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Data reduction algorithms determine a small data subset from a given
large data set. In this article, new types of data reduction criteria, based
on the concept of entropy, are first presented. These criteria can evalu-
ate the data reduction performance in a sophisticated and comprehen-
sive way. As a result, new data reduction procedures are developed. Us-
ing the newly introduced criteria, the proposed data reduction scheme
is shown to be efficient and effective. In addition, an outlier-filtering
strategy, which is computationally insignificant, is developed. In some
instances, this strategy can substantially improve the performance of
supervised data analysis. The proposed procedures are compared with
related techniques in two types of application: density estimation and
classification. Extensive comparative results are included to corroborate
the contributions of the proposed algorithms.

1 Introduction

As computer technology grows at an unprecedented pace, the size of data
sets increases to the extent that data analysis has become cumbersome.
Theoretically, using more data samples generally leads to improved data
analysis (Provost & Kolluri, 1999; Friedman, 1997). But directly mining a
data set in the gigabytes is a formidable, or even impossible, task because of
the computational burden. In order to handle this problem, data reduction
techniques have been studied (Blum & Langley, 1997; Catlett, 1991; Hart,
1968; Mitra, Murthy, & Pal 2002; Wilson & Martinez, 2000). Data reduc-
tion algorithms have been designed to reduce a huge data set to a small
representative, but informative, pattern set on which data analysis can be
performed. The belief is that data reduction introduces no or only minimal
negative effect on data analysis.

The simplest methods of data reduction are to sample data patterns in a
random or a stratified way. These can be easily implemented and have neg-
ligible computational burden, so they are widely used as evaluation base-
line. They are, however, unable to guarantee stable performance because
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the randomness adopted in these methods may cause a loss of useful infor-
mation (Catlett, 1991). A number of more sophisticated data reduction tech-
niques have also been developed. These techniques can be categorized into
two main groups: a classification-based method and a distribution-based
method (Mitra et al., 2002; Blum & Langley, 1997). The former identifies the
patterns that are informative for constructing a classification model, and
the latter determines the patterns so that the original data distribution can
be preserved as much as possible.

Classification-based methods assume that all patterns are not equally
important for certain classification learning algorithms. Through rejecting
the “useless” patterns, this type of method can improve the scalability
and the final results of a classification process (Wilson & Martinez, 2000).
The condensed nearest neighbor rule (CNN) (Hart, 1968) was one of the
first classification-based methods that was developed. Subsequently, many
k-nearest-neighbor (kNN) rule-based data reduction schemes, such as PNN
(Gates, 1972) and RNN (Chang, 1974) were proposed (Bezdek & Kuncheva,
2001; Dasarathy, 1991). There are other types of classifiers, for instance, neu-
ral networks and decision trees, that have been explored for data reduction
(Plutowski & White, 1993; Quinlan, 1983; Schapire, 1990). Generally, the
classification-based data reduction method works with a specified classifi-
cation model. The reduced data set is iteratively adjusted according to classi-
fication accuracy. These steps repeat until the classification accuracy cannot
be further improved. Because these data reduction methods may have dis-
torted the original data distribution, they do not support other classification
models and other pattern recognition tasks. Also, the classification-based
methods are likely to fail in a way that they confuse outliers with the real use-
ful samples because outliers always have relatively high uncertainty (Roy &
McCallum, 2001). (For discussion on classification-based data reduction, see
Provost & Kolluri, 1999; Blum & Langley, 1997; Wilson & Martinez, 2000.)

The distribution-based data reduction method (Mitra et al., 2002; Gray,
1984; Kohonen, 2001; Astrahan, 1970) determines the representative pat-
tern sets, that is, the reduced data set, so that the data distribution can be
preserved as much as possible. This is a versatile method that can support
various pattern recognition models tackling various pattern recognition
tasks. Vector quantization error (VQE) is a popular technique employed by
different distribution-based data reduction schemes (Gersho & Gray, 1992;
Kohonen, 2001; Chow & Wu, 2004). VQE measures the distance between
each pattern and its corresponding representative. A small VQE implies a
good data reduction result. Through optimizing VQE, a representative data
set, which is a reduced data set and is referred as codebook in the context of
clustering, can be obtained. A self-organizing map (SOM) (Kohonen, 2001;
Chow & Wu, 2004) is a typical descent-based algorithm designed for mini-
mizing VQE. In SOM, the learning parameters are problem dependent, and
the determination of these parameters has never been a straightforward
issue. Another type of distribution-based method uses density estimation
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(Mitra et al., 2002; Astrahan, 1970). In this approach, the main difficulty
lies in the strategy for estimating the underlying probability density. The
maximum likelihood learning algorithm is employed for density estima-
tion by Yang and Zwolinski (2001), although it may not be efficient with
a data set with relatively complex data distribution. Alternatively, a much
more efficient strategy has been employed to analyze probability density
(Astrahan, 1970; Mitra et al., 2002). The rationale behind this strategy is
simple. For a pattern x, the density of it must be inversely related to the
distance between x and its kth nearest neighbor. Thus, Mitra et al. (2002)
and Astrahan (1970) analyze the density of each pattern after calculating
the distances between the patterns. Without involving a learning process,
this strategy is rather efficient, but it still requires calculating the distances
between all possible pairs of patterns. This is computationally and memory
demanding when one is handling a large amount of patterns. The problem
of outliers is also significant because they may degrade the performance of
supervised pattern recognition (Han & Kamber, 2001). But the filtering of
outliers is overlooked in most studies.

In this article, we focus on density-based data reduction. New types of
data reduction criteria are introduced, based on the concept of entropy.
They are thus called representative entropy (RE)/weighted representative
entropy (WRE). In our proposed RE and WRE, all the relationships between
a data point and all its representatives are fully considered. This makes RE
and WRE more sophisticated than VQE, which considers only a single re-
lationship between a point and one of its representatives. This issue is elab-
orated in a later section. We describe the design of a new data reduction
algorithm using RE or WRE. The proposed algorithm, which begins with
a randomly selected data set R0, includes two sequential stages: a forward
searching stage and an RE/WRE–based step-wise searching stage. Com-
pared with other density-based methods (Astrahan, 1970; Mitra et al., 2002),
the proposed method exhibits two main advantages. First, it is computa-
tionally efficient because the exhaustive task of calculating the distances
between all possible pattern pairs is avoided. More important, because of
the characteristics of RE/WRE, the improved efficiency has not traded off
the quality of data reduction. Second, we propose an outlier-filtering strat-
egy that can be implemented in a simple but efficient way. This scheme is
particularly useful in handling classification problems.

In the next section, the concept of entropy is briefly presented. The pro-
posed data reduction criteria are introduced and evaluated in section 3, the
proposed data reduction method is detailed in section 4, and experimental
results are presented and discussed in section 5.

2 Preliminaries on Entropy

The concept of entropy, which originated with thermodynamics, has been
extended to statistical mechanics and information theory (Cover & Thomas,
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1991). For a discrete distribution modeled by X = {x1, x2, . . . , xN}, entropy
measures the “information” conveyed by X. “Information” means the un-
certainty or the degree of surprise for a particular value of X being drawn.

Suppose that x is a value drawn from X, the event x = xk occurs with
probability pk , and the sum of the probabilities for x = xk (k = 1, 2, . . . , N)
is 1, that is,

∑N
k=1 pk = 1. In the case of pk = 1, there is no uncertainty or

surprise for x = xk . A lower value of pk increases the uncertainty or the
“information” when it is known that x = xk occur. Thus, this “information”
is generally measured by I (xk) = − log(pk). The “information” contained by
the whole event set X is called entropy and is enumerated by the expected
value of − log(pk), that is,

H(X) = E(I (xk)) = −
N∑

i=1

pi log pi . (2.1)

A large value of entropy H(X) indicates high uncertainty about X. When
all the probabilities (i.e., pk for all k,) are equal to each other, we have the
maximal uncertainty that the value in X is taken, and the entropy H(X)
achieves its maximum log(1/N). Conversely, when all the pi except one are
0, there is no uncertainty about X, that is, H(X) = 0.

3 Data Reduction Criteria

3.1 Prior Work–Vector Quantization Error. Vector quantization, first
developed in the community of signal process, is a technique that exploits
the underlying data distribution to compress data (Gersho & Gray, 1992).
This technique partitions a given data domain into a number of distinct
regions and then generates a representative point in each region. Suppose
that R = {r1, r2, . . . , rK } is a representative set, that is, a codebook, of X. The
VQE is defined as

VQE (R; X) = 1
N

∑
all x∈X

VQE (R; x) = 1
N

∑
all x∈X

arg min
j

d(r j , x)2, (3.1)

where d(r j , x) is the distance (dissimilarity) between a pattern x and a
representative r j . Intuitively, VQE measures the similarity between R and
X. Until now, VQE has been the most popular objective function for data
clustering or data reduction. Equation 3.1 shows that for a pattern, VQE
considers the relationship of that pattern with one representative—the one
closest to it. VQE explicitly ignores the relationships with other representa-
tives.
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3.2 Entropy-Based Data Reduction Criteria: Representative Entropy
and Weighted Representative Entropy

3.2.1 Definitions of RE and WRE. Assuming that R is the result of a data
reduction process, then the probability of x (x ∈ X) being represented by
a representative r j (i.e.,r j ∈ R) is p(r j |x). Also the probability of x being
represented by all representatives is 1 (i.e.,

∑K
j=1 p(r j |x) = 1). It is ideal

that each pattern in X is close to one and only one representative as much
as possible. In terms of probability, it is expected that p(ri |x) is zero for
all i except one. The more uneven the distribution of the representation
information ofR to X is, the better is the representative set R. This motivates
us to explore the concept of entropy for evaluating the quality of R. The
proposed criterion, called the representative entropy for data reduction
(RE), is defined by

RE(R; x) =
∑K

j=1 −p(r j |x) log(p(r j |x))

log(K )
.

For a pattern x, a smaller value of RE(R;x) indicates that x is more likely to
be represented by only one object in R. That is, a small RE(R;x) indicates a
good representation performance atx. For X, the representation entropy of
R is

RE(R; X) = 1
N

∑
all x∈X

RE(R; x) = 1
N

∑
all x∈X

∑K
j=1 −p(r j |x) log

(
p(r j |x)

)
log(K )

.

(3.2)

The denominator log(K ) of RE is used for normalization, with which RE is
limited to the range of [0, 1]. In this case, it is reasonable to compare the
representative sets with different sizes.

RE can be rewritten as

RE(R; X) = 1
log(K )

K∑
j=1

1
N

∑
all x∈X

−p(r j |x) log(p(r j |x))︸ ︷︷ ︸
RE(r j ,X)

= 1
log(K )

K∑
j=1

RE(r j , X). (3.3)

RE(r j , X) in equation 3.3 evaluates the representation ability of a single
representative r j . Suppose that r j covers or represents part of the original
data space Aj . According to equation 3.3, RE(r j , X) will achieve the mini-
mum only when p(r j |x) = 0 or 1 for all x ∈ X; that is, Aj has no overlap with
the areas covered by other representatives. Under this condition, r j can be
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considered a respectable representative. As the overlap of Aj with other
areas increases, the representational ability of r j decreases, whereas the
value of RE(r j , X) increases. Clearly, the value of RE(r j , X) reflects the rep-
resentational ability of r j , for instance, a low value of RE(r j , X) corresponds
to a good r j . This characteristic plays an important role in the proposed
data reduction scheme, which is detailed in section 4.2.

To evaluate r j , RE considers Aj , the data area around r j . It is reasonable
to assume that the patterns lying in Aj may have different contributions
to this evaluation task. See x1 and x2 illustrated in Figure 1. x1 must be
more important than x2 with respect to r1, whereas x2 is more influential for
r3 than x1. RE(R, X) (see equation 3.3), however, does not incorporate this
idea. Thus, RE(R; X) is modified with a weighting operation. The weighted
RE (WRE) is defined as

WRE (R; X) = 1
log(K )

K∑
j=1

WRE (r j , X)

= 1
log(K )

K∑
j=1

1
N

∑
all x∈X

(−p(r j |x) log(p(r j |x)))︸ ︷︷ ︸
A

· p(x|r j )︸ ︷︷ ︸
B

.

(3.4)

Part A of WRE, inherited from RE, measures the distribution of representa-
tional information, while part B, measuring the relationship of a data pattern
to a representative, is a weighting factor. With part B, when a representa-
tive is evaluated, patterns close to that representative have a greater effect
than those far from it. In section 5, the effect of this weighting operation is
evaluated.

3.2.2 Calculation of RE and WRE. To calculate RE or WRE, p(r j |x)( j =
1, . . . , K ) must be known. Popular schemes used for estimating the prob-
abilities include the maximum likelihood algorithm (Yang & Zwolinski,
2001) and the Bayesian-based algorithm (Duda, Hart, & Stork, 2001). How-
ever, these methods are not computationally simple and efficient enough
for an iterative data reduction process, in which probability estimation must
also be estimated many times. We thus adopt a distance-based probability
estimation method.

A representative covers the L original patterns nearest to it. That is, for
a representative (say, r j ), if x is one of the L patterns nearest to r j , p(x|r j ) >
0; otherwise, p(x|r j ) = 0. Based on this idea, we estimate p(x|r j ) by using

p(x|r j ) =
{

1 − d(x,r j )

Radius(r j )
, d(x, r j ) ≤ Radius(r j )

0, otherwise
,
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Figure 1: The relation between the representatives and the original data pat-
terns. The original data and the representatives (i.e., the reduced data) are
marked by “.” and “*,” respectively.

where Radius(r j ) is the distance of r j with the (L + 1)th pattern nearest to it.
Also, p(r j ) can be calculated with p(r j ) = 1/K (K is the size of R). According
to the Bayes formula (Duda et al., 2001), p(r j |x) is estimated by

p(r j |x) = p(x|r j )p(r j )
p(x)

= p(x|r j )p(r j )∑K
j=1 p(x|r j )p(r j )

= p(x|r j )∑K
j=1 p(x|r j )

.

3.3 Comparison Between the Vector Quantization Error and RE/WRE.
Referring to the definitions, the main advantage of RE (see equation 3.3)
and WRE (see equation 3.4) over VQE (see equation 3.1) is evident. Let us
detail the goal of data reduction first. As illustrated in Figure 1, suppose
that d is the distance between a pattern and the representative closest to that
pattern, and d ′ denotes the distance of that pattern to any representative but
the closest one. The goal of data reduction is to decrease all d and to increase
all d ′ at the same time. Explicitly considering only d , VQE can be minimized
through reducing d . On the other hand, both d and d ′ are included in RE or
WRE.

Below, VQE and RE/WRE are briefly evaluated in synthetic scenarios.
A data set with 100 data points (say, A) was generated from the normal
distribution

N
(

[0, 0],
[

1 0
0 1

])
.

Then a representative set having 10 points (say, B) was drawn from Aunder
the constraint that a point in B must be in the disc with the center [0, 0] and
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Table 1: Evaluation of Data Reduction Criteria Under Synthetic Circumstances.

a. Results on the Data with a Normal Distribution.

g2 Vector Quantization Error RE WRE

0.5 2.20 ± 1.98 0.068 ± 0.004 0.075 ± 0.004
1.5 2.68 ± 1.91 0.051 ± 0.006 0.058 ± 0.007
2.5 2.98 ± 1.95 0.046 ± 0.007 0.051 ± 0.007
3.5 3.34 ± 2.41 0.042 ± 0.006 0.047 ± 0.007
4.5 3.27 ± 2.19 0.040 ± 0.007 0.045 ± 0.008

b. Results on the Data with a Uniform Distribution.

g2 Vector Quantization Error RE WRE

0.5 0.91 ± 0.45 0.054 ± 0.006 0.060 ± 0.007
0.8 1.01 ± 0.48 0.044 ± 0.007 0.050 ± 0.007
1 1.13 ± 0.51 0.042 ± 0.007 0.047 ± 0.008

the radius g. Basically, as g increases, this constraint becomes loose, and the
likelihood that B represents A increases accordingly. It is expected that the
variation of a data reduction criterion is able to roughly reflect this fact. In
this study, g2 changes in a range of [0.5, 4.5]. The statistical results over 500
independent trials are listed in Table 1a. It shows that RE or WRE decreases
with as g increases, which is in accord with the expectation. In contrast,
VQE cannot perform well because it changes in a way opposite to the
theoretical expectations. Also, these data reduction criteria are compared
on data generated from a uniform distribution. One hundred points of A
were uniformly distributed in the square area from [−1, −1] to [1, 1]. The
results obtained on this uniform distribution are presented in Table 1b. It
is shown that RE or WRE correctly reflects the representation ability of B,
whereas VQE does not.

4 Density-based Data Reduction Method

4.1 Multiscale Method. The multiscale method (Mitra et al., 2002) is a
typical density-based data reduction scheme. In this method, the density of
a pattern is analyzed according to the distance of that pattern to its neighbor.
All patterns are then ranked in order of density. With this ranking list, the
representatives are recursively determined. Given data X, this method can
be briefly stated as follows:

Step 0. Determine the parameter k. This parameter is closely related to the
size of the data region covered by a representative.

Step 1. Calculate the distance between all possible pattern pairs in X.
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Step 2. Repeat the following operation until there is no remaining pattern
in X.

For a pattern in X, determine the distance of it to the kth neighbor.
According to these distance values, identify the densest pattern, say, xd,
and mark it as representative. Finally draw the disc with the center at xd

and the radius of 2radd, where radd is the distance between xd and its kth
neighbor. Delete the patterns lying in this disc.

In this process, the computational and memory requirement of step 2 is
O(N2), where N is the size of X. Apparently, this step will be computation-
ally expensive when a large data set is given.

4.2 RE/WRE–Based Data Reduction Method

4.2.1 Procedure. The proposed method has two sequential stages: a for-
ward searching stage and an RE/WRE–based stepwise searching stage. At
the beginning, a set of data points, R0, is randomly drawn from a given
data set, and the representative set R is empty. Then the forward search is
conducted on R0 to recursively place the appropriate representatives into
R. This process stops when R0 has been scanned through, or when the rep-
resentatives selected in R have been in a desired number. Following the
forward process is an RE/WRE–based stepwise process, in which a pattern
is first identified as representative from the area that is not yet covered
well by R. When R has been in the desired size, the “worst” representative
(i.e., the one having the lowest representation ability) will be deleted after a
new representative is determined. The “worst” representative is identified
according to RE(r j , X) or WRE(r j , X). In this sense, the proposed data reduc-
tion method is called REDR or WREDR. For a given data set X containing
N patterns, REDR or WREDR can be stated as follows:

Step 0. Randomly select a pattern set R0. Set the representative set R empty.
Determine K , the desired size of R. Naturally, a representative will rep-
resent L (L = N/K ) patterns of X.

Step 1. This step repeats until R0 is scanned through or R has contained K
elements.

In X, determine the top Lpatterns nearest to r j (anyr j ∈ R0). Based on
the sum of the distances of r j with these patterns, the densest element of
R0 (say, rd ) is identified and placed into R. The top Lpatterns nearest to
rd (including rd itself) will be rejected in the further forward searching
stage.

Step 2. In X, sort out the patterns having maxr j ∈R pouter (x|r j ) > 0. Among
these patterns, identify the one with min(maxr j ∈R pouter (x|r j )), and put it
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into R. pouter (x|r j ) is defined by

pouter (x|r j ) =
{

1 − d(x,r j )
Rad outer (r j )

, d(x, r j ) ≤ Rad outer (r j )

0, otherwise
,

where Rad outer(r j ) is the distance of r j with the 2Lth pattern nearest to
it.

Step 3. When R consists of K + 1 representatives, delete the worst
representative—the one having the largest RE(r j , X) or WRE(r j , X).

Step 4. Calculate RE(R, X) or WRE(R, X) for the newly constructed R.

Step 5. Repeat from step 2 to step 4 until RE(R, X) or WRE(R, X) cannot be
reduced for five consecutive iterations.

Below, an example is given to demonstrate the procedure of WREDR.
In this example, WREDR identifies 6 representatives from 60 original pat-
terns. In Figure 2, certain intermediate results are illustrated. The original
patterns and representatives are marked by “.” and “*”, respectively. The
disc around a representative roughly illustrates the region covered by that
representative. Figure 2a shows that 6 patterns are selected into R0 during
initialization. The representative ability of these 6 patterns is poor because
the area at the bottom right is uncovered, and the regions covered by r1

andr5 overlap each other. The forward searching process tackles the prob-
lem of overlapping. As a result, r1 is marked as representative, and r5 is
eliminated. Also, r6 is eliminated because it is redundant to r2 and r3. Obvi-
ously, in this forward searching stage, qualified representatives are selected
from R0, and redundant ones are deleted. However, the area uncovered by
R0—for instance, the bottom right in this example—has not been explored
yet. This task will be fulfilled in the following WRE-based stepwise search-
ing process in which new representatives r5 and r6, illustrated in Figure 2b,
are determined consecutively in the order of r5 to r6. Apparently, in this
course, the bottom right of the given data space is gradually explored. Af-
ter r5 and r6 are added, the size of R is 6. This is the desirable value. Thus,
in the following, the WRE-based process substitutes the “worst” represen-
tative with a new one. In this example, r2 is determined as the “worst”
and replaced by rnew. As suggested in Figure 2c, the region covered by
r2 has much overlap with the regions covered by other representatives. In
this sense, deleting r2 is reasonable. Figure 2c also shows that substituting
r2 with rnew improves the representative ability of R because more data
patterns are covered, and the overlap between representatives is further
reduced.

4.2.2 Remarks. In the first stage of REDR or WREDR, the density of the
patterns in R0 is analyzed, whereas the density of only one data pattern
is required at each iteration in the second stage. Assume that there are k0
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Figure 2: Demonstration of the proposed data reduction procedure. The origi-
nal data patterns are marked with “.” The representatives are described using
“*.”
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patterns selected into R0 and that the second stage runs ni iteration. The
computational complexity of REDR is then O(N(ni + k0)), where N is the
size of X. Recall that the computational complexity of the multiscale method
is O(N2). Generally, k0 is much less than N. The proposed method is rapidly
convergent, as suggested by our experimental results. Thus, we have

N(ni + k0) � N2.

That is, the proposed methods have a substantially lower computational re-
quirement compared to the multiscale method. Also, the proposed methods
have a significantly lower memory requirement compared with the multi-
scale method because the proposed methods do not need to remember a
large number of distance values.

In the above process, the condition of maxr j ∈R pouter(x|r j ) > 0 in step 2
guarantees a stable data reduction process. Apparently the patterns with
maxr j ∈R pouter (x|r j ) = 0 must still be uncovered by R. Without a priori
knowledge on the density distribution of these patterns, determining
the representative from them is not recommended. With the constraint
of maxr j ∈R pouter (x|r j ) > 0, the newly determined representative must be
around the boundary of the area that has already been covered by R. In this
way, the proposed method can gradually and reliably explore the whole
data space. This can be seen in the above example in which r5 and r6 are
marked as representative in turn.

In a supervised task, the proposed methods are conducted in a stratified
way. Given a value of L in step 0, which determines the ratio between
the sizes of the reduced data and the original data, the pattern set of each
class is reduced separately. The collection of these reduced data sets is the
final data reduction result. Apart from this stratified way, a new strategy is
developed to filter out outliers.

An outlier is an object that behaves in a different way from the others. For
instance, in a classification data set, an outlier generally exhibits a different
class label from those having similar attributes. Theoretically, outliers cause
noise to the supervised learning algorithms and degrade the performance
of these algorithms (Han & Kamber, 2001). It is always desirable to elim-
inate outliers. In our proposed outlier-filtering strategy, a representative
candidate is checked before being added to R, which is described in step 1
or 2. Only those that are not outliers can be placed into R.

To determine if an object is an outlier, the area around that object is
considered. Assume that Ao is the area around a representative candidate ro .
For any class (say, ck), the conditional probability p(Ao |ck) can be calculated
using

p(Ao |ck) = 1
N

∑
x∈X

p(x|ro)p(x|ck) = 1
N

∑
x∈ class ck

p(x|ro),
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Table 2: Comparisons Between WREDR and WREDR-FO.

Number of Outliers WREDR WREDR-FO No Data Reduction

10 0.98 ± 0.02 1.00 ± 0 0.97
50 0.89 ± 0.05 1.00 ± 0 0.90
80 0.81 ± 0.05 0.99 ± 0 0.83

120 0.79 ± 0.07 0.99 ± 0 0.78

Note: These results highlight the contributions of the filtering-outlier strat-
egy.

where N is the number of patterns in X. The class having the maximum of
p(Ao |ck) is the dominant class of Ao . Apparently, if the class of ro is consistent
with the dominant class of Ao , ro is not an outlier; otherwise, ro is an outlier
and cannot be included in R. In the proposed method, the computational
burden of p(Ao |ck) is very small because p(x|ro) has been estimated during
the calculation of RE/WRE. Below, the proposed algorithm, together with
this outlier-filtering strategy, is called REDR-FO or WREDR-FO.

To highlight the benefits of this outlier-filtering strategy, WREDR-FO is
compared to WREDR. A classification data set was generated from two
normal distributions that consist of two classes {0, 1}:

Class 1 (class = 0) (500 data points)X ∼ N
(

[1, 1] ,

[
0.3 0
0 0.3

])
,

Class 2 (class = 1) (500 data points)X ∼ N
(

[−1,−1] ,

[
0.3 0
0 0.3

])
.

A thousand patterns of this data set were evenly split into two groups of
equal size for training and testing. Certain patterns were randomly chosen
in the training data and were mislabeled to generate outliers. Classification
accuracy is used to evaluate the quality of a reduced data set. Obviously,
high classification accuracy indicates a good reduced data set. In this section,
the kNN rule with k = 1 is used as the evaluation classifier. WREDR and
WREDR-FO are required to reduce the original 500 training patterns to
50. As the performance of these data reduction methods may be affected
by different initializations, statistical results of 10 independent trials are
presented.

Table 2 lists the comparative results. It is noted that as the number of
outliers increases, the contribution of the outlier-filtering strategy becomes
more significant. It is worth noting that because of the proposed outlier-
filtering strategy, WREDR-FO is able to improve the final classification
performance.
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5 Experimental Results

Here, reduction ratio denotes the ratio between the sizes of reduced data
and given data. For a given training data set, a testing data set; and a
reduction ratio, a data reduction method is first used to reduce the training
data set. Then, based on the reduced data set, certain density estimation
and classification models are built. With the performance of these models
on the testing data set, the employed data reduction method is evaluated.
Throughout our investigation, the following strategies are adopted unless
stated otherwise:

1. Each input variable is preprocessed to have zero mean and unit vari-
ance through a linear transformation.

2. In WREDR or REDR, the size of R0 is the same as that of R, the final
data reduction result.

3. In the sampling type schemes, SOM and the proposed methods, per-
formance is affected by initialization. Thus, in each case, these meth-
ods are independently run 10 times. The statistical results over the
10 trials are presented here.

4. Unlike other methods, Mitra’s multiscale method (Mitra et al., 2002)
delivers only one set of result in each case. The results delivered by
this method are by no mean statistical ones. Also, an exact desired
reduction ratio, 0.1 or 0.3, may not be obtained; trials with different
values of k may deliver only a close but not the exact reduction ratio.
Thus, the reduction ratios provided later in this article are simply the
closest ones. For a given reduction ratio, we choose the trial in which
the actual reduction ratio is the closest to that given value and present
the results of that trial here.

5. Our investigations are conducted using Matlab 6.1 on a Sun Ultra
Enterprise 10000 workstation with 100 MHz clock frequency and
4 GB memory.

5.1 Density Estimation. The study presented in this section was con-
ducted on synthetic data, in which the real density functions are known.
More important, a large number of testing data patterns can be generated
to guarantee the accuracy of evaluation results.

Five data reduction methods—random sampling scheme, SOM, the
density-based multiscale method, REDR, and WREDR—are compared
from the perspectives of efficiency and effectiveness. The running time
is recorded for efficiency evaluation. The effectiveness is measured by us-
ing the difference between the real density function (g(x)) and a density
estimation function obtained based on reduced data ( f (x)). A small density
difference indicates good reduced data.
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In this study, g(x) is known, whereas f (x) is modeled with a
Parzen window (Parzen, 1962). Given an M-dimensional pattern set Q =
{q1, q2, q3, . . . , qNq }, the Parzen window estimator is

p(x) = 1
Nq

Nq∑
i=1

p(x|qi ) = 1
Nq

Nq∑
i=1

κ(x − qi , hi ), (5.1)

where κ(•) is the kernel function and hi is the parameter to determine the
width of the window. With the proper selection of κ(•) and hi , the Parzen
window estimator can converge to the real probability density (Parzen,
1962). In this study, κ is a gaussian function. The M-dimensional gaussian
function is

κ(x − qi, hi ) = G(x − qi , hi ) = 1
(2πh2

i )M/2
exp

(
− 1

2hi
(x − qi )(x − qi )T

)
.

For the pattern qi , the window width hi is determined with hi =
d(qi , q j )2 where d(qi , q j ) is the Euclidean distance, that is, d(qi , q j ) =√

(qi − q j )(qi − q j )T , and q j is the pattern that is the kth nearest to qi . We
use two settings, k = 2 and k = 3, and the results indicate that the lat-
ter one performs better than the former one. Thus, we set k with 3. The
difference between g(x), the real density function, and f (x), the density
estimation function on a reduced data using equation 5.1, is measured with
two indices: the absolute distance Dab and the Kullback-Leibler distance
(divergence) DK L . Dab and DK L are, respectively, defined as

Dab( f (x), g(x)) =
∫

x
| f (x) − g(x)|dx and

DK L ( f (x), g(x)) =
∫

x
f (x) log

f (x)
g(x)

dx.

The integrals of the above equations are calculated by using a nu-
merical approach. After a large set of patterns, TX, is evenly sam-
pled in a given data space, Dab and DK L are approximated on TX by
using

Dab( f (x), g(x)) ≈
∑

txi ∈T X

| f (txi ) − g(txi )|�txi ,

DK L ( f (x), g(x)) ≈
∑

txi ∈T X

f (txi ) log
f (txi )
g(txi )

�txi .
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Table 3: Data Sets Used in Density Estimation Application.

Name of Data Distribution of Data TX

Data1 600 fromN ([0, 0], I2). 1681 patterns in [3, 3]∼[−3, −3]
Data2 800 fromN ([0, 0], 0.5I2), 800 from

N ([1, 1], 0.3I2), 800 from
N ([−1,−1], 0.3I2).

1681 patterns in [3, 3]∼[−3, −3]

Data3 500 fromN ([0, 0], 0.5I2), 500 from
N ([1, 1], 0.3I2), 500 from
N ([−1,−1], 0.3I2), 500 from
N ([−1, 1], 0.3I2), 500 from
N ([1,−1], 0.3I2).

1681 patterns in [3, 3]∼[−3, −3]

Data4 800 fromN (0, 0.5), 800 from
N (−0.5, 1), 800 from N (1, 0.3).

1201 patterns in [3] ∼ [−3]

In order to guarantee precise approximation, the range for sampling
TX is determined in a way that the range can cover virtually the whole
data region where the probability is more than zero. That is, for a given
probability function g(x), TX covers almost all areas where g(x) is not zero.
In this case, we have 1 = ∫

x g(x)dx ≈ ∑
txi ∈T X g(txi )�txi .

The data sets used in this section are shown in Table 3. In this study,
these data sets were all generated in low-dimensional data domains be-
cause high dimensionality is well known for its adverse effect of reducing
the reliability of Parzen window. First, these methods are compared in
terms of Dab and DK L . The comparative results are presented in Figure 3,
with a reduction ratio of 0.05, and Figure 4, with a reduction ratio of
0.1. The results in different examples and with different reduction ra-
tios lead clearly to similar conclusions. From the perspective of the qual-
ity of data reduction results, the density-based methods—that is, the
multiscale methods, REDR and WREDR–deliver similar performance.
These density-based methods outperform SOM and the random sam-
pling scheme. In Table 4, the data reduction methods are compared in
terms of computational efficiency. It is noted that both REDR and WREDR
are more efficient than the multiscale method. This is because the ex-
haustive computation on pattern-pair distance is avoided in REDR and
WREDR. To sum up, among the compared methods, REDR and WREDR
are clearly the best data reduction methods because they can deliver the
best or nearly the best data reduction results with greater computational
efficiency.

Besides, the very small deviations illustrated in Figures 3 and 4 indicate
that initialization has little effect on the performance of either REDR or
WREDR. Also, it can be noted that WREDR outperforms REDR in most
cases. Clearly, it is due to the weighting strategy of WRE. Furthermore,
REDR and WREDR are compared through t-tests in which the p-values
can reflect the significance of difference between the results of REDR and
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Figure 3: Comparisons on effectiveness in terms of Dab and DK L for the reduc-
tion ratio = 0.05. (a) Results on Data1. (b) Results on Data2. (c) Results on Data3.
(d) Results on Data4. In each image, from left to right, the bars represent the
results of the random sampling scheme, SOM, the multiscale method, REDR,
and WREDR, respectively.
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Figure 4: Comparisons on the effectiveness in terms of Dab and DK L for a
reduction ratio = 0.1. (a) Results on Data1. (b) Results on Data2. (c) Results on
Data3. (d) Results on Data4. In each image, from left to right, the bars represent
the results of the random sampling scheme, SOM, the multiscale method, REDR,
and WREDR, respectively.
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Table 4: Comparisons in Terms of Running Time (in seconds).

Name of Data Set SOM Multiscale Method REDR WREDR

Reduction ratio = 0.05
Data1 1 2 1 1
Data2 15 271 59 64
Data3 27 452 79 82
Data4 7 177 21 24

Reduction ratio = 0.1
Data1 2 5 3 3
Data2 19 364 125 109
Data3 23 520 147 152
Data4 13 209 26 30

Table 5: Comparisons Between WREDR and REDR in Terms of Dab .

Reduction Ratio = 0.05 Reduction Ratio = 0.1

Name of Average Average of Average of Average of
Data Set of REDR WREDR p-Value REDR WREDR p-Value

Data1 0.235 0.235 0.61 0.161 0.161 0.89
Data2 0.193 0.184 0.35 0.280 0.273 0.34
Data3 0.142 0.138 0.16 0.128 0.130 0.76
Data4 0.195 0.184 0.34 0.305 0.299 0.45

WREDE. A small p-value means a large difference. In Table 5, the com-
parative results of REDR and WREDR are presented. These results show
that the advantage of WRE over RE becomes significant as the reduction
ratio decreases. Also, this advantage basically increases along the direction
from the simple distribution, such as Data1, to a relatively complex data
distribution, such as Data3.

DK L and Dab are known as a straightforward and accurate way to
measure the representation ability of a reduced data set. Using them as
reference, we evaluate the reliability of the proposed criteria RE and WRE.
The values of RE (WRE), DK L , and Dab in each iteration of the second
stage of REDR (WREDR) are recorded. The variations of DK L and, Dab are
compared with those of REDR (WREDR). In Figures 5 and 6, the typical
results on two data are illustrated. It can be seen that RE and WRE vary in
a similar fashion with DK L , and Dab . We can thus assert that RE and WRE
are reliable enough to measure the representation ability of a reduced data
set.

5.2 Classification. In this section, five data reduction methods are com-
pared: the stratified sampling scheme, the supervised SOM, the multiscale
method, WREDR, and WREDR-FO. The results of the RE-based method
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Figure 5: Typical comparison of variation between RE/WRE and density er-
rors (i.e., Dab and DK L ). These values are obtained in the second stage of
REDR/WREDE on Data3 with reduction ratio = 0.05. For clear illustration,
the values of WRE are timed by 100. Both RE and WRE are shown to vary in a
similar fashion with density errors. It verifies that RE and WRE are reliable in
evaluating the data reduction effectiveness.

are not presented here because they are similar to the results of the WRE-
based ones. The stratified sampling scheme and the supervised SOM treat
a classification data set in the same way as WREDR and WREDR-FO: with
a predetermined reduction ratio, the pattern subsets of different classes
are reduced separately, and the final data reduction result is the collection
of the results on all the classes. The six data sets used in this section are
described in Table 6. The synthetic data, which were detailed in section
4.2.2, contain 80 outliers. To evaluate a reduced data set, several popu-
lar classifiers are first built. According to the results of these classifiers on
the testing data, the tested data set is evaluated. A high classification re-
sult indicates a good reduced data set. The classifiers used are the kNN
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Figure 6: Typical comparison of variation between RE/WRE and density er-
rors (i.e., Dab and DKL). These results are obtained in the second stage of
REDR/WREDE on Data3 with a reduction ratio = 0.05.

rule with k =1 and the multilayer perceptron (MLP) (Haykin, 1999). MLP
is provided in the Netlab toolbox (http://www.ncrg.aston.ac.uk/netlab).
Throughout this investigation, six hidden neurons are used, and the
number of output neurons is set with the number of classes so that one
class distinctively corresponds to one output neuron. Also, in each ex-
ample, the classification models are constructed on the entire training
data set. The results of those models on the testing data are presented in
Table 7.

Two reduction ratios, 0.1 and 0.3, are investigated in this study.
Table 8 lists the comparative results. In the example of image segmenta-
tion, the maximal reduction ratio of the multiscale method is about 0.17,
which is much less than 0.3. Thus, in this example, there is no result of the
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Table 6: Data Sets used in Classification Application.

Name of Number of Training Number of Testing Number of Number of
Data Set Data Samples Data Samples Features Classes

Synthetic Data 500 500 2 2
MUSK 3000 3598 166 2
Pima Indian 500 268 8 2

Diabetes
Spambase 2000 2601 58 2
Statlog Image 4435 2000 36 6

Segmentation
Forest Covertypea 50,000 35,871 54 5

aThe original Forest Covertype data set has seven classes and more than 580,000 patterns.
Under our computer environment, it is very hard to tackle the whole data set. Thus, the
patterns belonging to class 1 and class 2 are omitted in our study.

Table 7: Classification Accuracy of the Models Built on the Training Data Sets.

Name of Data Set kNN MLP

Synthetic Data 0.83 0.99
MUSK 0.94 0.97
Pima 0.69 0.73
Spambase 0.90 0.92
Image Segmentation 0.89 0.85
Forest Covertype 0.95 0.85

multiscale method for a reduction ratio of 0.3. The presented results clearly
indicate the advantage of WREDR-FO, which is due to the contribution
of the criterion WRE and the outlier-filtering strategy. Also, referring to
the results presented in Table 7, it is suggested that WREDR-FO has little
effect on reducing classification accuracy. Even in the examples of the syn-
thetic classification and the Pima Indian Diabetes classification, WREDR-FO
can enhance the final classification performance, in contrast to the general
argument that a reduced data set corresponds to degraded classification re-
sults (Provost & Kolluri, 1999). Clearly, using our proposed outlier-filtering
strategy can compensate for the classification loss caused by data reduction
to a certain degree. In addition, it is noted that WREDR-FO provides more
classification enhancement to kNN than to MLP. This is mainly due to the
fact that kNN may be more sensitive to noise than MLP (Khotanzad & Lu,
1990).

In Table 9, different methods are compared in terms of running time.
WREDR and WREDR-FO are shown to be much more efficient than the
multiscale method. Also, the computational effort required by the pro-
posed outlier-filtering strategy is insignificant since WREDR-FO is almost
as efficient as WREDR.
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Table 9: Comparisons in Terms of Running Time (in seconds).

Name of Supervised Multiscale
Data Set SOM Method WREDR WREDR-FO

Reduction ratio = 0.1
Synthetic Data 0.8 2.7 0.8 0.7
Musk 153 1.1 × 103 410 479
Pima 1.2 3.3 1.4 1.6
Spam-base 15 285 35 35
Image Segmentation 43 1.7 × 103 99 107
Forest covertype 8.2 × 103 1.2 × 105 6.3 × 103 7.8 × 103

Reduction ratio = 0.3
Synthetic Data 1.8 7.3 4.0 3.4
Musk 651 3.1× 103 1.5 × 103 1.6 × 103

Pima 1.9 10.0 4.1 4.2
Spambase 29 760 131 133
Image Segmentation 73 — 414 459
Forest covertype 4.9 × 104 1.9 × 105 1.3 × 104 1.9 × 104

6 Conclusions

This article focuses on the study of density-based data reduction schemes
because this type of data reduction technique can be widely used for tack-
ling data analysis tasks and building data analysis model. In the conven-
tional density-based methods, the probability density of each data point
has to be estimated or analyzed. This makes these methods computation-
ally expensive when huge data sets are given. To address this shortcoming,
we propose a novel type of entropy-based data reduction criteria and a
data reduction process based on these criteria. Compared with the existing
density-based methods, our proposed methods exhibit higher efficiency
and similar effectiveness. Also, the strategy for outlier filtering is designed.
This simple and efficient strategy is immensely useful for classification
tasks. Finally, it is important to note that the experimental results indicate
that the proposed methods are robust to initializations.
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