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Abstract A generalized neural reflectance (GNR) model
for enhancing face recognition under variations in illu-
mination and posture is presented in this paper. Our
work is based on training a number of synthesis images
of each face taken at single lighting direction with
frontal/posture view. This way of synthesizing images
can be used to build training cases for each face under
different known illumination conditions from which face
recognition can be significantly improved. However,
reconstructing face shape may not easily be achieved and
the human face images usually form by highly complex
structure which suffers from strong specular and un-
known reflective conditions. In this paper, these limita-
tions are addressed by Cho and Chow (IEEE Trans
Neural Netw 12(5):1204–1214, 2002). Face surfaces are
recovered by this GNR model and face images in dif-
ferent poses are synthesized to create a database for
training. Our training algorithm assigns to recognize the
face identity by similarity measure on face features
extracting first by the principle component analysis
(PCA) method and then further processing by the
Fisher’s discrimination analysis (FDA) to acquire lower
dimensional patterns. Experimental results conducted
on the Yale Face Database B show that lower error rates
of classification and recognition are achieved under
different variations in lighting and pose and the perfor-
mance significantly outperforms the recognition without
using the proposed GNR model.

Keywords Face recognition Æ Neural networks Æ
Shape from shading

1 Introduction

Face recognition, the art of matching a given face to a
database of faces, is a non-intrusive biometric method
since 1960s. Demands on face recognition have rapidly
increased in industrial applications such as identification
for law enforcement and authentication for banking and
security system access. Many techniques and useful re-
sults have been reported [1–3]. In efforts going back to
far early times, current systems (see surveys [2–4]) of face
recognition involve extracting geometric or statistical
features derived from face images. Despite human being
able to recognize and identify faces in a scene with little
features, building an efficient and accuracy system is still
very challenging. The challenges are that a recognition
system has to be invariant both to external changes
(such as environmental light, person’s position and dis-
tance between camera and person) and to internal
deformations (such as facial expression, aging and ma-
keup [5]). The performance of existing techniques is still
not very consistent and the system may produce results
which are very different from those obtained from hu-
man visual perception. There are some important issues
that need to be addressed. Many researchers have ex-
plored geometrical features based methods for face
recognition. Kanade [6] presented an automatic feature
extraction method based on ratios of distances and re-
ported a recognition rate of between 45% and 75% with
a database of 20 people. Brunelli and Poggio [7] ex-
tracted a set of geometrical features such as nose width
and length, mouth position, and chin shape in which the
method could achieve 90% recognition rate on a data-
base of 47 people. Gao and Leung [8] have recently
proposed a line-edge map (LEM) features for face cod-
ing and used the line segment Hausdorff distance mea-
surement for human face recognition. The results are
encouraging with a single public database with over
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90% recognition rate under lighting variations but be-
low 75% under pose variations. However, such geo-
metrical featuring methods would be dependent on the
accuracy of the feature-locating algorithm. Current
algorithms for automatic location of feature points do
not provide a high degree of accuracy and require con-
siderable computational capacity [9].

Not only the geometrical features based methods can
be used for face identification, but statistical approaches
are also used for processing the face image under low-
level dimension. Eigenfaces are usually used in [10] and
every face in the database can be represented as a vector
of weights. They are obtained by projecting the image
into eigenface space by a simple inner product opera-
tion. The resulting eigenfaces are classified by compari-
son with known individuals. However, the performance
of this method is limited by a number of factors because
optimal performance requires a high degree of correla-
tion between the pixel intensities of the training and test
images. These limitations are caused by lighting, facial
expression and other factors. Most recently, in accor-
dance with the fact that eigenface features are not
promisingly good for discrimination, using other dis-
criminant feature paradigms has become more popular.
One method is called Fisher’s/linear discrimination
analysis (FDA) which aims at overcoming the drawback
of the eigenface by integrating FDA criteria [11]. FDA
training is carried out via scatter matrix analysis in
projecting faces from a high-dimensional space to a
significantly lower dimensional feature space. Apart
from using statistical approaches, neural network based
feature extraction has been proposed to develop a
compact internal representation of faces [12–14]. Good
results were obtained from a database with up to 20
individuals and there is no lighting variation.

Although many face recognition techniques have
been able to deliver promising results, the task of robust
face recognition remains very difficult [15]. Indeed, there
are at least two major problems in the current ap-
proaches: the illumination variation problem and the
pose variation problem. Either of these two problems
may cause significant degradation in the performance of
face recognition systems. For instance, changes in illu-
mination conditions can change the 2D appearance of a
3D face object dramatically and hence affect the system
performance. These two problems have been reported in
many evaluations, e.g., [16, 17]. However, their perfor-
mances are unacceptable when face images are acquired
in an uncontrolled environment such as in surveillance
video. The illumination problem is basically illustrated
in Fig. 1 where the same face appears differently due to a
variation in lighting. The differences introduced by

varied illuminations often cause systems to mis-classify
input images that have been theoretically proved by
Adini et al. [18] for systems based on eigenface projec-
tion. Another problem is pose variation. The perfor-
mance of face recognition may also drop significantly
when pose variations are presented. Some works have
been proposed to handle the pose problem. They are
included into two approaches: first, multiple database
images of each person were used by a template-based
correlation matching scheme. Second, hybrid methods
were used when multiple images are available during
training but only one database image per person is
available during recognition. The second approach
seems to be the most popular one in the literature [19].

In this paper, a generalized neural reflectance (GNR)
model is proposed to enhance face recognition in a way
of delivering more robust output. Our approach is
model based which differs from the other methods in
that a single frontal view face image is required to syn-
thesize other face images under different lighting con-
ditions and a small number of face images in different
poses are used to synthesize other face postures. This
generalized model [20] is established using a hybrid
structure of two neural activation functions, i.e., sigmoid
and radial basis functions. Based on this model design,
the diffuse model’s parameters would be generalized by
the sigmoid function, whereas the other parameters,
such as specular reflectivity, could be approximated by
the radial basis function. The radial-based function is
selected because of its separable capability in ill-posed
hypersurface structure. All components for real face
images are generalized by this model, and a set of syn-
thesized face images can then be rendered in different
occasions of illuminations and postures. In our study,
we only make use of one image in frontal view to esti-
mate its face surface, and thus a set of synthetic face
images under different illumination conditions (i.e., dif-
ferent light source directions) can be synthesized. Our
method for handling lighting variability in face images
differs from [21] in that our model is able to synthesize a
large image database. In order to tackle the issue of
posture variations affecting the recognition, we synthe-
size different posture images by image warping dictated
by 3D rigid transformations of the reconstructed face
surface. Our method differs from the others [22, 23] in
that we first estimate the transformation matrices for
each different posture and then warp synthetic face
surfaces of each posture using its corresponding trans-
formation matrices. Hence, a set of synthetic images
under different postures can then be formed. In the
recognition stage, a set of most expressive features is
generated by the principal component analysis (PCA) to

Fig. 1 Face images from the
same person under different
illumination conditions
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compress each face representation and then the FDA is
further implemented to generate a set of the most dis-
criminant features so that different classes of training
data can be classified. The identity of a test image can
then be measured by means of different kinds of simi-
larity measure. Our recognition approach is performed
using a 4,050 images subset of the publicly available
Yale Face Database B [24]. This subset contains nine
poses multiplied by 45 illumination conditions for 10
individuals.

The paper is organized as follows: Sect. 2 briefly de-
scribes a generalized reflectance model by use of a hybrid
structure of neural models and shows how to synthesize
face images for training under different illuminations
and pose. Section 3 describes the face features extraction
by means of the PCA and the FDA and also different
similarity measures that can be expressed for the face
recognition. Section 4 presents experimental results, and
finally the conclusion is drawn in Sect. 5.

2 Generalized neural reflectance model

2.1 Face surface reconstruction

It was shown that a m · n face image can be formed as a
convex object in the image space <m�n under arbitrary
combinations of points or extended light sources [24].
Assume the surface of a convex object contains Lam-
bertian reflectance surface that reflects light in diffuse
reflection. Suppose that the surface, represented by
z(x,y), depends on the systematic variation of image
brightness with surface orientation, where z is the height
field and x and y form the 2D pseudo-plane over the
domain X of the image plane. The Lambertian reflec-
tance model used to represent a surface illuminated by a
single point light source is given as

RLambertian ¼ max gnsT; 0
� �

; ð1Þ

where max gnsT; 0
� �

sets to zero for all negative com-
ponents. g is the composite albedo, s ¼
cos s sin r sin s sin r cos rð Þ is the illuminate

source direction and s and r denote the tilt and slant
angles, respectively. N 2 <ðm�nÞ�3 is defined to be a
matrix whose rows are given as the surface normal, n,
represented as

where p=¶z/¶x and q=¶z/¶y are the surface gradients.
An ideal Lambertian surface requires a known and
distant light source according to this model. But in most
practical cases, the surface does not often contain the
Lambertian surface because the light source is often
located at a finite distance and an unknown position.

Specular component occurs when the incident angle
of the light source is equal to the reflected angle. This
component is formed by two terms: the specular spike
and the lobe. Healy and Binford [25] derived the spec-
ular model by simplifying the Torrance–Sparrow model
[26], in which the Gaussian distribution was used to
model the facet orientation function. More sophisticated
model based on the geometrical optics approach was
also presented as the specular reflectance model [27],
such that

RSpecular ¼ jspec
Lidwi

cos hr
exp � a2

2b2

� �
; ð3Þ

where j spec represents the fractions of incident energy
determined by the Fresnel coefficients and the geomet-
rical attenuation factor. The term cos h r describes the
emitting angle that the radiance of the surface in the
viewing direction is determined. As most object surfaces
in the real world are neither purely Lambertian reflec-
tance models nor purely specular components, they are a
linear combination of them. They are hybrid surfaces
that include diffuse and specular components. Nayar
et al. [28] formed a hybrid model to tackle the problem
such that the model consists of three components: dif-
fuse lobe, specular lobe and specular spike. In contrast,
this paper describes a straightforward representation of
the hybrid surface that the total intensity of the hybrid
surface is the summation of the specular intensity and
the Lambertian (diffuse) intensity as follows:

RHybrid ¼ 1� xð ÞRLambertian þ xRSpecular; ð4Þ

where RHybrid is the total intensity for the hybrid surface,
RLambertian and RSpecular are the diffuse intensity and
specular intensity, respectively, and x the weight of the
specular component.

Although these models are widely used for the
approximation of the reflectance components, the criti-
cal parameters (i.e., the light source and the viewing
direction) are required a priori. Incorporating more
reflectance parameters and effects is inevitable for gen-
erating a GNR model. In this paper, a neural network
self-learning scheme, based on the relationship between
the surface orientation and the intensity, is exploited to
model the unknown parameters for generalizing the
reflectance model. Apparently the use of a sigmoid

activation model and a radial basis function model can
provide approximations of the Lambertian model and
the specular model, respectively, under the theoretical
view of the universal approximation capability of neural
networks [29, 30]. These are clearly advantages of
establishing a hybrid-type neural reflectance model [20],

n x; yð Þ ¼ �p x;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 x;yð Þþq2 x;yð Þþ1
p �q x;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 x;yð Þþq2 x;yð Þþ1
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 x;yð Þþq2 x;yð Þþ1
p

� �
; ð2Þ
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which combines the sigmoid and radial basis functions.
The GNR model is shown in Fig. 2 and expressed as

RGNR ¼

usig v0þ
XN

k¼1
vk usig wkai;j

� �
þurad ai;j� ck

�� ��� �� �
 !

; ð5Þ

where / sig and / rad are the sigmoid activation function
and radial basis function, respectively, wk is the synapse
weights of the sigmoid activation and ck is the centers of
the radial basis function. The input vector ai;j¼
pi;j qi;jð ÞT acts as surface gradient vector in (i,j) coor-
dinates of a face surface. The surface gradients would be
optimized to form the optimal reflectance model R̂GNR

such that this model is equivalent to the given intensity
image. This approach would enable us to generalize ei-
ther the purely Lambertian surface or the non-Lam-
bertian surfaces, which are most existing in the convex
surface of the face images. Using the above GNR model,
the face surface orientations can be reconstructed from
the intensity image in frontal view by solving a shape
from shading (SFS) problem. In solving the SFS
algorithm by the GNR model, the cost function we
commonly used is as shown in (6).

ET¼
Z Z

X
I�RGNRð Þ2þ

k
@p
@x

� �2

þ @p
@y

� �2

þ @q
@x

� �2

þ @q
@y

� �2
 !

dxdy: ð6Þ

The first term is the intensity error term, and the second
term is a smoothness constraint given by the spatial
derivatives of p and q. k is a scalar that assigns a positive
smoothness parameter. Based on this objective function,
the free parameters of the GNR model and the object
surface gradients are determined by performing a unified
learning mechanism. Through the learning process, the

synapse weights, the radial basis centers as well as the
surface depths are optimized by a specific learning
framework which has been reported in [20, 31]. The
general learning framework is shown in Fig. 3.
Throughout this learning framework, given an intensity
image I, an error between the given intensity and the
neural reflectance model can be computed and used to
optimize the RGNR parameters as well as the surface
gradients by the cost function (6). The RGNR parameters
are optimized by a specific learning algorithm for the
corresponding neural network structure and the surface
gradients are computed by a variational calculus ap-
proach on a discrete grid of points. Hence, the object
surface depth can be estimated once the optimal surface
gradients are being obtained. The details of this frame-
work computation can be referred to in [20] or [31].

The whole learning framework can normally con-
verge within 10–20 iterations. With the cropped face
image of size 100 · 100 pixels in the frontal view, the
convergence took at most 1 min running by a worksta-
tion with P-IV 2.4 GHz processor. Figure 4 demon-
strates the reconstructed face surfaces by the proposed
GNR model. Figure 4a shows the original single light
source images with the frontal view of 10 individuals in
the Yale Database B. The light source direction was
chosen with 12� of the optical axis which the images do
exhibit as little as shadowing, such as left and right of
the nose. Figure 4b shows the reconstructed face sur-
faces by the GNR model for these corresponding indi-
viduals. These face surfaces can encode the
corresponding surface normal fields which are synthe-
sized face images under arbitrary illumination condi-
tions. We used the surface normal field obtained by the
reconstructed surface to project the reflected intensities
to the image plane by the arbitrary lighting directions
for getting face images under different illumination sce-
narios. Figure 5 demonstrates some samples of synthe-
sized images of these 10 persons in different lighting

Fig. 2 Hybrid of sigmoid and
radial basis activations for
GNR model
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directions. Note that we did not synthesize the most
extreme illumination scenario for training, thus this ex-
treme scenario was also ignored during testing for the
recognition algorithm.

2.2 3D rigid transformation for pose variations

The posture variation is another issue to degrade the
accuracy of the face recognition. In order to handle this
problem, we warp the face images defining from given
views using 3D rigid transformations of the surface
geometry. This method for handling posture variation
differs from other works such as [22] and [23], in which
we warp a given pose image to another pose image of the
same person’s face using the estimated rigid transfor-

mation. In this method, estimations of a set of 3D rigid
transformation are a key component for generating a
collection of face images in pose variations. This 3D
rigid transformation is basically a composition matrix of
rotations and translations, which are computed by the
frontal-to-pose and/or pose-to-pose surface geometries.
Figure 6 shows the face surfaces of the same individual
for estimating the parameters in the rigid transformation
in that they have been reconstructed by the GNR model.
Suppose a 3D dominant point defined by its homoge-
neous coordinates X f; Y f; Zf; 1

� �T
in a face surface at a

given posture and let kX p; kY p; kZp; kð ÞT be the corre-
sponding point’s coordinates at a pre-defined target
posture after warping by the rigid transformation. The
transformation from the frontal/posture to another
posture is equivalent to saying that it is a composition

Fig. 3 The general learning
framework for generating the
object surface depth

Fig. 4 The reconstruction
results by the proposed GNR
model. a The training images
from 10 individuals under
frontal pose and illumination in
Yale Database B (note that all
the training images are cropped
in size of 100·100 pixels). b The
reconstruction surfaces by the
SFS in the proposed GNR
model
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matrix of 3D rotations Rhx ;Rhy

� �
by x-axis and y-axis,

respectively, and 3D translations Tð Þ such that

kX p

kY p

kZp

k

0

BB@

1

CCA ¼ RhxRhyT

X f

Y f

Zf

1

0

BB@

1

CCA ¼Mc

X f

Y f

Zf

1

0

BB@

1

CCA; ð7Þ

where

Mc ¼

m1 0 m2 m3

m4 m5 0 m6

m7 m8 0 m9

m10 m11 m12 1

0

BB@

1

CCA

is the composition matrix in which the parameters
m1; . . . ;m12ð Þ are estimated for the transformation
from the frontal-to-pose or pose-to-pose face sur-
faces regeneration. In each component, (7) can be
written as

X p ¼ m1X f þ m2Zf þ m3

m10X f þ m11Y f þ m12Zf þ 1
;

Y p ¼ m4X f þ m5Y f þ m6

m10X f þ m11Y f þ m12Zf þ 1
;

Zp ¼ m7X f þ m8Y f þ m9

m10X f þ m11Y f þ m12Zf þ 1
: ð8Þ

Fig. 5 Synthesized images of
the 10 individuals under
different illumination
conditions
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Since (8) can be thought of as three linear equations for
the 12 unknowns m ¼ m1;m2; . . . ;m12ð ÞT; they can be
written as

A least squares equation can be formulated for the N
points on the face surfaces and can be written as

P�Hm ¼ 0; ð10Þ

where P is a 3N·1 column vector given by P ¼
X p
1 Y p

1 Zp
1 � � � X p

N Y p
N Zp

N

� �T
and H is a 3N·12

matrix given by

As N>>12 and the N points are not coplanar, the
solution would be non-trivial which can be determined
by a simple least squares method, such that the esti-
mated m is given by

m̂ ¼ HTH
� ��1

HTP: ð11Þ

By the above computations, we first identified a number
of dominant points (around 100 points on the face sur-
face) at the positions of eyes, nose and mouth for each
posture of the given surfaces. All these points are substi-
tuted in (11) to compute the estimated frontal-to-pose
and pose-to-pose transformation matrices. In our work,
we selected the frontal (Posture 1) and the Postures 3, 5, 7

as the given postures to be transformed into the target
Postures 2, 4, 6 and 8, respectively, such that four trans-
formation matrices are computed correspondingly as
transformed from Posture 1 into 2, Posture 3 into 4,

Fig. 6 The face surfaces of the
same individual reconstructed
by the proposed reflectance
model under different postures.
Note that Postures 1, 3, 5, 7 are
used for original postures to be
transformed and Postures 2, 4,
6, 8 are used as target postures
from the transformation
matrices. These sets of face
surfaces are basically used for
estimating the rigid
transformations
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Posture 5 into 6 and Posture 7 into 8. Using these four
transformation matrices, the surface geometrics of the
postures can then be evaluated and hence the face images
are synthesized in different posture variations. Figure 7
shows some examples of the face images synthesized by
these four posture transformations. Note that these
images were generated from the face surfaces of the ori-
ginal postures (1, 3, 5, 7) from the corresponding indi-
viduals together with the 3D rigid transformations
estimated by the given face surfaces from one person
shown in Fig. 6. All the postures are fixed for every
individual and they have only small changes in eyes, nose
and mouth. Nevertheless, in our method, we use prior
knowledge about the shape variations of faces in different
postures to resolve the transformation matrices. The
disadvantage is that we cannot generate the faces in infi-
nite degree of freedom because restricted prior knowledge
can only be obtained in advance. Our method is different
from the other 3D face reconstruction methods such as in
[32] which can generate a whole 3D face such that the face
images can then be warped under different postures
arbitrarily. Furthermore, our method cannot attempt to
deal with facial expression, aging or occlusion.

3 Extraction and recognition of face features

In our study, about 80–120 synthesized images in each
posture were more or less sufficient to provide for the
different illuminate conditions. The next step is to
extract the face features from all these synthesized

images to provide a representation for recognition. One
of the simple ways is that the whole face representation
is projected down to a moderate-dimensional linear
subspace in order to reduce the complexity and speed up
the recognition process. Basically, the basis vectors of
this subspace, which is specific to faces, are commonly
computed by performing PCA in which those basis
vectors have been scaled by their corresponding eigen-
values. We then selected the eigenvectors corresponding
to the largest eigenvalues to be the basis vectors of the
faces. We intended this as an approximation to find the
basis vectors by performing PCA directly on all the
synthesized images of the face under different illuminate
conditions. In the simulations described in Sect. 4, the
subspace of each face had a dimension of 100 as this was
good enough to specify all the variabilities in the dif-
ferent illuminate conditions and different postures.

3.1 Principal component analysis

Let a face image Xi be a two-dimensional m · n array of
intensity values. An image may also be considered as a
vector of dimension m2. Suppose that there are n face
images used for training X ¼ X1;X2; . . . ;Xnð Þ � <m2�n;
and assume that each image belongs to one of classes c.
The covariance matrix is defined as

W ¼ 1

n

Xn

i¼1
Xi � X

� �
Xi � X

� �T

¼ UUT; ð12Þ

Fig. 7 Some examples of
synthesized face images by
different posture
transformations
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where

X ¼ 1

n

Xn

i¼1
Xi and U ¼ U1;U2; . . . ;Unð Þ � <m2�n: ð13Þ

The eigenvalues and eigenvectors of the covariance
matrix W are calculated. Let A ¼ A1;A2; . . . ;Arð Þ �
<m2�r where r< n be the r eigenvectors corresponding to
the r largest eigenvalues. Thus, for a set of original face
images X, their corresponding eigenface feature Y �
<r�n can be obtained by projecting X into the linear
subspace (i.e., eigenface space) as

Y ¼ ATX: ð14Þ

In the recognition process, a test face image Xj is per-
formed by first projecting Xj to Yj at the eigenface space
and then computing the metric to the eigenface repre-
sentation of each face X in the database. This metric is
defined as a similarity measure to the closest projected
eigenface space Yj within Y � <r�n: The face Xj is then
assigned the identity of the closest representation.

However, the PCA paradigm does not provide any
information for class discrimination. It means that the
scatter being maximized is due to not only the between-
class scatter that is useful for classification, but also the
within-class scatter that is unwanted information.
Accordingly, the Fisher’s discrimination analysis (FDA)
is applied to the projection of the set of training samples
in the eigenface space and then it finds an optimal sub-
space for classification in which the ratio of the between-
class scatter and the within-class scatter is maximized
[11, 33].

3.2 Fisher’s discrimination analysis

Let the between-class scatter matrix be defined as

SB ¼
Xc

i¼1
ni Xi � X

� �
Xi � X

� �T

; ð15Þ

and the within-class scatter matrix be defined as

SW ¼
Xc

i¼1

X

Xi2ni

Xi � Xi

� �
Xi � Xi

� �T

; ð16Þ

where Xi is the mean image of class Xi and ni is the
number of samples in class Xi: The optimal subspace,

Zopt; by the FDA is determined as follows [11]:

Zopt ¼ argmax
E

ETSBEj j
ETSWEj j

¼ z1 z2 � � � zr½ �;
ð17Þ

where ziji ¼ 1; 2; . . . ; rf g is the set of generalized eigen-
vectors of SB and SW corresponding to the r largest
generalized eigenvalues kiji ¼ 1; 2; . . . ; rf g; i.e.,
SBzi ¼ kiSWzi; i ¼ 1; 2; . . . ; r: ð18Þ

Note that there are at most c � 1 non-zero generalized
eigenvalues, and so an upper bound on r is c � 1, where
c is the number of classes.

In the face recognition problem, it is difficult that the
within-class scatter matrix is always singular. Thus, the
rank of SW � min r; c ni � 1ð Þf g; in general the value of
r, should be smaller than ni � c. On the other hand, in
the rank of SB � min r; c� 1f g; there are at most c � 1
non-zero generalized eigenvectors. In other words, the
FDA transforms the r-dimensional space into (c�1)-
dimensional space to classify c classes of faces. In order
to overcome the complication of a singular SW; we
propose an alternative feature extraction, which is
achieved using PCA to reduce the dimension of the
feature space N � c and then applying the standard
FDA to reduce the dimension to c � 1. Thus, the feature
vectors fquery for any query face images Xquery in the most
discriminant sense can be calculated as follows:

fquery ¼ ZT
optA

TXquery: ð19Þ

Basically, it is noted that the FDA is a linear trans-
formation which maximizes the ratio of the determi-
nant of the between-class scatter matrix to the
determinant of the within-class scatter matrix of the
projected samples. The results are globally optimal for
linear separable data. Moreover, the separability crite-
rion is not directly related to the classification accuracy
in the output space.

3.3 Similarity measures

For recognition and classification purposes, we define
the L1, L2 and cosine metrics for similarity measures and
the nearest mean neighbor classification rule for face
recognition after obtaining the feature vectors from the
PCA/FDA paradigm. The nearest neighbor classifica-
tion rule is defined as follows:

Fig. 8 Example images in four subsets for experiments in variations of lighting: a Subset 1’s image (up to 12� of the optical axis), b Subset
2’s image (up to 25� of the optical axis), c Subset 3’s image (up to 35� of the optical axis), d Subset 4’s image (up to 50� of the optical axis)
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r f; lkð Þ ¼ argmin
j

r f; lj

� �
! f 2 xk: ð20Þ

The feature vector f is classified to the class of the closest
mean l k based on the similarity measure r. Similarity
measures used in our studies include rL1

; rL2
and r cos

that, respectively, denote the L1 distance measure, L2

distance measure and cosine similarity measure, which
are defined as follows:

rL1
a; bð Þ ¼

X

i

ai � bij j; ð21Þ

rL2
a; bð Þ ¼ a� bð ÞT a� bð Þ; ð22Þ

rcos a; bð Þ ¼ �aTb
ak k bk k ; ð23Þ

where �k k denotes the norm operator.

4 Experimental results

We assess the feasibility and performance of our pro-
posed face recognition method performing on the Yale
Face Database B [24]. We performed two experiments in
this database. In the first one, tests were performed
under variable illumination but fixed frontal view, and
the goal was to compare the face representation after
reconstructing by the GNR model and without recon-
structing by the GNR model. The second experiment
was performed under variations in both illumination
and posture. It is used to determine the recognition
capability while 3D rigid transformations were com-
puted. As demonstrated, our proposed face recognition
more effectively handles variations both in lighting and
posture.

4.1 Face database

The face recognition simulations were performed on the
Yale Face Database B [24]. In this database, face images

were captured by a constructed geodesic lighting rig with
64 computer-controlled xenon strobes, whose positions
are in spherical coordinates. The set-up was established
in Yale University. With this rig, the illumination could
be modified at frame rate and images captured under
variable illumination and postures. Ten individuals’ face
images were acquired under 64 different lighting condi-
tions in nine postures (a frontal posture and eight pos-
tures at different angles from the camera axis). Of these
64 images per person in each posture, 40 were selected in
our experiments, for a total of 3,600 images. The original
size of the images is 640·480 pixels. In order to extract
the facial region, all images were manually cropped to
include the face with as little hair as possible. All crop-
ped images were scaled in dimension of 100·100 pixels
using manually detected centers of the eyes.

4.2 Experimental results of variation in illumination
conditions

In this experiment, four subsets of face images at frontal
view were divided. Figure 8 shows the sample images in
these four subsets. We performed the recognition using
80 images (8 images per face) in Subset 1 as training and
the other three subsets as testing in the variations of
lighting. These three subsets are sampled in 100 images
(10 images per face) in Subset 2, 120 images (12 images
per face) in Subset 3 and 100 images (10 images per face)
in Subset 4 where the light source directions were chosen
with up to 25�, 35� and 50� of the optical axis, respec-
tively. This experimental study, where only illumination
varies while posture remains fixed (i.e., frontal), was
designed to compare the performance in between the
same recognition method using the GNR model and
without using the GNR model to reconstruct face sur-
faces from Subset 1. As the face images under different
illumination scenarios were synthesized from the corre-
sponding face surfaces reconstructed by the GNR
model, the training size increased to around 3,200 syn-
thesis images (320 images per face), which apparently

Fig. 9 Recognition rates in
different illumination
conditions. Each recognition
method was trained with and
without using GNR model to
reconstruct face surfaces from
Subset 1. The testing
simulations were conducted
under images in subsets under
different lighting conditions,
i.e., Subset 2, Subset 3 and
Subset 4
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represent all the illumination scenarios. The accuracy of
recognition methods can then be dramatically improved
by training these synthesis images even though the
training size is rather greater than the original. Figure 9
shows the results from these simulations. Notice that the
face recognition rates in extreme lighting cases (i.e.,
Subset 4) were about 88 and 90%, respectively, corre-
sponding to the PCA and the FDA representations by
training the 3,200 synthesis images, whereas the recog-
nition rate was about 76% by only training the original
images in Subset 1. The results support that whenever
using this GNR model, good recognition rates

are achieved by means of face representation in
low-dimensional subspaces in approximation of the
different illumination conditions.

4.3 Experimental results of variation in postures

We conducted recognition experiment under variations
in pose using images from all nine postures in the
database. Figure 10 shows the images of a same person
in these nine postures. The goal of this experiment is to
test the performance of the face representation processed

Fig. 10 Example images of the
same person in the nine
different postures. Note that
images of Postures 1–5 in the
first row are used for training
and images of Postures 6–9 in
the second row are used for
testing

Table 1 Recognition rates in posture variations

Method Posture 2 Posture 4 Posture 6 Posture 8 Average
(overall) (%)

Variance
(overall) (%)

PCA-L1 without GNR 53.6 83.6 59.6 58.3

63.7 12.2
FDA-L1 without GNR 57.8 84.5 60.6 59.4
PCA-L2 without GNR 48.1 77.9 59.8 60.0
FDA-L2 without GNR 50.3 79.1 61.2 62.1
PCA-Cos without GNR 56.8 86.4 55.9 53.4
FDA-Cos without GNR 58.7 88.1 57.4 55.5

PCA-L1 with GNR 93.9 96.1 90.4 98.7

92.6 4.9
FDA-L1 with GNR 94.6 96.7 91.3 98.7
PCA-L2 with GNR 83.6 83.6 88.5 92.3
FDA-L2 with GNR 85.2 85.4 90.4 93.3
PCA-Cos with GNR 95.3 96.1 87.9 98.7
FDA-Cos with GNR 95.6 97.1 89.5 98.7

Two recognition methods, principle component analysis (PCA) and Fisher’s discrimination analysis (FDA), and three similarity measures,
L1: rL1

metric in (21), L2: rL2
metric in (22), Cos: r cos metric in (23), are trained with and without using the GNR model

Table 2 Error rates for different postures against different lighting conditions (slight and extreme) using the recognition methods with our
proposed GNR model

Lighting variations Posture variations (%)

Posture 1
(frontal)

Postures
2, 3, 4, 5, 6

Postures
7, 8, 9

All
postures

Slight lighting conditions (up to 20�) 0.1 3.8 0.74 2.5
Extreme lighting conditions (up to 45�) 8.5 11.7 11.9 11.7
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by the GNR model together with the 3D rigid trans-
formation onto the face surfaces. We performed the
recognition methods using the first five postures for
training and the other four postures for testing. Images
in training set of the five postures were taken under light
source directions with up to 15� of the optical axis and
images in testing set of the other four postures were
captured under up to 25� lighting directions. Similar to
the experiment for variation in lighting, we used the 3D
rigid transformation to generate face surfaces of the
other four postures and subsequently synthesized face
images in all nine postures under different lighting con-
ditions. In our approach, the training size was increased
up to 1,800 face images (9·20 images per person). We
compared two recognition methods (i.e., PCA and
FDA) with and without using the GNR model and the
rigid transformation. The recognition results are tabu-
lated in Table 1. The overall recognition rate, in average
about 92%, obtained by the different recognition
methods using GNR model is much better than that, in
average about 64%, obtained by those methods without
GNR model. This demonstrates that the need for the
GNR model explicitly overcomes the face image vari-
ability due to changes in lighting and posture simulta-
neously. In particular, the method of FDA in r cos

similarity measure using the GNR approach performs
reasonably well in comparison to the same method
without using the GNR approach. Moreover, Table 2
presents the error rates by our approach for all postures
with different lighting conditions, except for the most
extreme cases in the whole database. This shows that our
approach performs with less than 3% error for all pos-
tures in slight lighting condition and approximately 10%
error in extreme variations in lighting directions up to
45� of the optical axis.

5 Conclusion

In this paper, we addressed the major problems in face
recognition by variations in lighting and postures. We
presented a framework of face recognition which re-
quires a small number of images of a face in several fixed
postures and illuminated by a single point light source at
unknown positions to generate a rich representation of
the face useful for recognition. The main idea of our
method is to make use of the proposed GNR model to
transform the given faces into reconstructed 2.5D face
surfaces and use the 3D rigid transformation to trans-
form the reconstructed face surfaces from given postures
into pre-defined target postures. Using all these recon-
structed face surfaces, a full set of face images can then
be synthesized under different illumination conditions
and postures. These synthesized images are used for
training in many cases in variation of lighting and pos-
ture. The recognition method, in this paper, simply uses
the PCA to reduce the dimensionality of face represen-
tation and further uses the FDA to enhance the classi-
fication. The experimental results demonstrate that the

performance of face recognition is markedly improved
after using the proposed GNR reconstruction and
transformation. We believe that our method can be
applied to practical cases of face recognition under
variations in postures and illuminations, although the
PCA/FDA may not be ideal solution for huge number
of face database. In fact, we can use other more ad-
vanced recognition methods instead of PCA/FDA to
achieve results reasonably. We also believe that this
method is applicable to other object recognitions in
industrial applications where similar representations are
used.
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