

For the discriminant-based classification approach,
the choice of the discriminant function is crucial for
classification performance. As discussed in [11], the
discriminant functions are required to enable the corre-
sponding loss function ‘ðx;KÞ to approach the error
counts. In the case of RBF-based classifier, as is well
known, the jth output unit corresponds to the discri-
minant function for the class clsj, and K is the parameter
set of the RBF network. Owing to the outstanding
capability of approximating an arbitrary function to any
degree of precision [2], RBF network can be used as a set
of non-linear discriminant functions when each class is
designed to each output unit. Hence, the MCE function
can be used to train the RBF network for classification.

Fig. 1 Architecture of the RBF network used in this paper
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2.3 Problems of MCE and MSE

The problems of using MSE function in classification
have been briefed in the first section. This section focuses
on analysing the MCE function. In a batch version of
gradient descent learning, the direction of updating is
the average of negative gradients of all patterns. It is
expected that the patterns far from being correctly
classified should impose more effect on adjusting the
parameters, while the patterns close to the target should
have less effect. In this sense, the MSE function satisfies
the requirement well. But, the MCE function (7) has the
problem of satisfying the above requirement because
|E¢mce| decreases with the increase of dm for misclassified
patterns (i.e., dm > 0). This shows that the data pat-
terns that are far from being correctly classified may
have small or even negligible effect on adjusting the
parameters.

For example, for a data pattern x, the real output is
y = (y1, y2) and the target output is t = (1, 0). We have
the 2-dimensional MCE function

Emce ¼
1

1þ e�nð�y1þy2Þ
:

Figure 2 illustrates the relationship between y = (y1, y2)
and the derivative ¶Emce/¶y1. Table 1 lists several values
of ¶Emce/¶y1 and ¶Emse/¶y1 and their corresponding
outputs. Take points 1, 2 and 3 as examples. The situ-
ation of point 1 certainly satisfied the above requirement
because its output is close to the target and ¶Emce/¶y1 is
very small. But for points 2 and 3, it is desirable to have
a larger value of ¶Emce/¶y1 to minimise the classification
error. The ¶Emce/¶y1 values of these points, however, are
small. This illustrates that using gradient decent type
training methods to optimise Emce may not assure a
satisfactory convergence rate and the subsequent clas-
sification results. As mentioned before, this shortcoming
was addressed in [13] by dynamically controlling the
smoothness parameter n. In [13], they started with a

rather large value of n for a coarse but likely global
searching and then gradually decreased the value of n for
fine searching. This type of approach is, however,
problem dependent and is not easy to implement.

3 Hybrid MCE–MSE cost function

The MCE function can construct an RBF-based classi-
fier in a more direct way than the MSE function. But the
MSE function exhibits certain advantages over the MCE
cost function when gradient descent based training
algorithms are used. In this paper, we propose a hybrid
cost function:

E ¼ 1

2
Emse þ Emceð Þ: ð8Þ

The hybrid cost function is able to encompass the
properties of both MCE and MSE. The MSE part of this
cost function enables patterns with large classification
errors to be taken into account irrespective of the value
of n in the MCE. In this sense, the shortcoming of MCE
is compensated in a more simple way compared with
heuristically decreasing n. On the other hand, the pro-
posed hybrid cost function maintains the desirable
property of MCE—the effect on adjusting the classifier
parameters diminishes when the patterns are close to the
targets. As a result, the proposed hybrid cost function
provides a balanced performance on convergence rate
and classification results.

In the following, the cost functions (3), (7) and (8) are
compared by applying them to train RBF classifiers. The
training algorithms based on the different cost functions
were implemented in the same way, i.e., they employed
the same learning scheme (the fast BP available in
Matlab toolbox) and started from the same initial
points. The structure of RBF network is detailed in
Sect. 2.1. All these RBF classifiers are trained to solve
the two-spiral classification problem (detailed in
Sect. 5.1). The iterative training processes are stopped
when the classification error has not decreased for 100
training epochs continuously. The averaged results of 10
trials are listed in Table 2 where n of the MCE function
was set to 1. It shows that both the number of epochs
and the running time required by the MCE cost function
are significantly larger compared with the proposed
MCE–MSE based cost function. Typical convergence
curves are shown in Fig. 3. Due to the complex distin-
guish boundary of this problem, the training process
generally begins with 50% classification error. In other
words, a great part of patterns are far away from being
correctly recognised. As mentioned above, to rapidly
reduce the classification error requires that the misclas-
sified patterns have more contributions than the cor-
rectly classified ones. MSE function (3) is able to meet
this requirement, whereas MCE function (7) has diffi-
culties to do so. Thus, the MSE and the MCE–MSE
based gradient algorithms are much faster than the
MCE-based one, as shown in Fig. 3. Also, in this figure,

Fig. 2 The relationship between ¶Emce/¶y1 and the classifier output
y = (y1, y2). Suppose that, for this 2-class, the target for an input
data pattern is t = (1, 0). Its MCE function is Emce ¼ 1

1þe�nð�y1þy2Þ
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we observe that attributed to the MCE function, the
MCE–MSE based algorithm is able to achieve better
classification results finally.

In this study, we also evaluate the effects of n briefly.
Figure 4 shows comparative results between MCE–MSE
and MCE for different values of n. Obviously, the results
presented in Table 2 and Figs. 3 and 4 are consistent
with the above analysis. The MCE and MCE–MSE
based algorithm can enable RBF classifiers to achieve
better classification results. In all our studied cases,
MCE–MSE based algorithm consistently delivered a
higher convergence rate than MCE. Also, we note that a
relative small n, such as n = 1, is able to guarantee a
respectable classification performance. Accordingly, a
small n is used in our study.

Similar to the MCE-based approach, the setting of n
must affect the performance of the proposed MCE–MSE
based learning algorithm. However, n is fixed to 1
throughout this study in order to illustrate the natural
properties of MCE–MSE function. It is worth men-
tioning that the overall performance of MCE–MSE can
further be enhanced by dynamically adjusting the
smoothness parameter n.

4 The MCE–MSE based training algorithm

As the initialisation of RBF network is not the focus of
this paper, a commonly used method is employed. In
this method, the centres of the RBF networks were ini-
tialised, using the SOM algorithm [15]. As all data are
normalised to the interval [0, 1], the widths of hidden
neurons in RBF network are determined as r = r0 · Id,
where Id is the identity matrix, and we set r0 = 0.7. The
linear weights (W(2), W(l), B) of RBF network are ran-
domly initialised with the values between 0 and 1.

After initialisation, the hybrid learning algorithm, as
shown in Fig. 5, is adopted. The adjustment of param-
eters of hidden units is a non-linear process based on the
MCE–MSE function (8), whereas the learning of
weights between the hidden and output layers can be
conducted in a linear way based on the MSE function
(3). Based on Fig. 1, the function defined by RBF net-
work can be expressed as

Y ¼ f ðX Þ ¼ Z � W ð2Þ þ X � W ðlÞ þ B;

where Z is the output matrix of the hidden layer. The
linear parameters in f(X), i.e., W(2) and W(l), can be
calculated by minimising the MSE function,

W ð2Þ

B

" #
¼

Z

1

" #þ
T ;

W ðlÞ ¼ XþT ;

ð9Þ

where [Æ]+ is defined as the pseudoinverse of [Æ].
In order to enhance the classification ability of RBF

network, the MCE–MSE function (8) is employed to
adjust the non-linear parameters, i.e., the parameters of
the hidden layer. Both the MSE and the MCE functions
are smooth and differentiable and can be conveniently
minimised by the gradient descent method. The updat-
ing rule of the hidden layer parameter based on the
MCE–MSE function (8) is

Table 1 Comparisons of gradient value of MCE function and MSE function

Target [y1, y2] = [1, 0]

Point no. Output [y1, y2] Gradient of MCE @Emce

@y1
; @Emce

@y2

h i
Gradient of MSE @Emse

@y1
; @Emse

@y2

h i

1 [0.9, 0.1] [0.0031, � 0.0031] [0.1000, � 0.1000]
2 [0.5, 0.9] [0.3133, � 0.3133] [0.5000, � 0.9000]
3 [0.1, 0.9] [0.0061, � 0.0061] [0.9000, � 0.9000]

Table 2 Comparisons of different cost functions through imple-
menting the fast BP algorithms based on these functions

Cost
function

Number of
epochs

Running
time (s)

Classification
error (%)

MCE–MSE 5,380 267 2.0
MSE 6,040 383 12.6
MCE 15,340 1.31 · 103 1.9

Fig. 3 A typical convergence curve of different cost functions
(MCE–MSE, MCE, MSE). These comparisons are made on the
two-spiral classification problem
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Kðsþ1Þ ¼ KðsÞ � 1

2
DKmse þ DKmceð Þ K¼KðsÞ

�� ; ð10Þ

where Ks denotes the parameter c or r at the sth step.
The updating rules of K based on MSE, i.e. DKmse, have
been explained in [3, 8]

Dcsþ1
jk

� �

mse
¼ �gðsÞ

XN

i¼1
giðxiÞ

xik � cðsÞjk

rðsÞjk

� �2

�
XJ

r¼1
wðsÞr¼1 tjr � yirðsÞ

� �
; ð11Þ

Drðsþ1Þjk

� �

mse
¼ �gðsÞ

XN

i¼1
gjðxiÞ

ðxik � cðsÞjk Þ
2

rðsÞjk

� �3

�
XJ

r¼1
wðsÞjr ðtir � yirðsÞÞ: ð12Þ

And, based on the definition of the MCE function (7),
DKmce is solved as follows:

Dcðsþ1Þjk

� �

mce
¼ gðsÞ

XN

i¼1
gjðxiÞ

xik � cðsÞjk

rðsÞjk

� �2
XJ

r¼1
wðsÞjr

@Emce

@yir
:

ð13Þ
Fig. 4 The comparison of MCE–MSE and MCE function with
different n. These comparisons are made on the two-spiral
classification problem

initalization

learning of linear part

Final result

the
MSE

creterion

learning of non-linear part

),,( )()2( BWW l

(c,s )

stop?

hybrid algorithm

the
MCE-MSE

creterion

Fig. 5 Block diagram of the proposed hybrid algorithm based on
the MCE–MSE function
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Setting

‘i � ‘ðxi;KÞ; dðmÞi � dðmÞðxi;KÞ;

according to (5) and (7), we have

@Emce

@yir
¼ @‘i

@yir
; ð14Þ

@‘i

@yir
¼ n‘ið1� ‘iÞ

@dðmÞi

@yir
; ð15Þ

@di

@yi
¼ �ti þ

1

M � 1

� �1=p

ð1� tiÞ � ðyp
i Þ
0	 
ð1=pÞ�1

� ð1� tiÞ � �yp�1
i

h i
: ð16Þ

In (16), Æ · is a type of matrix operator, and A Æ · B is
the entry-by-entry product of matrix A and B. The
modification rule of the centre c based on the proposed
MCE–MSE (8) is

cðsþ1Þjk ¼ cðsÞjk �
1

2
Dcðsþ1Þjk

� �

mse
þ Dcðsþ1Þjk

� �

mce

� �
;

where Dcðsþ1Þjk

� �

mse
and Dcðsþ1Þjk

� �

mce
are given in (11)

and (13)–(16), respectively. In a similar way, the
updating rule for the width r based on the MCE–MSE
function is

rðsþ1Þjk ¼ rðsÞjk �
1

2
Drðsþ1Þjk

� �

mse
þ Drðsþ1Þjk

� �

mce

� �
;

where Drðsþ1Þjk

� �

mse
has been given in (12). And,

Drðsþ1Þjk

� �

mce
can be delivered as

Drðsþ1Þjk

� �mce

¼ gðsÞ
XN

i¼1
gjðxiÞ

ðxik � cðsÞjr Þ
2

rðsÞjr

� �3
XJ

r¼1
wðsÞjr

@Emce

@yir
;

ð17Þ

where ¶Emce/¶yir is calculated using (14)–(16).

5 Experimental results and discussion

In this section, the proposed MCE–MSE based method
was compared to the MCE-based one and the MSE-
based one by applying them to train RBF classifiers. The
MSE-based method and the MCE–MSE based method
are same as to using the LLS paradigm to adjust the
linear weights, W(2) and W(l). The difference between the
MSE and the MCE–MSE based methods lies in that the
MCE–MSE method employs the MCE–MSE function
to guide a gradient descent algorithm to update c and r,
while the MSE-based approach depends on the MSE
function to fulfil this task. As to the MCE-based meth-
od, all parameters are adjusted by using the gradient
descent algorithm based on the MCE function. In
order to fairly compare these methods, the same gradi-
ent descent scheme used by different methods are

implemented under the same scheme, the fast back-
propagation (FBP) provided in Matlab 6.0. The
parameters of FBP were set to default values. Using
FBP, different methods employ different objective
functions. In detail, the MSE-based FBP uses MSE (3)
to update c and r. And the MCE–MSE based FBP
employs MCE–MSE (8) to undertake this task. The
MCE-based FBP depends on MCE (7) to adjust all the
parameters of the RBF network, including W(2), W(l), c
and r.

Several classification benchmarks and one industrial
application were used for comparing these three training
methods. In all cases, simulation results are the averages
of 20 trials. And during each trial, with the same initial
points, all three methods were tried. As mentioned
above, the training methods are to be evaluated in two
perspectives. To evaluate the classification ability, the
classification error is used. To evaluate the convergence
rate, the running time and the number of training epochs
are employed. All simulations in the paper were done on
an Intel Pentium IV 1.3 GHz PC with 256 RAM.

5.1 Two-spiral classification problem

The task of two-spiral classification benchmark [18] is to
learn to discriminate between two sets of training points
that lie on two distinct spirals in the 2-dimensional
plane. The two-spiral benchmark consists of 194 data
points, 97 points for each class. It is a highly non-linear
and demanding classification problem. Without the test
data set, various neural-based classifiers [19–22] are
compared mainly in terms of convergence rate, i.e. the
number of epochs required to achieve 100% training
accuracy. The learning process stops when 100% train-
ing accuracy is obtained or when the training accuracy
ceases to improve in the consecutive 100 training epochs.
In this paper, besides the original two input variables, x1
and x2, two additional input variables were generated.
They are x3 = (x1

2 + x2
2) and x4 = 1/(x1

2 + x2
2). Thus,

the RBF classifier constructed in this section consists of
4 input neurons, 12 hidden neurons and 2 output neu-
rons, 1 neuron for each class. The four input neurons are
for x1, x2, x3 and x4, respectively.

In Table 3, the comparative results are listed, and the
typical performances of the three types of training
methods are shown in Fig. 6. Due to the complex dis-
tinguish boundary, at the beginning of the training
process, the MCE–MSE based method exhibits the

Table 3 Performance comparison of the three training methods on
the two-spiral problem

Method Number of
epochs

Running
time (s)

Classification
error (%)

MCE–MSE based 317 33 1.7 ± 3.1
MSE based 847 76 6.7 ± 3.5
MCE based 15,340 1.31 · 103 1.9 ± 1.5
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largest convergence rate. The computational time
required by the MCE–MSE based algorithm is 53 times
less than that required by the MCE-based one. Also,

compared with the MSE function, the MCE–MSE
function enables the RBF-based classifiers to achieve
better classification results. In Fig. 7, the decisions made
by the RBF classifier trained by the MCE–MSE based
method are illustrated.

In this section, RBF classifier trained by using the
MCE–MSE based method is further compared with
other neural classifiers. With similar classification per-
formance—about 1% classification error—all these
neural classifiers are compared in terms of the number of
trainable parameters and convergence rate, as shown in
Table 4. Obviously, the proposed MCE–MSE is the best
one for the two-spiral classification problem in that it is
the fastest one and has the smallest size of trainable
parameter set.

5.2 UCI classification problems

Several real classification data sets were employed in our
investigation, which are from UCI archives [23]. Dif-
ferent from the two-spiral data set, the generalisation
performance of the classifiers should be considered. In
order to obtain better generalisation performance, there
are many strategies. In our simulations, an easy one,
‘‘early stopping’’, was adopted. All iterative learning
processes were periodically tested on the validation data
set. The learning processes were stopped when the
classification error on the validation set was larger than
the best value achieved ten times consecutively. The
number of hidden units of RBF-based classifier is related
to several factors, such as the distribution of data pat-
terns and the complexity of the decision surface of
classification. It is, however, not the focus of this paper.
In order to compare these training methods thoroughly,
different numbers of hidden units were tried in the
simulations. The classification problems used in our
study include:

1. Glass classification problem. The glass data set is
based on the chemical analysis of glass splinters.
There are 214 data patterns, which split into three
sets, 80 for training and 54 for validation and 80
for test. Each pattern consists of nine features and
exactly belongs to one of six classes that corre-
spond to the types of glass. The RBF-based clas-
sifiers had nine input units and six output units,
and we considered RBF networks with hidden units
of 4, 9, 12, 16.

2. Waveform classification problem. This task is to
classify an instance into three categories of waves.
There are 5,000 data patterns, and each pattern has
21 features. The 5,000 data patterns were split into
three disjoint sets, i.e., 2,000 in training data set,
1,000 in validation data set and 2,000 in test data set.
The RBF classifiers had 21 input units and 3 output
units, and we tried RBF networks with hidden units
of 9, 16, 25, 30.

3. Other classification problems. In Table 5, the other five
classification data sets used in our study are listed.
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Fig. 6 A typical convergence curve of the three methods on the
two-spiral data set

Fig. 7 The decision regions for two-spiral data by the RBF
classifier trained by the MCE–MSE based method

Table 4 Comparisons on the two-spiral classification problem

Learning
method/network

Number of trainable
parameters

Number of
epochs

BP (CE) [19] 138 11,000
CC [20] 181.75 1,700
MLP-IRO [21] 147.40 �
BP-NWP [22] 71 676
MCE–MSE (RBF) 168 317
MCE (RBF) 168 27,340

In [21], the network MLP-IRO was compared with CC in terms of
the training time, instead of the number of epochs. The compara-
tive results are that CC and MLP-IRO require 1.00 · 104 and
2.93 · 104 s for convergence, respectively
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The comparative results are listed in Tables 6, 7
and 8. Besides calculating the average and the standard
deviation of the obtained results, the results of the t test
for unequal variances are presented in Tables 6b, 7b
and 8b to further evaluate the significance of the

improvement caused by the proposed MCE–MSE
method. The small the presented t test result, the more
the significance of the performance difference between
the compared methods. Based on these results, two main
conclusions can be drawn. First, from the perspective of

Table 5 The UCI data sets used in this paper

Data set Number of
training patterns

Number of
validation patterns

Number of
test patterns

Number of
attributes

Number of
classes

Iris 60 30 60 4 3
Pima 270 228 270 9 2
Sonar 80 48 80 60 2
Wine 60 58 60 13 3
Yeast 600 284 600 8 10

Table 6 Comparison of the three training methods on glass clas-
sification problem. The results are average of 20 trials. H is the
number of hidden units of RBF network. The running time is in
second. (a) The performance of the compared methods. (b) The

t test results to evaluate the classification ability improvement of
the proposed method, the MCE–MSE based method. A small value
indicates large improvement

Table 7 Comparison of the three training methods on the waveform
classification problem. The results are average of 20 trials. H is the
number of hidden units of RBF network. (a) The performance of the

compared methods. (b) The t test results to evaluate the classification
ability improvement of the proposed method, the MCE–MSE based
method. A small value indicates large improvement

(a)

H Classification error on test data (%) Convergence rate (number of epoch; running time)

MCE–MSE MSE MCE MCE–MSE MSE MCE

4 35.4 ± 2.2 38.9 ± 1.1 35.3 ± 5.2 21; 0.8 24; 0.8 981; 36
9 34.1 ± 2.1 36.3 ± 3.9 34.2 ± 8.6 17; 0.9 20; 0.9 812; 46
16 33.9 ± 2.7 36.1 ± 4.3 33.8 ± 7.1 17; 2.0 19; 2.0 581; 50

(b)

H t test in terms of classification accuracy

MCE–MSE versus MSE MCE–MSE versus MCE

4 0.008 0.8
9 0.003 0.8
16 0.005 0.9

(a)

H Classification error on test data (%) Convergence rate (number of epoch; running time)

MCE–MSE MSE MCE MCE–MSE MSE MCE

9 20.3 ± 0.75 24.0 ± 1.05 19.5 ± 2.08 21; 13 23; 14 725; 419
16 19.1 ± 0.67 23.6 ± 0.74 19.9 ± 1.35 22; 35 32; 34 1077; 922
25 19.7 ± 0.82 22.2 ± 1.47 19.2 ± 1.93 30; 47 37; 55 623; 612

(b)

H t test in terms of classification accuracy

MCE–MSE versus MSE MCE–MSE versus MCE

9 3 · 10�5 0.2
16 1.4 · 10�5 0.45
25 8 · 10�4 0.9
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the classification performance, the MCE-based method
and the proposed MCE–MSE one are better than the
MSE-based method. Also, this type of improvement is
significant in all examples but the one of wine. Second,
the MCE–MSE based method exhibits faster conver-
gence rate than that of the MCE cost function. Even, in
certain examples, the efficiency of the MCE–MSE based
method is substantially larger than that of the MCE-
based one. In the example of waveform, the computa-
tional time required by the MCE–MSE based method is
13–32 times less than those required by the MCE-based
one. In the glass classification problem, the computa-
tional time required by the MCE–MSE based method is
25–51 times less than those required by the MCE-based
method.

5.3 Machine fault detection

In this section, RBF networks are applied for intelli-
gently determining the degree of unbalance fault of a
three-phase machine system. This practical problem has
been detailed in [24–27]. The data employed in this
section consists of 300 patterns, 100 for training, 50 for
validation and 150 for testing. Each pattern has four
attributes obtained from the vibration analysis of

machine. All these patterns fall into three categories:
light, medium and heavy degrees of electronic fault. In
this section, the RBF classifiers have four input nodes
and three output nodes corresponding to three classes.
And learning schemes have been mentioned in the last
section.

The simulation results of this application are pre-
sented in Table 9. According to these results, a similar
conclusion can be drawn. In the perspective of the
classification performance, the MCE-based method and
the proposed one are much better than the MSE-based
one. On the other hand, the proposed method is much
efficient than the MCE-based method. In this example,
the running time required by the MCE methods is eight
times that of the proposed method.

6 Conclusion

A new type of cost function is proposed for enhancing
the classification performance and convergence rate of
RBF-based classifier. The proposed hybrid function can
deliver improved classification results compared with the
MSE function. Also, the MCE–MSE function itself
exhibits a natural property of faster convergence rate
than the MCE function. It is worth noting that the en-

Table 8 Comparison of the three training methods on several UCI data sets. (a) The performance of the compared methods. (b) The t test
results of certain comparisons. A small value indicates large difference of the compared results

(a)

Data set H Classification error on test data (%) Convergence rate (number of epoch; running time)

MCE–MSE MSE MCE MCE–MSE MSE MCE

Iris 9 5.7 ± 1.8 9.7 ± 1.8 6.3 ± 1.9 24; 0.17 25; 0.17 23; 0.29
Pima 16 25.0 ± 0.7 25.7 ± 0.9 24.9 ± 0.6 13 0.65 16; 1.0 24.8; 2.2
Sonar 9 33.9 ± 0.3 24.6 ± 0.8 30.1 ± 0.5 13; 0.43 13; 0.5 35; 1.2
Wine 6 5.5 ± 0 5.7 ± 0 5.4 ± 0.2 13; 0.2 13; 0.2 29; 0.4
Yeast 9 42.5 ± 0.9 43.3 ± 0.9 41.2 ± 4.2 26; 1.8 25; 1.8 25; 1.6

(b)

Data t test in terms of classification accuracy t test in terms of running time

MCE–MSE versus MSE MCE–MSE versus MCE MCE–MSE versus MSE MCE–MSE versus MCE

Iris 7 · 10�5 0.43 0.7 0.007
Pima 0.003 0.45 0.07 1.6 · 10�4

Sonar 3 · 10�4 0.02 0.88 1 · 10�5

Wine 0.61 0.75 0.2 8 · 10�6

Yeast 0.03 0.7 0.83 0.45

Table 9 Comparison of the three methods on the machine default problem

H Classification error on test data (%) Convergence rate (number of epoch; running time)

MCE–MSE MSE MCE MCE–MSE MSE MCE

4 5.6 ± 1.49 10.9 ± 6.90 5.3 ± 3.30 17; 0.3 15; 0.3 301; 3.4
8 5.6 ± 1.07 8.7 ± 5.27 4.5 ± 1.37 11; 0.3 15; 0.3 268; 4.5

H is the number of hidden units of RBF network
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hanced convergence rate does not require the use of
complicated algorithm for adaptively adjusting n.
Hence, it is computationally efficient and easy for
implementation. In all the presented cases, the proposed
hybrid MCE–MSE based method had best perfor-
mances, with much better classification result than the
MSE-based one and much faster convergence rate
compared with the MCE-based one.
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