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Hybridizing Multidimensional Scaling and

Self-Organizing Map
Sitao Wu and Tommy W. S. Chow, Senior Member, IEEE

Abstract—Self-organizing map (SOM) is an approach of non-
linear dimension reduction and can be used for visualization. It
only preserves topological structures of input data on the projected
output space. The interneuron distances of SOM are not preserved
from input space into output space such that the visualization of
SOM can be degraded. Visualization-induced SOM (ViSOM) has
been proposed to overcome this problem. However, ViSOM is de-
rived from heuristic and no cost function is assigned to it. In this
paper, a probabilistic regularized SOM (PRSOM) is proposed to
give a better visualization effect. It is associated with a cost function
and gives a principled rule for weight-updating. The advantages of
both multidimensional scaling (MDS) and SOM are incorporated
in PRSOM. Like MDS, The interneuron distances of PRSOM in
input space resemble those in output space, which are predefined
before training. Instead of the hard assignment by ViSOM, the soft
assignment by PRSOM can be further utilized to enhance the visu-
alization effect. Experimental results demonstrate the effectiveness
of the proposed PRSOM method compared with other dimension
reduction methods.

Index Terms—Curvilinear component analysis (CCA), mul-
tidimensional scaling (MDS), probabilistic regularized SOM
(PRSOM), Sammon’s mapping, self-organizing map (SOM),
visualization-induced SOM (ViSOM).

I. INTRODUCTION

PRINCIPAL component analysis (PCA) [1] and multidi-
mensional scaling (MDS) [2] are the two most often used

classical methods for dimension reduction and visualization.
Linear PCA tries to best represent data by retaining most of
its information content after dimension reduction. But linear
PCA will lose certain useful information in the case of dealing
with highly nonlinear data. Several nonlinear PCA methods
have been proposed. Some are neural-network (NN)-based
PCA [3]–[6]. Others adopt different criteria for nonlinear data
projection [7]–[10], where principal curves [7] and principal
surfaces [8] will be discussed later. MDS is a method that
projects high-dimensional data to a low (usually two-) dimen-
sional space and preserves the interpoint distances among data
as much as possible. MDS gives a cost function associated
with the coordinates of input and output points. The final result
is obtained by moving the output points in accordance with
an optimization problem. Sammon’s mapping [11] is one of
the popular MDS methods. An NN-based Sammon’s mapping
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[12] and other methods related to Sammon’s mapping were
proposed in the last decade. However, the computational com-
plexity of MDS is so heavy that it is not suitable for large data
sets.

Self-organizing map (SOM), proposed by Kohonen [13],
[14], can be used for dimension reduction, vector quantization,
and visualization. The recent SOM-based applications in the
literature can be seen in [36]–[41]. SOM quantizes input data
to a small number of neurons and still preserves the topology
of input data. Indeed, SOM can be seen as discrete approxi-
mation of principal surfaces in input space [15], [16]. Some
visualization methods based on SOM were proposed [17]–[22].
One of the disadvantages of SOM is that it only preserves
topological structures of input data on the output space. The
interneuron distances of SOM are not preserved from input
space into output space such that the visualization of SOM can
be degraded. Recently ViSOM, a new visualization method
extending SOM, was proposed [23], [24]. ViSOM regularizes
the interneuron distances such that the interneuron distances in
input space resemble those in output space after completion of
training. Since the output topology in ViSOM is predefined as
a regular two-dimensional (2-D) grid, the trained neurons are
almost regularly distributed in input space. ViSOM is able to
preserve the topological information as well as the interneuron
distances. Experimental results presented in [23] and [24] show
that ViSOM delivers excellent visual exhibition compared with
SOM and other visualization methods. However, there is no
cost function assigned to ViSOM, which makes the derivation
of the weight-updating rule rather heuristic.

In this paper, a new visualization method, probabilistic reg-
ularized SOM (PRSOM), is proposed. SOM and MDS are hy-
bridized into PRSOM such that PRSOM reduces the computa-
tional burden by using SOM and preserves the interneuron dis-
tances after dimension reduction by using MDS. Unlike the hard
assignment in SOM and ViSOM, the assignment of PRSOM is
soft such that an input datum belongs to a neuron with certain
probability. In PRSOM, the sequential weight-updating rule is
extended from ViSOM to an optimization of a cost function.
Under certain circumstance, ViSOM can be considered as a spe-
cial case and an accelerated one of PRSOM. In addition to per-
forming visualization by using an assignment method [18] in
ViSOM, the probabilistic assignment can be utilized in PRSOM.
The accumulated probability for each neuron can be displayed
with a coloring scheme on a 2-D output map. It is like the U-ma-
trix method [17] and the visualization method in [19], and may
reveal the clustering tendency of input data. PRSOM can also
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be considered as a discrete approximation of principal surfaces
like SOM and ViSOM. Like regularization terms used in super-
vised learning, quantization, and feature extraction [25] to sim-
plify or smooth function and to avoid overfitting, the surfaces of
PRSOM are smoothed to have a good mapping effect. Experi-
mental results show that the proposed PRSOM is a promising
and effective approach for dimension reduction and visualiza-
tion.

In Section II, MDS, SOM, ViSOM, and principal curves/sur-
faces are briefly reviewed. In Section III, PRSOM is presented
in detail. In Section IV, experimental results demonstrate that
the proposed algorithm is able to perform visualization effec-
tively. Conclusions are drawn in Section V.

II. MDS, SOM, VISOM, AND PRINCIPAL CURVES/SURFACES

A. Multidimensional Scaling (MDS)

MDS is a traditional method used for dimension reduction
and visualization. The general objective of MDS is to preserve
the interpoint distances in a low (usually 2-D) output space. Let

denote the similarity (or dissimilarity) between two points
and in input space and denote that between the two

points in the corresponding output space. The following sum-of-
square-error functions (nonmetric scaling), often called stress,
are all reasonable candidates [26]

(1)

(2)

(3)

While used in [27] emphasizes large errors (regardless of
whether the distance are large or small), emphasizes the
large fractional errors (regardless of whether the errors
are large or small). A useful compromise on is to emphasize
large products of errors and fractional errors. is also known
as the cost function of Sammon’s mapping [11].

Once a cost function is selected, an optimal configuration of
output data is obtained by minimizing the cost function. Such
a configuration can be sought by a standard gradient-descent
procedure.

However, MDS has certain disadvantages. First, its computa-
tional complexity is , where is the number of input
data. Thus, it is impractical to perform MDS on a large data set.
Secondly, no explicit mapping function exists in MDS. There-
fore, MDS lacks the ability of mapping new input data to output
space unless all input data are recomputed. Thirdly, MDS treats
large distances in a similar way to small ones. This causes prob-
lems if the data to be visualized are high dimensional. This
problem can be avoided by SOM, which preserves local dis-
tances as discussed in the next subsection. Finally, there are
many local minima on the error surface. Usually, MDS is in-
evitable to get stuck in certain local minimum.

Curvilinear component analysis (CCA) [28] was proposed as
an improvement of MDS. It favors local topology conservation.
The purpose of CCA is to give a revealing representation of data
in low dimension. The cost function of CCA is

(4)

where is chosen as a bounded and monotonically de-
creasing function. For example, can be a simple step
function

if
if (5)

where is a parameter controlling the scope of local structure.
The computational complexity of CCA is , which is less
than that of MDS.

B. SOM

SOM consists of neurons located at a regular low-di-
mensional grid, usually a 2-D grid. The lattice of the grid is
either hexagonal or rectangle. The basic SOM algorithm is
iterative. Each neuron has a -dimensional feature vector

. At each training step , a sample data
vector is randomly chosen from a training set. Distances
between and all the feature vectors are computed. The
winning neuron, denoted by , is the neuron with the feature
vector closest to

(6)

A set of neighboring nodes of the winning node is denoted
as . We define as the neighborhood kernel function
around the winning neuron at time . The neighborhood kernel
function is a nonincreasing function with time and with the dis-
tance between neuron and the winning neuron in output
space. The kernel can be taken as a Gaussian function

Pos Pos
(7)

where Pos is the coordinates of neuron on the output grid.
The weight-updating rule in the sequential SOM algorithm

can be written as

otherwise
(8)

Both the learning rate and the neighborhood decrease
monotonically with time.

One of the disadvantages of SOM is that it only preserves
the topology of input data. Since the neurons in output space
are always predefined in a rectangular or hexagonal grid, the
interneuron distances of SOM are apparently not preserved.

There are many variants of SOM. Soft topographic vector
quantization (STVQ) [29], [30] is the one that motivates the core
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TABLE I
COMPARISON OF MAPPING BY USING THE RELATIVE STANDARD DEVIATION MEASUREMENT

idea of PRSOM. The STVQ algorithm gives a cost function (soft
quantization error) as follows:

(9)

where and are the numbers of input data and neurons,
respectively, is the probability of assigning an input

to neuron , is a fixed neighborhood function satisfying
, and is the quantization error be-

tween the input and the weight of neuron , defined by
. The entropy of the proba-

bilistic assignments is

(10)

In order to maximize the entropy in (10) and minimize the
cost function in (9), the regularized cost function to be mini-
mized, under the constraint , becomes

(11)

where is the fixed regularization parameter.
Taking the gradient of with respect to and to

zero, i.e.,

(12)

(13)

the weights can be obtained by the following iterative steps in
the algorithm [31]:

1) step

(14)
2) step

(15)

In (14), is a parameter of inverse temperature. The opti-
mized weights can be obtained by deterministic annealing from
low to high values of [29] so as to avoid being stuck at local
minima of the cost function in (11). The above steps of the
STVQ algorithm are of batch type and can be modified to the
batch type SOM [32] if we set to a delta function , and

in (14) [30]. It is noted that the neighborhood function
is kept constant in STVQ, while it decreases with time in

SOM and ViSOM.

C. ViSOM

ViSOM [23], [24] is a new algorithm to preserve topology
as well as interneuron distances. The final map can be seen as a
smooth net embedded in input space. The distances between any
pairs of neurons in input space resemble those in output space.
ViSOM uses the same network architecture as SOM. The only
difference between the two networks is that the neighboring
neurons of winner neuron are updated differently. In SOM, the
weight-updating rule is (8). The weight-updating rule for the
neighboring neurons of winner neuron in ViSOM is

(16)

where and are the distances between the neuron and
in input space and output space, respectively, and is a resolu-
tion parameter.

The basic idea behind ViSOM is that the force
can be decomposed into two parts:

. is a force from the winner
neuron to the input . is a lateral force from the neuron
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Fig. 1. The maps in the input space for the 2-D synthetic data set. (a) PRSOM (map size 20 � 20, � = 0:5). (b) PRSOM (map size 20 � 20, � = 0:9). (c)
PRSOM (map size 20 � 20, � = 1:5). (d) SOM (map size 20 � 20). (e) ViSOM (map size 20 � 20, � = 0:9).

to the winner neuron . ViSOM constrains the lateral force
by multiplying a coefficient . The objective is
to maintain the preservations of distances between any neurons.
The discrete surface constructed by neurons is then regularized
to be smooth for good visualization. In order to keep the rigidity
of final maps, the final neighborhood size should not include
only the winner neurons. The larger the , the flatter the map in

input space. The resolution parameter controls the resolution
of the map. Small values of generate maps with high resolu-
tion while large values of generate maps with low resolution.

D. Principal Curves and Surfaces

Principal curves [7] generalize a principal component line,
providing a smooth one-dimensional curved approximation to a
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Fig. 2. Visualization of the 2-D synthetic data set. Activated neurons are plotted with big dots and corresponding number of Gaussians. (a) The assignment
method of PRSOM (map size 20� 20, � = 0:9). (b) AP matrix method of PRSOM (map size 20� 20, � = 0:9). (c) The assignment method of SOM (map size
20 � 20). (d) The assignment method of ViSOM (map size 20 � 20, � = 0:9).

set of data points. Principal surfaces [8] are more general, pro-
viding a curved manifold approximation of dimension two or
more. SOM is related to the discrete principal curves/surfaces
[15], [16]. The kernel smoothing processes of principal curves
and SOM are similar

Kernel regression (17)

SOM (18)

where and are the densities of the input data and , re-
spectively, is the kernel function, and is the neigh-
borhood function.

In [24], ViSOM is also a discrete approximation of principal
surfaces. The smoothing process is

ViSOM (19)

where neuron is the winner neuron, is one of the input data
selecting neuron as winner neuron, and is the total number
of input data selecting neuron as winner neuron.

III. PRSOM

A. Cost Function of PRSOM

PRSOM tries to minimize soft quantization error like STVQ.
But it also has a regularization term that makes the surfaces
constructed by neurons smooth for good visualization.
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Fig. 3. The maps in the input space for the 3-D synthetic data set generated by (a) PRSOM (map size 20 � 20, � = 1:0); (b) PRSOM (map size 20 � 20,
� = 6:0); (c) PRSOM (map size 20 � 20, � = 12:0); (d) SOM (map size 20 � 20); and (e) ViSOM (map size 20 � 20, � = 1:7).
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First, we introduce noised probabilistic assignments. Let
denote the noised probabilistic assignment of neuron

(20)

where is the probabilistic assignment of neuron
for input and is a neighborhood constant satisfying

. Here the term “noised” means
is affected by leaked probabilistic assignments from other
neighboring neurons. Therefore is the probabilistic
assignment of neuron that considers the effects of other
neurons. Note that can be considered as a weight since

(21)

The cost function of PRSOM is then soft vector quantization
error

(22)

which computes the sum of square errors between the input data
and the average weights for all input data.

To control the complexity of the above model, or ensure the
solution is simple or smooth, we added the following metric
MDS term:

(23)
where is the distance in input space,
is the corresponding distance between neuron and in 2-D
output space, is a resolution parameter like ViSOM, and the
identity matrix is introduced to avoid the case that the denom-
inator of the fractional term would be zero when .

in (23) tries to preserve pairwise distance of neurons in
input and output space. It emphasizes large products of errors
and fractional errors like Sammon’s mapping. It also can be
considered as the restriction of PRSOM for the smoothness of
discrete approximation of the principal surfaces.

Then a regularized cost function of PRSOM is

(24)

where is a regularization parameter.

B. Weight-Updating and Probability Assignment of PRSOM

Equation (24) can be reexpressed as

where

Since the left and right terms in are always positive, the
minimization of is equal to the minimization of each .

Taking the gradient of with respect to , i.e.,

the following weight-updating rule is obtained:

(25)

In (25), is the learning rate of the weight-
updating rule of PRSOM. To avoid small values of the learning
rate , the noised probabilistic assignment (or fuzzy neigh-
borhood function) can be set

. Then the resultant up-

dating rule is

(26)

The probabilistic assignment is (14) in STVQ. But
the additional parameter , the inverse temperature, must be
carefully selected and tuned from low to high values. If we used
the same technique in PRSOM, we add the entropy into the cost
function (24)

(27)

where is a fixed regularization parameter. Taking the gradient
of (27) with respect to , we obtained the expression of

shown in (28) at the bottom of the next page, which
is a fixed-point iteration. However, (28) may not converge in
practical situations.
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A more convenient and heuristic way to compute
can be taken as

(29)

where is a normalization constant. No iteration is needed in
(29). Since neighborhood function is much larger than any
other , achieves the highest probability
assignment if is the feature vector of the nearest neuron from
the input . Equation (29) is then reasonable in that the closer
a neuron is to input, the higher the assignment probability is.

C. Connections to STVQ, SOM, and ViSOM

The cost function (9) of STVQ can be rewritten as

(30)

If is considered as the soft to-
pographic quantization error for the input , is the sum of
the soft topographic quantization errors for the whole data.

in (22) of PRSOM can be expanded as the following:

(31)

The first term of (31) minimizes the probabilistic quantiza-
tion error like (30) in STVQ. In order to minimize the second
term of (31), the angles between every pairs of and

should be obtuse, i.e., neurons in input space
should be repelled from one another around input data as far as
possible. The topographic information in PRSOM is embodied
in the lateral function , which can cause quantization error of
neurons leaking into that of neuron .

We can express the weight-updating in (15) as an online ver-
sion. First, we introduce a state variable for neuron at
iteration . Then

(32)

From (32), the following equation is satisfied:

(33)

Then the weight of neuron can be sequentially adapted by
(34) as shown at the bottom of the next page,where is the
learning rate decreasing to zero during the training course and

is the neighborhood function. This updating rule can be
also derived by taking the gradient of the cost function in (30).

It should be noted that the SOM algorithm can be expressed
by [33]

(35)

where the activation function is given by

when
otherwise

(36)
The online updating form of STVQ then uses soft assignment,
while SOM uses hard assignment.

(28)
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The weight-updating rule in (16) in ViSOM can be reex-
pressed by using hard assignment

(37)

where identity matrix is the same as that used in PRSOM.
Equation (37) can be written in a probabilistic form

(38)

where . Note that if in (25) and
in (38) is taken as the square distance, i.e., ,
(25) and (38) are equivalent.

D. The PRSOM Algorithm

The architecture of PRSOM is the same as SOM or ViSOM.
By using the same notation of SOM in Section II-B, the sequen-
tial PRSOM algorithm is described as follows:

Step 1) Randomly select an input
from a data set.
Step 2) Compute the assignment prob-
ability of for all neurons ac-
cording to (29).
Step 3) Perform the weight-updating
rule for all neurons according to
(26).
Step 4) Terminate the algorithm until
certain criterion is satisfied. Oth-
erwise, go to Step 1).

The above sequential algorithm is affected by the ordering of
training samples. To avoid this problem, it is better to use the
following batch algorithm of PRSOM.

Step 1) Compute the assignment proba-
bility of for all input data and
neurons according to (29).
Step 2) Perform the batch weight-up-
dating rule for all neurons

i.e. (34)



WU AND CHOW: PRSOM: A NEW VISUALIZATION METHOD 1371

where is current epoch and 1 is
the next epoch.
Step 3) Terminate the algorithm until
certain criterion is satisfied. Oth-
erwise, go to Step 1).

The computational complexity of PRSOM and ViSOM is
, where and are the number of input data and

neurons, respectively. If is significantly less than , the
computational complexity of PRSOM is less than that of MDS,
i.e., . The computational complexity of SOM, i.e.,

, and that of CCA, i.e., , are less than that of
PRSOM. The computational complexities of these mapping
methods are listed in Table I.

in PRSOM should be decreased from high values to
nearly zero like SOM (or ViSOM). The selection of regulariza-
tion coefficient can be set from 0.5 to 10 practically according
to the emphasis of the MDS term (second term) in (24). in
PRSOM can be selected like (7) with the constraint

Pos Pos

Pos Pos
(39)

where the neighborhood radius is a constant. The value of is
important for the training of PRSOM. The neighborhood func-
tion curves are steep when the value of is small. As a result,
only few neurons around neuron can be included in the com-
putation of the weight of the neuron . This may have an effect
of generating folded or disordered maps. On the other hand, the
area of the neighborhood function is enlarged to neurons that
are far from the neuron when is set to a large value. Large

flattens the neighborhood function curves and results in con-
tracted maps. This would degrade the performance of competi-
tive learning. In this paper, is set to 0.5, which results in maps
with good mapping effects.

The neighborhood function in PRSOM is
. in (39) can be set to a small value, e.g.,

0.5, such that affects not only the winner neuron due
to the leaked information from other neighboring neurons.

The most important property of PRSOM is the cost function
in (24), which gives the meaning of the weight-updating rule.
From the definition of the cost function, the probabilistic quan-
tization error in (31) is different from that of STVQ in (9).
Optimization of only the first term will not generate the
similar result with SOM. This should be also true for ViSOM if
the regularized term in the updating rule is left out. The implica-
tion of is to not only minimize the probabilistic quantization
error but also repulse neurons from one another. The meaning of
the regularized term is similar to MDS. But PRSOM tries
to preserve the interneuron distance in input space, which is a
reverse direction compared with MDS.

The resolution parameter must be chosen carefully. If is
too large, some useful data structure may not be well displayed
on the output map. Some neurons far outside input data may be

wasteful for visualization. If is too small, the resultant map is
embedded in input data and cannot well display input data. A
practical equation for the selection of has been proposed in
[24]:

(40)
where and are the number of rows and columns of the map,
respectively. However, the selection of for PRSOM may be out
of the range according to (40) because of high input dimension
or nonlinearity.

The soft assignment in PRSOM can be exploited like that in
STVQ. The accumulated probability in each neuron forms an
accumulated probability matrix (AP matrix) like U-matrix. The
element of neuron located at the th row and th column
of the map is defined by

(41)

By assigning different colors to different accumulated proba-
bilities, we can obtain a colored map with some colors corre-
sponding to clusters and some colors corresponding to empty
regions. This is a powerful visualization technique in addition
to the method by simply assigning input data to their nearest
neurons [18].

SOM and ViSOM are both discrete approximations of prin-
cipal surfaces. But SOM cannot well display the data boundary
at the boundaries of output map since it is a density-based quan-
tizer. ViSOM instead can well represent the data boundary be-
cause ViSOM is a uniform quantizer and some neurons are out-
side input data if parameters of ViSOM are properly chosen.
PRSOM is also a discrete approximation of principal surface
like ViSOM. As the interneuron distances in input space are reg-
ularized to resemble those in output grid, the regularized MDS
term (second term) in (25) can be very small or neglectable after
the completion of training. We further consider only the nearest
neuron by using hard assignment. The updating rule in (25)
now becomes

(42)

Then the adaptation rule in the final stage leads to the smoothing
process

PRSOM (43)

which is similar to kernel smoothing of principal curves in (17),
batch SOM’s kernel smoothing function in (18), and ViSOM’s
kernel smoothing function in (19). Here is fixed for all time
in PRSOM, which is different from (18) and (19) for SOM and
ViSOM, respectively.
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E. Quality Measurement of Mapping

In order to compare the mapping effects of different map-
ping methods, quality measurement of mapping is proposed.
The measurement is evaluated by judging if the distances be-
tween a data point and its neighboring data points in input space
are proportional to those in output space. For example, for any
data point in the input space, compute the distances between
and its nearest neighboring data points (except the data points
identical to ) in input space. Then compute the corresponding
distances in output space. After all the distances between data
points and their neighboring ones in input and output space are
computed, the ratios of the distances in input space to the cor-
responding distances in output space are computed. Then the
mean and standard deviation of the ratios are obtained.
Finally, the relative standard deviation (RSD) is computed by
RSD . For ideal mapping, all the ratios are equal such
that RSD must be zero. In the real world, the closer to zero the
RSD, the better the mapping effect.

In this paper, the value of in RSD is chosen as four. For
CCA and Sammon’s mapping, RSD is computed by input data
and their projected data. For SOM, ViSOM, and PRSOM, RSD
is computed by the trained weights of neurons in input space
and the 2-D coordinates of neurons on the output map.

IV. EXPERIMENTAL RESULTS

The advantages of the proposed PRSOM are demonstrated
through two synthetic and three real data sets, i.e., wine data
set, UK university data set, and Wisconsin breast cancer data
set. The batch type of PRSOM algorithm is used in this paper.
We will present the visualization effects of PRSOM compared
with those of SOM, ViSOM, CCA, and Sammon’s mapping.

A. 2-D Synthetic Data Set

The first data set was used for PRSOM to demonstrate the
mapping effects of different values of and the difference
among PRSOM, SOM, and ViSOM. It is a 2-D synthetic data
set consisting of three mixtures of Gaussians. The number
of data in each Gaussian is 100. Their mean vectors are [5.0
-5.0] , [-5.0 5.0] , and [0 2.0] . Their covariance matrices

are , , and . The three

Gaussians are well separated in the 2-D input space. The
number of epochs is 1000. The learning rate monotonically
decreases from 0.90 to 0.01. The regularized parameter is
set to 3.0. The size of the PRSOM map is set to 20 20.
The neighborhood is set to 0.5 since the leaked information
from other neighboring neurons causes neighborhood function

to affect not only the winner neuron but also its
neighboring neurons. The resolution parameter can be set
to 0.85 1.27 or 0.87 1.30 according to (40). In order to see
the mapping effects of different values of , we plotted the
final maps in the 2-D input space with and in
Fig. 1(a)–(c), respectively. In Fig. 1(a), some input data are not
covered by the map, quantization error is large, and resolution
is high. In Fig. 1(c) the resolution is a little coarse and some
boundary neurons are useless to represent the input data. As

shown in Fig. 1(b), is appropriate for the 20 20 map
and is inside the range according to (40).

The visualization of PRSOM can be used not only by as-
signing data to the nearest neurons but also by the AP matrix
in (41) in Section III. Corresponding to Fig. 1(b), the visual-
izations by the assignment method and AP matrix method are
shown in Fig. 2(a) and (b), respectively. Clearly the three clus-
ters are clearly separated in the output maps in Fig. 2(a) and (b).
In the AP matrix method, the larger the accumulated probabil-
ities, the darker the corresponding neurons on the 2-D output
map. Hence the clusters, noises, and outliers can be found by
the AP matrix methods, while the assignment method is worse
to deal with them.

We also used SOM on the 2-D data. The map size of SOM is
also 20 20 and the learning rate decreases from 0.90 to 0.01
with time. The total epochs of SOM are 1000. The final map in
the input space is shown in Fig. 1(d), where most neurons con-
centrate inside the three Gaussians. The corresponding output
map with assignment visualization is illustrated in Fig. 2(c).
Although the three Gaussians are clearly separated from each
another on the output map, some of the data boundaries are
clipped at the outside boundaries of the output map since the
neurons of SOM cannot extend outside the whole data struc-
ture. The quality of mapping effects of PRSOM (map size 20
20, ) is better than that of SOM as listed in Table I.

We also used ViSOM (map size 20 20, ) on the
2-D data. As shown in Fig. 1(e), the final map in the input space
is similar to that by PRSOM (map size 20 20, ). The
three Gaussians are well separated and not clipped in the 2-D
output space, as shown in Fig. 2(d).

B. 3-D Synthetic Data Set

The three-dimensional (3-D) synthetic data set consists of
three mixed Gaussians with 100 points in each Gaussian. The
mean vectors of the three Gaussians are [5.0 7.0 6.0] , [-2.0
5.0 -3.0] , and [-10.0 6.0 2.0] . Their corresponding covari-
ance matrices are

The three Gaussians are well separated in the 3-D input space.
The total epochs are set to 1000. The learning rate monotoni-
cally decreases from 0.90 to 0.01. The regularized parameter
is set to 2.0. The size of the PRSOM map is set to 20 20.
The neighborhood is set to 0.5 like the first data set. The res-
olution parameter can be set to 1.17 1.75 or 1.26 1.88 ac-
cording to (40). We tried three different values of in PRSOM:

and . The corresponding final maps in the
3-D input space are shown in Fig. 3(a)–(c). However, the visu-
alization effect is best with , which is outside the range
according to (40). The visualization by the AP matrix is shown
in Fig. 4(a), where the three clusters are easy to find.
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Fig. 4. Visualization of the 3-D synthetic data set. Activated neurons are plotted with big dots and corresponding number of Gaussians. (a) AP matrix method
of PRSOM (map size 20 � 20, � = 6:0). (b) The assignment method of SOM (map size 20 � 20). (c) The assignment method of ViSOM (map size 20 � 20,
� = 1:7). (d) Nonlinear mapping by CCA. (e) Nonlinear mapping by Sammon’s mapping.

We used SOM with map size 20 20 on the 3-D data.
The learning rate decreases from 1.0 to 0.01 with time and
the total epochs of SOM are 1000. The final map in the input

space is shown in Fig. 3(d), where most neurons concentrate
inside the three Gaussians like the 2-D case. The corresponding
output map with assignment visualization is illustrated in
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Fig. 5. Visualization of the wine data set. Activated neurons are plotted with big dots and corresponding number of classes. (a) AP matrix method of PRSOM
(map size 20 � 20, � = 0:3). (b) The assignment method of SOM (map size 20 � 20). (c) The assignment method of ViSOM (map size 20 � 20, � = 0:8). (d)
Nonlinear mapping by CCA. (e) Nonlinear mapping by Sammon’s mapping.

Fig. 4(b). Although the three Gaussians are clearly separated
from each another, the Gaussian data structures can not be well
displayed in it because the outside data boundaries are clipped
in SOM.

For ViSOM (map size 20 20, ), the final map is
similar to that by PRSOM (map size 20 20, ). The
maps in the input and output space are shown in Figs. 3(e) and
4(c), respectively.
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Fig. 6. Visualization of the U.K. university data set. Activated neurons are plotted with big dots and corresponding U.K. universities. (a) AP matrix method of
PRSOM (map size 30 � 30, � = 200:0). (b) The assignment method of SOM (map size 30 � 30).

For CCA and Sammon’s mapping, the three Gaussians are
well separated and not clipped in the reduced 2-D space as
shown in Fig. 4(d) and (e), respectively.

The effects of different mapping methods are compared by
RSD as listed in Table I. PRSOM (map size 20 20, )

has the best quality of mapping effects than other methods since
the measurement of mapping by PRSOM is 0.07 that is closest
to zero. The measurement by ViSOM is a little less than that
by PRSOM. The measurements by SOM, CCA, and Sammon’s
mapping are much larger than that by PRSOM.
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Fig. 6. (Continued.) Visualization of the U.K. university data set. Activated neurons are plotted with big dots and corresponding U.K. universities. (c) The
assignment method of ViSOM (map size 30 � 30, � = 15:0). (d) Nonlinear mapping by CCA.
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Fig. 6. (Continued.) Visualization of the U.K. university data set. Activated neurons are plotted with big dots and corresponding U.K. universities. (e) Nonlinear
mapping by Sammon’s mapping.

C. Wine Data Set

The wine data set [34] consists of 178 data points with 13 di-
mensions. The data are divided into three classes. The numbers
of data points in class 1, 2, and 3 are 59, 71 and 48, respec-
tively. The three classes are not well separated. Since there is
a large difference in different dimensions, the data were nor-
malized such that the mean and variance of data in each dimen-
sion are zero and unit, respectively. The total epochs are set to
1000. The learning rate monotonically decreases from 0.90 to
0.01. The regularized parameter is set to 5.0. The size of the
PRSOM map is set to 20 20. The neighborhood is set to
0.5 like the first and second data sets. The resolution parameter

can be set to 0.34 0.51 or 0.20 0.30 according to (40). We
found is an appropriate resolution parameter and is in
the range according to (40). The visualization by the AP ma-
trix method is shown in Fig. 5(a). There is only one dark area
meaning the three classes are mixed to some extent. Class 1 and
class 3 are well separated. But class 2 has some overlapping with
the other two classes.

The data set was also trained by SOM with map size 20 20.
The visualization of SOM on the wine data is shown in Fig. 5(b).
The three classes are also not well separated and the outside
data boundaries are also clipped. ViSOM (map size 20 20,

) and Sammon’s mapping have similar visualization,
as shown in Fig. 5(c) and (e), respectively. CCA has the worst
visualization since each class is not well clustered, as shown in
Fig. 5(d).

The mapping measurement of different methods is listed in
Table I. PRSOM (map size 20 20, ) has the best

quality of mapping effects since the measurement of mapping by
PRSOM is 0.03, which is closest to zero. The measurement by
ViSOM is a little less than that by PRSOM. The measurements
by SOM, CCA, and Sammon’s mapping are larger than that by
PRSOM.

D. U.K. University Data Set

The U.K. university data set was taken from the Sunday Times
newspaper. The newspaper ranks the U.K. universities every
year from seven aspects. We chose the ranking on September
15, 2002. Ninety-three higher educational institutions with
seven attributes, e.g., teaching quality, research achievement,
employment rate, dropout rate, etc., were in the ranking list.
Among these institutions, there are two types. Those in one
type were founded before 1992. The other type was converted
from polytechnics to fully accredited universities after 1992.
The two types of universities are separated from each other to
some extent. The total epochs are set to 1000. The learning rate
monotonically decreases from 0.90 to 0.01. The regularized
parameter is set to 1.0. The size of the PRSOM map is set to
30 30. The neighborhood is set to 0.5 like the first to third
data set. The resolution parameter can be set to 11.80 17.70
or 10.56 15.84 according to (40). We found is an
appropriate resolution parameter and is far outside the range
according to (40).

The visualization by the AP matrix method is shown in
Fig. 6(a). Clearly there are two clusters in the 2-D output map.
Most post-1992 or new universities are in the left cluster. The
pre-1992 or old universities are in the right clusters. Note that
the first four universities, i.e., Cambridge University, Oxford
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Fig. 7. Visualization of the Wisconsin breast cancer data set. Activated neurons are plotted with big dots and corresponding number of classes (class 1: benign,
class2: malignant). (a) AP matrix method of PRSOM (map size 20� 20, � = 3:0). (b) The assignment method of SOM (map size 20 � 20). (c) The assignment
method of ViSOM (map size 20 � 20, � = 3:0). (d) Nonlinear mapping by CCA. (e) Nonlinear mapping by Sammon’s mapping.

University, London School of Economics and Political Sci-
ence, and Imperial College, are at the right corner of the map,
meaning their corresponding high ranks in the ranking list. The

lowest two universities, Central Lancashire and Glamorgan, lie
at the top left corner of the map. The data set was also trained
by SOM with map size 30 30. Like the visualization of the
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previous three data sets by SOM, the outside data boundaries
are also clipped in SOM, as shown in Fig. 6(b). ViSOM (map
size 30 30, ), CCA, and Sammon’s mapping have
similar mapping, as shown in Fig. 6(c)–(e), respectively.

The mapping measurement of different method is listed in
Table I. PRSOM (map size 30 30, ) has the best
quality of mapping effects among the methods since the mea-
surement of mapping by PRSOM is 0.06, which is closest to
zero. The measurement by ViSOM is a little less than that by
PRSOM. The measurements by SOM, CCA, and Sammon’s
mapping are larger than that by PRSOM.

E. Wisconsin Breast Cancer Data

The Wisconsin breast cancer data set [34], [35] consists of
599 instances with nine attributes, e.g., clump thickness, unifor-
mity of cell size, marginal adhesion, etc. The data are divided
into two classes: benign and malignant instances. But there are
16 instances that contain a single missing attribute value. The 16
instances were deleted for convenient processing. Thus the total
numbers of instances used in this paper are 583. The numbers of
benign and malignant instances are 444 and 239, respectively.
There is no clear gap between the two classes. The total epochs
are set to 1000. The learning rate monotonically decreases from
0.90 to 0.01. The regularized parameter is set to 3.0. The size
of the PRSOM map is set to 20 20. The neighborhood is
set to 0.5 like the first to fourth data set. The resolution param-
eter can be set to 0.45 0.68 or 0.73 1.09 according to (40).
We found is an appropriate resolution parameter and is
outside the range according to (40).

The visualization by the AP matrix method is shown in
Fig. 7(a). There is only one dark area, where most of the data
in the benign class concentrate, meaning the two classes are
not well separated. The data set was trained by SOM with map
size 20 20. The visualization of SOM on the Wisconsin
breast cancer data is similar to that on the third and fourth
data set, where the outside data boundaries are also clipped.
ViSOM (map size 20 20, ), CCA, and Sammon’s
mapping have similar visualization, as shown in Fig. 7(c)–(e),
respectively.

The mapping measurement of different methods is listed in
Table I. PRSOM (map size 20 20, ) has the best
quality of mapping effects since the measurement of mapping by
PRSOM is 0.04, which is closest to zero. The measurement by
ViSOM is a little less than that by PRSOM. The measurements
by SOM, CCA, and Sammon’s mapping are larger than that by
PRSOM.

V. CONCLUSION

In this paper, a new visualization method, called PRSOM,
is proposed. PRSOM hybridizes MDS and SOM in one algo-
rithm. Therefore it reduces the computational burden by using
SOM and preserves the interneuron distance after dimension re-
duction by using MDS. PRSOM is associated with a cost func-
tion such that its weight-updating rule is a principled optimiza-
tion. PRSOM gives better mapping effects than SOM. Due to

the probabilistic assignment of each input datum, the AP ma-
trix method provides a better visualization tool than the con-
ventional assignment method used in ViSOM. The regulariza-
tion is to constrain the interneuron distances in input space re-
semble those in output space as much as possible. ViSOM can
be considered as a simplification, hard assignment, and fast al-
gorithm of PRSOM. Although a large amount of neurons is re-
quired and hence the computation is heavy, experiments demon-
strate that PRSOM is an effective approach for dimension reduc-
tion and visualization compared with SOM, ViSOM, CCA, and
Sammon’s mapping.
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