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a b s t r a c t

An improved discernibility function for rough set based attribute reduction is defined to keep discernibility
ability and remove redundant attributes without the precondition of the Positive Region. On the basis of
discernibility function, the solution of rough set based attribute reduction can be found by satisfiability
methods. With extension rule theory, a satisfiability method, the distribution of solutions with different
number of attributes is obtained without enumerating all attribute reductions. Then, it is easy to search the
attribute reduction with the smallest number of attributes. In addition, the cost of space and time is analyzed
to find factors playing role in the computation of the method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The size of datasets has been increasing dramatically, so it has
been an important issue to reduce huge objects and large
dimensionality in datasets. Attribute reduction, also called feature
selection, finds a subset of attributes to reduce dimensionality. By
reducing attributes, it can save the cost of computational time and
memory; it is also useful to improve predicative ability as a result
of removing redundant and irrelevant attributes [1,2].

There exist two major approaches in attribute reduction:
individual evaluation and subset evaluation. Individual evaluation,
also known as ranking, assigns each attribute a weight represent-
ing its degree of relevance [39,40]. This method is incapable
of removing redundancy because of similar weights among
redundant attributes. So it is always set as a principal or auxiliary
section. According to different mechanisms of reduction, subset
evaluation falls into three catalogs: wrapper method, embedded
method and filter method. The wrapper method [3,4] utilizes
a classifier of interest as a black box to score subsets of attributes
according to their predictive power. It can provide a highly
predictive subset; however, the bias of classifiers and the setup
of experiments play role in the performance of the subset. In
addition, large computational cost is also needed. An improved
method, the embedded method, incorporates attribute reduction
as the part of training process [41,42]. Comparing with the
wrapper method, it does not split data into training and validation
sets, and it finds solution faster by avoiding retraining the
classifier. However, this method is also dependent on classifiers.
The filter method selects a subset according to a selection measure.

Selection criteria include: distance measure [5,6], dependency mea-
sure [7,8], consistency measure [9], and information measure [10–12].
The filter method gives a subset achieving the balance between
predicative power and computational cost. Moreover, it is independent
on classifiers. So it is more practical comparing with the wrapper and
embedded methods.

Most of attribute reduction methods just evaluate the perfor-
mance of a subset according to predictive accuracy. However,
approximate original class distribution is also an important eva-
luation rule [43]. Rough set based attribute reduction, the filter
method with dependency measure, supports both rules. It is
proposed by Pawlak [13–17] as a mathematical theory of set
approximation, which is used in machine learning [18,19]. Rough
set based attribute reduction finds particular subsets of condi-
tional attributes providing the same information for classification
purpose with the original set. This selection mechanism keeps the
same class distribution with the original set. And its performance
of predictive accuracy has been verified to be better or comparable
with other methods in large amount of works. Moreover, rough set
method has its own advantages. First, it needs no parameters. For
general methods, they need take large computational cost to find a
super parameter. It is impossible to assess the performance about
all values of parameters. Second, it has explicit stopping criterion.
The advantages of rough set come from that it deals with data in
human-like fashion [44].

The advantages of rough set are obvious; however, its problem
is computational complexity, which must be considered. The core
issue of rough set theory is “discernibility function” taking Οðn2Þ
time complexity and Οðn2 �mÞ memory complexity, where n is
the number of objects, and m is the number of attributes. Minimal
reduction problem is even NP-hard [21], where the number of
attributes is smallest among all possible reductions. Knowledge
based methods have been proposed in the area of rough set
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[7,8,22–29], and each of them aims at its own requirement.
According to their mechanisms, each method just finds a subset
of attributes providing the same classification information with
the original set, but no one can give a fair evaluation among these
methods.

Propositional satisfiability problem (SAT) is one of the most
studied NP-complete problems because of its significance in both
theoretical research and practical application. Several SAT solvers
[30,31,45] are employed in rough set based attribute reduction.
However, there are several problems remaining to be done,
including building discernibility matrix without any precondition
and large addition of computational cost; a complete description
of all solutions; analysis of factors playing role in computational
cost about space and time. An improved discernibility function
reduces the redundant attributes causing by the samples in the
both Positive Region and Boundary Region. It just takes OðnÞ
addition of cost to overcome the redundancy. Moreover, the
reasons of redundancy are shown by the proof of discernibility
function. Extension rule [32,33] is a suitable tool to find solution of
rough set reductions, which checks the satisfiability by using
inverse of resolution. An important advantage of extension rule
is that the combinations of attributes in inverse of resolution are
smaller than the reductions, which have been verified in the
experiments. So it is useful to save computational cost. By the
results of discernibility function extended, the distribution of
attribute reductions with different size is found [46]. It provides
a new view to analyze attribute reduction based on rough set. And,
according to the distribution, it is easy to find the minimal
reduction. In this process, computational cost is also analyzed.

The rest of paper is organized as follows. The basic knowledge
about attribution reduction using rough set is given in Section 2.
Its relationship with SAT is proved in Section 3. The experimental
results are presented in Section 4. Finally, the conclusion is drawn
in Section 5.

2. Background

In this section, the basic notions [13–17,21,45] related to informa-
tion system and rough set are shown.

Definition 2.1. Let ISðU;AÞbe an information system, where U is a
nonempty finite set of objects and A is a nonempty finite set of
attributes so that f : U-Vf for every f AA. Vf is the set of values
that f takes. For any BDA, an indiscernible relation INDðBÞ is
INDðBÞ ¼ fðx; yÞAU2j8 f AB; f ðxÞ ¼ f ðyÞg ð1Þ

Dataset can be seen as an information system, where samples
are the objects of U and attributes are the elements of A [34].

Definition 2.2. A partition of U generated by fang is defined as

U=INDðfangÞ ¼ ffxAUjanðxÞ ¼ ig; iAVan g; ð2Þ
where an is the decisional attribute.

Ifðx; yÞA INDðBÞ, x and y are indiscernible according to the
subset B. The equivalence class of x on the B-indiscernible relation
is denoted by ½x�B. If x and y are indiscernible according to
the subset B, yA ½x�B. Construct the B-lower approximations and
B-upper approximations of X as

BX ¼ fxj½x�BDXg; ð3Þ

BX ¼ fxj½x�B \ Xa∅g; ð4Þ
where (3) is the B-lower approximations, and (4) is the B-upper
approximations.

By the definition of the B-lower approximations and B-upper
approximations, the objects in U can be partition into three

regions which are the Positive Region, the Boundary Region, and
the Negative Region.

Definition 2.3. B-Positive Region, B-Boundary Region and B-Negative
Region are defined as

POSBðfangÞ ¼ [
XAU=INDðfangÞ

BX; ð5Þ

BNDBðfangÞ ¼ [
XAU=INDðfangÞ

BX� [
XAU=INDðfangÞ

BX; ð6Þ

NEGBðfangÞ ¼U� [
XAU=INDðfangÞ

BX ð7Þ

The three regions are defined with respect to fang which is the set
of decisional attribute.

Definition 2.4. In an information system IS¼ ðU;AÞ, an n�n
matrix (cij) called discernibility matrix of IS is defined as
cij ¼ faAA : aðxiÞaaðxjÞ; xi; xjAUg for i; j¼ 1;…;n ð8Þ

The discernibility matrix is denoted as MðISÞ. It is straightfor-
ward to find MðISÞis symmetric and cii ¼∅.

Definition 2.5. Discernibility function f IS for an information system
IS¼ ðU;AÞ is a Boolean function of m variables a1;…; am, defined as
f ISða1;…; amÞ ¼ 4f3 ðcijÞ : 1r jo irn; cija∅g; ð9Þ
where ai denotes an attribute in A and 3 ðcijÞ is the disjunction of
the variables incij.

Example 2.1. A simple example represented in Table 1 is con-
sidered to show the discernibility matrix and discernibility func-
tion. For information system in Table 1, there are 5 objects and
5 attributes fa1; a2; a3; a4; ang. Table 2 shows the related discern-
ibility matrix according to Definition 2.4. Then, the discernibility
function can be found.

f IS ¼ ða13a3Þ4 ða13a23a3Þ4 ða13a23a33a43anÞ4
�ða13a23anÞ4a24 ða23a43anÞ
�ða23a33anÞ4 ða43anÞ4 ða33anÞ4 ða33a4Þ

3. Extension rule for attribute reductions

In this section, we prove that attribute reduction based on
rough set can be solved by SAT with defining an-discernibility
matrix. By employing the extension rule, the distribution of all

Table 1
Information system of Example 2.1.

U a1 a2 a3 a4 an

1 0 1 1 1 1
2 1 1 0 1 1
3 1 0 0 1 1
4 1 0 0 0 0
5 1 0 1 1 0

Table 2
Discernibility matrix of Example 2.1.

Object 1 2 3 4 5

1 a1 ; a3 a1 ; a2 ; a3 a1 ; a2; a3 ; a4; an a1 ; a2; an

2 a1 ; a3 a2 a2 ; a4; an a2 ; a3; an

3 a1 ; a2 ; a3 a2 a4 ; an a3 ; an

4 a1 ; a2 ; a3 ; a4; an a2 ; a4 ; an a4 ; an a3 ; a4
5 a1 ; a2 ; an a2 ; a3 ; an a3 ; an a3 ; a4
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possible solutions with different amount of attributes is found.
Then, the attribute reduction with the smallest size is obtained.

Definition 3.1. In an information system IS¼ ðU;AÞ, an n� ðnþ1Þ
matrix (cnij) called an-discernibility matrix of IS is defined with
two steps:

i.

cnij ¼
faAA�fang : aðxiÞaaðxjÞg if anðxiÞaanðxjÞ
A�fang if anðxiÞ ¼ anðxjÞ

(
for i; j¼ 1;…;n ð10Þ

cniðnþ1Þ ¼
∅ if ( jAf1;⋯;ng; cnij ¼∅

A�fang otherwise

(
for i¼ 1;…;n; ð11Þ

ii.

cnij ¼ A�fang if cniðnþ1Þ ¼ cnjðnþ1Þ ¼∅ for i; j¼ 1;…;n ð12Þ
The an-discernibility matrix is denoted asMnðISÞ, and the nþ1
column is called state checking. an-discernibility function is defined
asf nISða1;…; am�1Þ ¼ 4f3ðcnijÞ : 1r io jrnþ1; cnija∅g. Table 3
shows the an-discernibility matrix of Example 2.1.

Definition 3.2. [37] An information system IS¼ ðU;AÞ is consis-
tent, if all objects, which have the same values on A�fang, have the
same value of decisional attribute an; for inconsistent information
system, the samples with the same values on A�fang may have
different values of decisional attribute an.

Theorem 3.1. In a consistent information systemIS¼ ðU;AÞ, there is
not ∅ in its an-discernibility matrix, so all objects are in the Positive
Region of conditional attribute set.

Proof. If (cnij ¼∅ ; i; jAf1;…;ng, there are two objects xi,xj making
aðxiÞ ¼ aðxiÞfor8aAA�fang and anðxiÞaanðxjÞ. Then, according to
Definition 3.2, IS is an inconsistent information system. It is
contradictory with the condition, so 8cnija∅ for i; jAf1;…;ng.
We conclude cniðnþ1Þa∅ for iAf1;…;ng according to Definition
3.1. As a result, there is not ∅ in its an-discernibility matrix.
Assume an object x is not in the Positive Region. Because

of x =2POSA�fangðfangÞ, ½x�A�fanggS′ for 8S′AU=INDðfangÞ. So
(yA ½x�A�fang; a

nðyÞaanðxÞ. As a result, cnij ¼∅, where cnij is the
element of ðx; yÞ in an-discernibility matrix. It is contradictory
with the above result. As a result, all objects are in the Positive
Region of conditional set. □

Theorem 3.2. In an inconsistent information system IS¼ ðU;AÞ, only
the object, whose value of state checking is ∅, is not in Positive Region
of conditional attribute set.

Proof. It is straightforward according to Theorem 3.1. □

Definition 3.3. In an information system IS¼ ðU;AÞ, a set B of
attributes is an attribute reduction, if BDA�fang and POSBðfangÞ ¼
POSA�fangðfangÞ.

Theorem 3.3. B is an attribute reduction if f nISðVBða1Þ;…;

VBðam�1ÞÞ ¼ 1, where VBðUÞ : a-f0 ; 1g such that aAB ifVBðaÞ ¼ 1.

Proof. Sufficiency: B is an attribute reduction if f nISðVBða1Þ;…;

VBðam�1ÞÞ ¼ 1.

(1) For any object xAPOSA�fangðfangÞ
For any object yAU,
i. yA ½x�A�fang
When yA ½x�A�fang, aðxÞ ¼ aðyÞ for 8aAA�fang. Bis a subset of
A�fang, so a′ðxÞ ¼ a′ðyÞ for 8a′AB. As a result, yA ½x�B.

ii. y=2½x�A�fang and anðxÞaanðyÞ
Since y=2½x�A�fang, (c′¼ faAA�fang : aðxÞaaðyÞg. AndanðxÞ
a anðyÞ, c′¼ cnij where cnij is the element of ðx; yÞin an-dis-
cernibility matrix. We have 3cnijðVBða1Þ;…;VBðam�1ÞÞ ¼ 1
because of f nISðVBða1Þ;…;VBðam�1ÞÞ ¼ 1. As a result,
c′ \ B a∅ ) y=2½x�B.

iii. y=2½x�A�fang and anðxÞ ¼ anðyÞ
anðxÞ ¼ anðyÞ ) cnij ¼ A�fang, according to Definition 3.1.
And (c′¼ faAA�fang : aðxÞaaðyÞg because of y=2½x�A�fang.
Since c′ is a subset of cnij, c′ \ B¼∅ is possible. SoyA ½x�B,
if c′ \ B¼∅; otherwise y=2½x�B.
According to the proof from i. to iii., we can conclude
½x�A�fangD ½x�B.
Since xAPOSA�fangðfangÞ, (S′AU=INDðfangÞ ½x�A�fangDS′.
According to iii., anðxÞ ¼ anðzÞ for 8zA ½x�B�½x�A�fang, so
zAS′. Then, we obtain ½x�BDS′s. As a result, xAPOSBðfangÞ.

(2) For any object x=2POSA�fangðfangÞ
x=2POSA�fangðfangÞ, so there is an object yA ½x�A�fangmaking
aðxÞ ¼ aðyÞ for 8aAA�fang and anðxÞaanðyÞ. B is a subset of
A�fang, so yA ½x�B. Then, x=2POSBðfangÞ.
According to (1) and (2), POSBðfangÞ ¼ POSA�fangðfangÞ is proved.
That is to say that B is an attribute reduction.

Necessity: B is an attribute reduction, so f nISðVBða1Þ;…;

VBðam�1ÞÞ ¼ 1.
B is an attribute reduction. That is to say POSBðfangÞ ¼

POSA�fangðfangÞ.
For any object pair (x,y), setcnijas the element of (x,y) in an-dis-

cernibility matrix.

i. x; yAPOSA�fangðfangÞ and anðxÞ ¼ anðyÞ
Since x; yAPOSA�fangðfangÞ, the values of x and y in state
checking column are not ∅ according to Theorem 3.1 and 3.2.
So cnij is not rewritten.
Because of anðxÞ ¼ anðyÞ, we knowcnij ¼ A�fang. BDA�fang, so
B \ cnija∅. As a result,3cnijðVBða1Þ;…;VBðam�1ÞÞ ¼ 1.

ii. x; yAPOSA�fangðfangÞ and anðxÞaanðyÞ
When x; yAPOSA�fangðfangÞ, x, y must be in POSBðfangÞ. Because
of anðxÞaanðyÞ, there must be a′AB making a′ðxÞaa′ðyÞ.
cnij ¼ faAA�fang : aðxÞaaðyÞg according to Definition 3.1, so
a′Acnij. Then, we have3cnijðVBða1Þ;…;VBðam�1ÞÞ ¼ 1.

iii. One of x,y is in the Positive Region of conditional attribute set,
and anðxÞaanðyÞ
Assuming xAPOSA� anf gðfangÞ and y=2POSA� anf gðfangÞ, xAPOSB
ðfangÞ and y=2POSBðfangÞ are concluded. With the additio-
nal condition anðxÞaanðyÞ, there must an attribute a′in B
making a′ðxÞaa′ðyÞ. Soa′Acnij. Then,3cnijðVBða1Þ;…; VBðam�1ÞÞ
¼ 1.

iv. One of x,y is in the Positive Region of conditional attribute set,
andanðxÞ ¼ anðyÞ
The process is the same with i.

Table 3
an-discernibility matrix of Example 2.1.

Object 1 2 3 4 5 State checking

1 a1 ; a2 ; a3; a4 a1 ; a2 ; a3; a4 a1 ; a2 ; a3; a4 a1 ; a2 ; a3 ; a4 a1 ; a2 a1 ; a2 ; a3 ; a4
2 a1 ; a2 ; a3; a4 a1 ; a2 ; a3; a4 a1 ; a2 ; a3; a4 a2 ; a4 a2 ; a3 a1 ; a2 ; a3 ; a4
3 a1 ; a2 ; a3; a4 a1 ; a2 ; a3; a4 a1 ; a2 ; a3; a4 a4 a3 a1 ; a2 ; a3 ; a4
4 a1 ; a2 ; a3; a4 a2 ; a4 a4 a1 ; a2 ; a3 ; a4 a1 ; a2 ; a3 ; a4 a1 ; a2 ; a3 ; a4
5 a1 ; a2 a2 ; a3 a3 a1 ; a2 ; a3 ; a4 a1 ; a2 ; a3 ; a4 a1 ; a2 ; a3 ; a4
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v. x; y=2POSA�fangðfangÞ
x=2POSA�fangðanÞ, so there must be an object zA ½x�A�fang and
anðxÞaanðzÞ. As a result, 8aAA�fang; aðxÞ ¼ aðzÞ. cnil ¼∅ )
cniðnþ1Þ ¼∅ according to Definition 3.1, where cnil is the element
of ðx; zÞ inan-discernibility matrix, and cniðnþ1Þis the element of x
in state checking column. For the same reason, cnjðnþ1Þ ¼∅,
where cnjðnþ1Þis the element of yin state checking column. cnij is
rewritten asA�fang, so3cnijðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1.

vi. Checking state column
When cniðnþ1Þ ¼∅,3 ðcniðnþ1Þ Þ is not in f nIS; otherwise, cniðnþ1Þ ¼
A� fang, so 3ciðnþ1ÞnðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1.
From i to vi, all kinds of elements in f nIS are contained,
sof nISðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1.□

Assume an object xAPOSA�fangðfangÞ. In the sufficiency proof,
½x�A�fangD ½x�Bwas found. That is to say½x�A�fang � ½x�Bor½x�A�fang ¼ ½x�B.
When

where cnijis the element of ðx; oÞ in an-discernibility matrix. So there
is not the object oA ½z�A�fang with anðoÞaanðxÞ. The analysis verifies
that the attributes are reduced by the objects with the same
decisional attribute.

The second step in Definition 3.1 is defined for an inconsistent
information system. Assume an object pair ðx; yÞ,
(zAU; 8aAA�fang; aðxÞ ¼ aðzÞ; anðxÞaanðzÞ
(oAU; 8aAA�fang; aðyÞ ¼ aðoÞ; anðyÞaanðoÞ

)

)
x; y=2POSA�fangðfangÞ
x; y=2POSBðfangÞ

(
ð14Þ

f nISðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1 assesses that B is an attribute reduction. If
cnija∅,cnij \ Ba∅, where cnij is the element of ðx; yÞ in an-discernibility
matrix. According to the definition, cnij s is rewritten asA�fang, which
makes sure cnij \ Ba∅ and does not add new attributes into B.
Without the rewriting step, there may be redundant attributes inf nIS.
This shows the second kind of reduced attributes.

Maximal consistent blocks can also favor the second reduction
[35], but it needs additional computational time cost of Oðm� n�
log nÞ [36]. Comparing with this, our work just needs OðnÞ
computational cost of time.

Definition 3.4. A an-improved discernibility function f nnIS for an
information system IS¼ ðU;AÞ is a Boolean function of m�1
variables a1;…; am�1, which is defined as

f nnIS ða1;…; amÞ ¼ 4f3 ðcnijÞ : 1r io jrn; anðxiÞaanðxjÞ; cnija∅g; ð15Þ

where ai denotes an attribute in A�fang.

Theorem 3.4. an-improved discernibility function f nnIS ¼ f nIS.

Proof. According to Definitions 3.1 and 3.4,

f nIS ¼ f nnIS 4f4f3ðcnijÞ : 1r io jrn; anðxiÞ ¼ anðxjÞ; cija∅gg4
f4f3ðcniðnþ1ÞÞ : 1r irn; cniðnþ1Þa∅gg:

anðxiÞ ¼ anðxjÞ ) cnij ¼ A �fang ) 4f3 ðcnijÞ : 1r io jrn; anðxiÞ
¼ anðxjÞ; cnija∅g ¼ 3ðA�fangÞ;

if cniðnþ1Þa∅; cniðnþ1Þ ¼ A�fang for 1r irn

) 4f3 ðcniðnþ1ÞÞ : 1r irn; cniðnþ1Þa∅g ¼ 3 ðA�fangÞ:

So f nIS ¼ f nnIS 4f3ðA�fangÞg ¼ f nnIS .□

Definition 3.5. [20] An instance of SAT is a Boolean formula in
conjunctive normal formula. Each disjunction formula is called a
clause, and the instance is called a clause set.

An example of conjunctive normal formula is ðt3 lÞ4 ðt3 lÞ4
ðt3mÞ, where t, l and m are Boolean variables; overbar is logical
operation denoting “not”;t3 l,t3 l, and t3m are clauses. Each

Boolean variable can be assigned either true or false. According to
the values assigned to the variables, the formula is evaluated to be true
or false.

Theorem 3.5. According to an-discernibility function, one instance of
attribute reduction based on rough set is also an instance of SAT.

Proof. According to Theorem 3.3, a subset of attributes is a
reduction if the value of an-discernibility function is true.
The attributes in a reduction can be seen as variables with true
values. Otherwise, their values are false. Then, f nIS is an instance
of SAT. □

Definition 3.3. About attribute reduction is different from the
definitions in [13–17]. In the definitions in [13–17], there is not
such attribute making POSBðfangÞ ¼ POSB�fagðfangÞ. In Definition 3.3,
if B�fagis a reduction, B is also a reduction. In this work, rough set
based attribute reduction is solved by SAT. If an assignment for
B�fag makes the instance of SAT satisfiable, the Boolean formula is
also satisfiable with additional assignment for a. In order to keep
consistent with SAT, attribute reduction is in the format of
Definition 3.3.

Definition 3.6. [32] Give a clause C, C′¼ ðC3tÞ4 ðC3tÞ, where t is
an attribute not in C. C′ is called the result of extension rule on C.

Definition 3.7. [32] A clause is a maximum term if it contains all
attributes in either positive form or negative form.

Theorem 3.6. [32] For a clause set with m�1 attributes, if its clauses
are all maximum terms, the clause set is unsatisfiable if it contains
2m�1 clauses.

Theorem 3.7. [32] Given a clause set ∑¼ C14C24⋯4Cn, let
Pi be the set of all the maximum terms got from Ci by using extension
rule, and set NM the number of distinct maximum terms obtained
from ∑.

½x�A�fang � ½x�B ) (z; z=2½x�A�fang; zA ½x�B )
8aAB; aðxÞ ¼ aðzÞ
(c′¼ fa′AA�fang : a′ðxÞaa′ðzÞg
anðxÞ ¼ anðzÞ

8><
>: ) x=2½z�A�fang

c0 \ B¼∅

(

if (oA ½z�A�fang; anðoÞaanðxÞ
xAPOSA�fangðfangÞ
f nISðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1

9>=
>; ) 3cnijðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1 ) (a′Ac′ \ B

9>>>>>>>>>=
>>>>>>>>>;

) contradictory ð13Þ
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By knowledge compilation using extension rule, each pair of
clauses in the new clause set contains complementary forms of the
same attribute [33]. So NM ¼∑n′

i ¼ 1jPi
′j, where Pi

′ is the set of all
the maximum terms got from a clause after knowledge compila-
tion. Algorithm 3.1 shows process of knowledge compilation [33].

Algorithm 3.1. Knowledge compilation using the extension rule.

Input: Let∑1 ¼ C14C24 ;⋯; 4Cnbe a set of
clauses;∑2 ¼∑3 ¼∅.

While ∑1a∅
Loop

Select a clause from ∑1, say C1, and add it into ∑2

While i! the number of clauses in ∑1

Loop
While j! the number of clauses in ∑2

Loop
If Ci and Cj contain complementary forms
of the same attribute, skip;
Else if Ci subsumes Cj, eliminate Cj from
∑2;
Else if Cj subsumes Ci, eliminate Ci from
∑1;
Else extend Cj on a variable using extension
rule.
j¼ jþ1.

End loop
i¼ iþ1.

End loop
∑3 ¼∑3 [ ∑2;∑2 ¼∅
End loop
Output: ∑3 is the result of the compilation process.

Theorem 3.8. Set f c ¼ 3ðCn

ijÞ and f ′c ¼ ð3ðCn

ijÞ3 tÞ4ð3ðCn

ijÞ3 tÞ,
where tis an attribute not included by Cn

ij. f cðVBða1Þ;⋯;

VBðam�1ÞÞ ¼ 1 if f c
′ðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1, where VBðU Þ : a-f0 ;

1g such that aAB if VBðaÞ ¼ 1.

Proof. Set f ′ct ¼ 3 ðCn

ijÞ3 t and f ′ct ¼ 3 ðCn

ijÞ3t.
Necessary:
If f cðVBða1Þ;…;VBðam�1ÞÞ ¼ 1, it is direct to findf ′ctðVBða1Þ;…;

VBðam�1ÞÞ ¼ f ′ctðVBða1Þ;…;VBðam�1ÞÞ ¼ 1.
Sof ′cðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1.

Sufficiency:

i. VBðtÞ ¼ 1
f ′cðVBða1Þ;…;VBðam�1ÞÞ ¼ 1 means f ′ctðVBða1Þ;…;VBðam�1ÞÞ ¼ 1.
And VBðtÞ ¼ 1 ) VBðtÞ ¼ 0, so f cðVBða1Þ;…;VBðam�1ÞÞ ¼ 1;
VBðtÞ ¼ 0
f ′cðVBða1Þ;…;VBðam�1ÞÞ ¼ 1 means f ′ctðVBða1Þ;…;VBðam�1ÞÞ ¼ 1.
VBðtÞ ¼ 0s, sof cðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1.□

The positive or negative form of an attribute is called the
literature of the attribute. The literature set for one clause is
composed by the literatures of its attributes.

Theorem 3.9. If the literature set for a maximum term of conditional
attributes is not a superset of any clause in f nnIS , the attributes with
negative form in the maximum term is a reduction; if the literature
set for a maximum term of conditional attributes is not a superset of
any clause in the extended result of f nnIS , the attributes with negative
form is a reduction.

Table 4
Algorithm 3.2 on Example 2.1.

Clause L NL j Cðm�1�L; j�NLÞ Count set

a3 1 0 – – f0; 4; 6; 4; 1 g
1 3 f0; 1; 6; 4; 1 g
2 3 f0; 1; 3; 4; 1 g
3 1 f0; 1; 3; 3; 1 g

a43a3 2 1 – – f0; 0; 3; 3; 1 g
2 2 f0; 0; 1; 3; 1 g
3 1 f0; 0; 1; 2; 1 g

a13a23a33a4 4 2 – – f0; 0; 0; 2; 1 g
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Fig. 1. The distribution of reductions with different size.

Table 5
Dataset description.

Dataset Sample Attribute Class

1 Zoo 101 18 7
2 Soybean 47 36 4
3 Voting records (voting) 435 17 2
4 Connectionist bench (connectionist) 208 61 2
5 Pima Indians diabetes (pima) 768 9 2
6 LED display domain (LED) 1000 25 10
7 Hepatitis 155 20 2
8 Breast tumor diagnosis (breast) 699 10 2

NM ¼ ∑
n

i ¼ 1
jPij� ∑

1r io jrn
jPi \ Pjjþ ∑

1r io jo lrn
jPi \ Pj \ Plj�…þð�1Þnþ1jP1 \ P2 \ … \ Pnj;

jPij ¼ 2m�1�jCi j;

jPi \ Pjj ¼
0 there are complementary forms of the same attribute in Ci and Cj;

2m�1�jCi [Cjj otherwise:

( ð16Þ
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According the Theorem 3.8, it is easy to observe that f nnIS is equal
to the clause set extended by knowledge compilation. So we just
give the proof of the extended set.

Proof. Set f ′¼ C′
14C′

24⋯4C′
n′ as the extended clause set of f nnIS .

mtis a maximum term of conditional attributes, where LSC′
i
gLSmts

and LSC ′
i
aLSmt for i¼ 1;2;…;n′.LSC′

i
is the literature set of Ci

′;LSmt

is the literature set of mt. WhenLSC′
i
gLSmt , mt cannot be extended

by Ci
′. SC ¼ fmt′ : LSC′

i
DLSmt′g, where mt′ is a maximum term of

conditional attributes. For a set B of attributes with negative form
in mt, mtðVBða1Þ;…;VBðam�1ÞÞ ¼ 0, somt′ðVBða1Þ;…;VBðam�1ÞÞ ¼ 1.
Set ~SC ¼ f3 ðLSmt′�LSCi

′ Þ : mt′AScgs. For a set of the conditional
attributes not in Ci

′, ~SC includes all its maximum terms, so
4f ~SCg ¼ 0for any assignment. 4fScðVBða1Þ;…; VBðam�1ÞÞg ¼
C′
iðVBða1Þ;…;VB ðam�1ÞÞ3f4f ~ScðVBða1Þ;…;VBðam�1ÞÞgg ¼ 1, soC′

iðVB

ða1Þ;⋯; VBðam�1ÞÞ ¼ 1. As a result,f ′ðVBða1Þ;⋯;VBðam�1ÞÞ ¼ 1. Bis a
solution of attribute reduction. □

Theorem 3.10. The number of sets as attribute reduction is
2m�1�NM, where NM is the number of distinct maximum terms
obtained from the extended f nnIS , and m�1 is the number of condi-
tional attributes.

Proof. It is straightforward according to Theorems 3.7 and 3.9. □

For the Example 2.1, f nnIS ¼ ða13a23a33a4Þ4 ða13a2Þ4
ða23a4Þ4 ða23a3Þ4a44a3 according to Table 3. The result of
knowledge compilation is ∑¼ a34ða43a3Þ4ða13a23a33a4Þ.
The number of attribute reductions is 24�ð24�1þ24�2þ24�4Þ ¼ 3.

After complication knowledge, every clause has complemen-
tary literatures with all other clauses. That is to say that the
maximum terms extended by each clause are totally different.
The supplementary of maximum terms extended by the clauses is
the set of all solutions. It is not generally necessary to obtain all
solutions, because it will take memory cost of 2m�1. In this work,
the distribution of solution is found without extending maximum
terms, which is shown in Algorithm 3.2. The distribution is useful
to analyze the characteristic of solutions, which has been verified
in experiments in Section 4.

Algorithm 3.2. Distribution of attribution reduction

Input: Clause set after knowledge compilation
f ′¼ C′

14C′
24…4C′

n′; a count set includes m elements,
where m�1 is the amount of conditional attributes.

Seti¼ 0.
While irm�1
Loop

Value of theðiþ1Þ thelement in count set is
Cðm�1; iÞ ¼ ðm�1Þ!=i!ðm�1�iÞ!.

End loop
Seti¼ 1.
While irn′

Loop
SelectC′

ifromf ′.
Denote that the number of attributes inC′

iis L, and the
number with negative form is NL.

The value of ðNLþ1Þ thelement in count set is decreased 1.
Setj¼NLþ1.
Whilejrm�1�LþNL
Loop

Theðjþ1Þ thelement in count set is
decreasedCðm�1�L; j�NLÞ ¼ ðm�1�LÞ!=ððj�NLÞ!
ðm�1�j�LþNLÞ!Þ

j¼ jþ1
End loop
i¼ iþ1.

End loop
Output: The distribution of attribute reduction is in the count
set.

For the Example 2.1, the result of knowledge compilation is
∑¼ a34ða43a3Þ4ða13a23a33a4Þ. The count set after initiali-
zation is f1; 4; 6; 4; 1 g. Table 4 shows the process of
Algorithm 3.2 on Example 2.1. Fig. 1 illustrates the distribution
of reductions with different size.

Definition 3.8. Minimal reduction has the smallest number of
attributes in all possible solutions of attribute reduction.

The number of attributes in minimal reduction can be obtained
according to the distribution. With this prior information, the
minimal reduction can be found by a simple forward search
process.

Algorithm 3.3. Forward search with prior information

Input: The amount of attributes in minimal reductionn1, and an
empty setMR.

Find 3ðcijnÞin an-improved discernibility function has only one
attributes; then the attribute is inserted intoMR.

SetCS¼ A�fang�MR,PS¼ TS¼∅, and n1 ¼ n1�jMRj where jU jis
the size of the object.

While jPOSMR[TSðfangÞja jPOSA�fangðfangÞj
Loop

Pick n1 attributes of CS to composeTS.
IfTS=2PS,PS¼ f TS g [ PS.

End loop
MR¼MR [ TS.
Output:MR.

According to Fig. 1, the amount of attributes in minimal
reductions for Example 2.1 is 3 (n1 ¼ 3). 3ðcijnÞ for sample 3 and

Table 6
Number of clauses.

Dataset Number with
Definition 3.4

Exact number Conditional
attributes

Largest space
in 3.4

Largest space of
exact number

Reduced
proportion (%)

Zoo 3873 956 17 65,841 16,252 75.32
Soybean 810 615 35 28,350 21,525 24.07
Voting 44,859 10,548 16 7,17,744 1,68,768 76.49
Connectionist 10,767 91 60 6,46,020 5460 99.15
Pima 1,34,000 82 8 10,72,000 656 99.94
LED 4,49,250 4,28,815 24 1,07,82,000 1,02,91,560 4.55
Hepatitis 5950 3097 19 1,13,050 58,843 47.95
Breast 1,10,378 291 9 9,93,402 2619 99.74
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Fig. 2. Comparison of attribute values among different classes. a: Zoo; b: Soybean; c: Voting; d: Connectionist; e: Pima; f: LED; g: Hepatitis; h: Breast. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this article.)
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sample 4 isa4 and 3 ðcijnÞ for sample 3 and sample 5 is a3,
illustrated in Table 3. So MR¼ fa3; a4g, and n1 ¼ 1. Assume
TS¼ fa1g; then jPOSMR[TSðfangÞj ¼ jPOSA�fangðanÞj. So a minimal
reduction isfa1; a3; a4g.

4. Experiments

In this section, several datasets are employed to verify the
work. The number of clauses is discussed to analyze the factors
playing role in computational cost. Table 5 shows the details of the
used UCI datasets.

4.1. Analysis of an-improved discernibility function

An important aspect of attribute reduction based on rough set
is computational cost. According to Definition 3.4, the number of
clauses inan-improved discernibility function is

nðn�1Þ
2

�l1ðl1�1Þ
2

�l2ðl2�1Þ
2

�⋯�lwðlw�1Þ
2

¼ n2�ðl21þ l22þ⋯þ l2wÞ
2

;

ð17Þ

where n is the total number of samples and li is the number of
samples in one class. But its exact number of clauses is smaller
because of repeated clauses. Table 6 gives the number in Definition
3.4 and exact number of clauses. It is observed that the exact
numbers of Connectionist, Pima, and Breast are much smaller than
their number of Definition 3.4, since their proportions of repeated
clauses are larger than 99%. The proportion of repeated clauses is
decided by the value distribution of attributes. Similar values of
samples in the same class and large distinction among different
classes support repeated clauses. Another factor playing role in
space cost is the size of clauses. In Table 6, the largest space
cost is shown, by assuming every clause includes all conditional
attributes.

4.2. The number of clauses after knowledge compilation

During the process of knowledge compilation using extension
rule, one clause is deleted from the clause set, when it is subsumed
by another clause [33]. So subsuming cuts down the computa-
tional cost of space and time in knowledge compilation. Since the
amount of clauses in an-improved discernibility function is large,
audiences cannot find anything in the figures, when all the clauses
are shown. Hence, 200 clauses are randomly picked in Fig. 2 which
illustrates the concept of subsuming. Every figure in Fig. 2 includes
three subfigures. The middle one describes the elements of
an-improved-discernibility function. One row represents one
clause. Every column expresses one attribute. It must be noted

that all attributes in discernibility function are with positive form.
Hence, we do not underline literatures in this section to reduce the
burden of description. Red denotes the attribute in a clause; blue
means the attribute not in a clause. For a clause, its red attributes
contains all red features of another clause. Then, the clause is
directly deleted. The third subfigure shows only the first 10 clauses
in order to explain subsuming clearly. For example, in the third
subfigure of Fig. 2a, the red attributes of the first clause are
included by other 9 clause. So the 9 clauses are subsumed by the
first and deleted in the process of knowledge compilation. The first
subfigure shows the sets of subsuming in the second subfigure.
The clauses in every two circles are in a subsuming set where the
attributes in every clause contain the attributes of the first clause.
That is to say that only the first clause in a subsuming set is kept in
knowledge compilation. So the clauses of Zoo, Voting, Hepatitis
and Breast are deleted dynamically, shown in Fig. 2a, g, and h.
The details of final results are illustrated in Table 7.

4.3. Distribution of solutions

According to Theorem 3.10, the amount of all possible solutions
can directly be calculated according to distinct maximum terms.
On the basis of clause set after knowledge compilation, the
number of distinct maximum terms is found with Theorem 3.7.
In Table 8, it can be observed that the proportion of clause to
distinct maximum term (PCDMT) is small except Connectionist.
Especially, for Soybean, the proportion is approximate to 0. This
verifies that extension rule really saves computation cost for rough
set based attribute reduction. Fig. 3 illustrates the distribution of
solutions. For Zoo, Soybean, Connectionist, Hepatitis, the number
of solutions taking ⌈ðm�1Þ=2⌉ conditional attributes is largest. In
Table 8, we can find that the number of solutions in these four
datasets is large. LED also has enough solutions; however, its 17
attributes are based on the first 7 attributes [38]. Especially,

Table 7
Variation of clause number.

Dataset Exact clauses Subsuming sets Clauses deleted Proportion deleted (%) Addition of clauses Clauses in extended set

Zoo 956 14 942 98.54 41 55
Soybean 615 99 516 83.90 2727 2826
Voting 10,548 15 10,533 99.86 15 30
Connectionist 91 69 22 24.18 10 79
Pima 82 5 67 81.71 19 24
LED 4,28,815 1091 4,27,724 99.75 17,224 18,315
Hepatitis 3097 63 3034 97.97 1037 1100
Breast 291 20 271 93.13 15 35

Table 8
Description of maximum terms.

Dataset Clauses in
extended set

Distinct
maximum terms

PCDMT
(%)

Number of
solutions

Zoo 55 56,624 0.1 74,448
Soybean 2826 3:092� 109 � 0 3:1268� 1010

Voting 30 65,372 0.05 164
Connectionist 79 92 85.87 1:1529� 1018

Pima 24 98 24.49 158
LED 18,315 1,62,24,043 0.11 5,53,173
Hepatitis 1100 1,72,558 0.64 3,51,730
Breast 35 373 9.38 139
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Fig. 3. Distribution of reductions. a: Zoo; b: Soybean; c: Voting; d: Connectionist; e: Pima; f: LED; g: Hepatitis; h: Breast.
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jPOSBðfangÞj ¼ jUj where B only has the first 6 attributes. So the
amount of solutions having ⌈ðm�1�6Þ=2⌉þ6 conditional attri-
butes is largest.

4.4. Analysis of computational cost

The number of clauses in the extended set in Table 8 shows
memory cost. In this section, the efficiency of time cost is
discussed. Table 9 shows the cost of time to build an-improved
discernibility function and knowledge compilation, where the
unit is micsecond and the value is the average of 10 times
experiments. It can be observed that the time cost for an-
improved discernibility function is decided by the amount of
clauses defined by 3.4. In the process of knowledge compilation,
the difference between an-improved discernbility function and
the extended set plays role in the time cost. However, the similar
rule with an-improved discernibility function cannot be found.
That is because that some clauses are directly deleted because of
subsuming.

Table 10 gives the time cost of solution distribution and
minimal reduction. By solution distribution, the number of attri-
butes in minimal reduction is known. An attribute is necessary,
when it is the unique element in one 3 ðcnijÞ. The necessary
attributes must be contained by the minimal reduction, so they
are inserted into the selected set before search process. Assume
the number of necessary attributes is nn, the size of minimal
reduction is nMR, m�1 is the number of attributes in conditional
set. The difficult degree of finding a minimal reduction can be
evaluated by the combinations of attributes with the size of
nMR�nn. The number of combinations is

ðm�nn�1Þ � ðm�nn�2Þ �…� ðm�nMRÞ
ðnMR�nnÞ � ðnMR�nnþ1Þ �…� 1

ð18Þ

Proportion of minimal reduction (MR) is

ðnMR�nnÞ � ðnMR�nnþ1Þ �…� 1
ðm�nn�1Þ � ðm�nn�2Þ �…� ðm�nMRÞ
� the number of MR ð19Þ

Larger value of formula (19) means less difficulty to find a minimal
reduction. Besides the proportion of MR, the amount of samples
also plays role in the time cost of minimal reduction, since the
subset of selected attributes and necessary attributes must be
verified to be a reduction. Fig. 4 illustrates the time cost of
activities in Table 9 and Table 10. For Zoo, Voting, LED, and
Hepatitis, the time cost in knowledge compilation is larger than
other activities. Soybean is the only dataset, where the number of
clauses after knowledge compilation increases nearly 4 times of
the exact clauses, so the time cost of solution distribution is larger
than other. The clauses in Definition 3.4 of Connectionist and
Prima are 10767 and 134000, respectively. So building discern-
ibility function needed largest time cost.

5. Conclusions

In this work, we import extension rule to rough set based
attribute reduction. Extension rule, a propositional satisfiability
problem (SAT) method, checks the satisfiability by using inverse of
resolution. By employing extension rule on discernibility function,
the distribution of attribute reductions with different size is found.
It provides a new method to describe the solutions of attribute
reduction based on rough set. After obtaining the distribution, it is
easy to find a minimal attribute reduction. In addition, we define
a new discernibility matrix for both inconsistent and consistent
information system.

Table 9
Time cost of discernibility function and knowledge compilation.

Dataset Discernibility function Knowledge compilation

Number in Definition 3.4 Time cost Exact clauses Clauses in extended set Difference Time cost

Zoo 3873 266.3 956 55 901 75,200
Soybean 810 94.7 615 2826 �2211 381.2
Voting 44,859 466.4 10,548 30 10,518 7168.8
Connectionist 10,767 273.8 91 79 12 3.2
Pima 1,34,000 1668.8 82 24 58 0
LED 4,49,250 35177.3 4,28,815 18,315 4,10,500 13,32,9542
Hepatitis 5950 235.8 3097 1100 1997 968.8
Breast 1,10,378 852.4 291 35 256 12.6

Table 10
Time cost of finding minimal reduction.

Dataset Solution distribution Find minimal reduction (MR)

Attributes in MR Necessary attributes Number of MR Combination Proportion of MR (%) Time cost

Zoo 6.4 1 0 1 17 5.9 9.3
Soybean 695.1 2 0 4 595 6.7 113.6
Voting 3.7 9 7 1 36 2.8 49.4
Connectionist 91.8 1 0 8 60 13.3 13.3
Pima 2.4 3 0 19 56 33.9 34.5
LED 966.4 5 0 1 42504 2.4�10�7 2452465.3
Hepatitis 77.2 3 0 15 969 1.5 97.4
Breast 11.1 4 1 7 56 12.5 33.6
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