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Approximation of Dynamical Time-Variant Systems
by Continuous-Time Recurrent Neural Networks

Xiao-Dong Li, John K. L. Ho, and Tommy W. S. Chow

Abstract—This paper studies the approximation ability of con-
tinuous-time recurrent neural networks to dynamical time-variant
systems. It proves that any finite time trajectory of a given dynam-
ical time-variant system can be approximated by the internal state
of a continuous-time recurrent neural network. Given several spe-
cial forms of dynamical time-variant systems or trajectories, this
paper shows that they can all be approximately realized by the in-
ternal state of a simple recurrent neural network.

Index Terms—Approximation, dynamical time-variant systems,
recurrent neural networks.

I. INTRODUCTION

I Nrecentyears, therehavebeenalotofresearchworksfocusing
on the theoretical aspects of neural networks (NNs)-based

automatic control system. This is largely due to the increasing
demand for applications in system identification, intelligent con-
trol system,andsignalprocessing.TheperformanceofNN-based
applications relies heavily upon the functional approximation ca-
pability of the NN. Most of these applications, particularly in the
areas of nonlinear system identification and control, are in fact
dealing with the fundamental issue of approximating a nonlinear
function or a dynamical system. Feedforward neural networks
(FNN) and recurrent neural networks (RNN) are the two major
classes of NN widely used in the area of dynamical systems. It is
wellknownthatRNNconsistingofa largenumberof feedforward
and feedback connections exhibits complex dynamics [1], [2],
[13].Whenone isdealingwithdynamical systems, thedynamical
structure of RNN provides significant advantages over the feed-
forward structure. In addition, an RNN with a relatively smaller
network size has been shown to be equivalent in approximation
capability to a larger feedforward network architecture [3]. In
this paper, the issue of approximating dynamical time-variant
systems using an RNN is studied.

Although most current theoretical studies on the NN focus
mainly on the stability and convergence of the network trajec-
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tory to the equilibrium, there are a considerable amount of re-
sults on the approximation capability of the NN reported. For
instance, it has been mathematically proved that a given con-
tinuous mapping on a compact set could be approximately re-
alized by using a three-layer FNN to any precision [3]–[5]. Li
[6] showed that a discrete-time trajectory on a closed finite in-
terval could be represented exactly using a discrete-time RNN.
Jin and Nikiforuk [7] also studied the approximation problem
of approximating nonlinear discrete-time state-space trajecto-
ries with input using discrete-time RNN. In the case of contin-
uous-time RNN, Funahashi and Nakamura [8] studied the ap-
proximation of continuous-time dynamic systems using a Hop-
field-type RNN. They proved that a continuous-time dynamical
system without input, i.e., , can be approximated by
a class of RNN to an arbitrary degree of accuracy [8]. The dy-
namical system, , studied by Funahashi and Naka-
mura is, in fact, a special type of dynamical systems not usually
associated with a control environment. Recently, Chow and Li
[9] extended Funahashi and Nakamura’s work [8] to hold for
more general dynamical continuous-time systems with a con-
trol input, i.e., . Kambhampati, Garces and War-
wick [10] studied a special dynamical system of Chow and Li,
i.e. . All of these works, however, only
focus on the approximation problem of continuous-time RNN
to dynamical time-invariant system, i.e., . It is also
worth noting that dynamical time-invariant system is a special
case of dynamical time-variant systems, i.e., .
Dynamical time-variant systems apparently
have more general appeal, because most industrial dynamical
systems are inherently time-variant. For example, the parame-
ters of components in an electrical circuit system often vary with
time. On the other hand, in many applications such as aerospace,
process control etc., the ever increasing performance demands
and more stringent specifications over a wide range of oper-
ating conditions diminish the value of time-invariant models as
good approximations of the actual plant. Time-variant systems,
however, exhibit more complicated dynamics. It is clear that the
approximation problem of continuous-time RNN to dynamical
time-variant systems is an essential issue.

The main objective of this paper is to extend the approxi-
mation capability of continuous-time RNN [9] to the case of
dynamical time-variant systems . This paper
mathematically proves that the finite time trajectory of any dy-
namical time-variant systems can be approximated by the in-
ternal state of the output units of a continuous RNN to any de-
gree of accuracy. The obtained results are very relevant to the
approximation theory of NN and RNN.
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II. CONTINUOUS-TIME RECURRENT NEURAL NETWORKS

A continuous-time RNN is a complex nonlinear dynamical
system described by a set of nonlinear differential equations
with extensive connection weights. This can be generally ex-
pressed in the following form:

(1)

where and are the neural state and the input
vector, respectively, , are the con-
nection weight matrices associated with the neural state and the
input vector, respectively. The parameter is a fixed constant
and is chosen to lie in the open unit interval, i.e., , and

is an appropriately chosen vector-valued
nonlinear function. In this paper, we study the following contin-
uous-time RNN:

(2)

where is a -sigmoid nonlinear neural activation function
(A -class function is continuously differentiable up to order

).

III. APPROXIMATION THEOREM OF CONTINUOUS RECURRENT

NEURAL NETWORKS TO DYNAMICAL TIME-VARIANT SYSTEMS

It has been previously shown that the state of the RNN output
units (2) with an arbitrary positive small is capable of approxi-
mating the dynamics of a nonlinear time-invariant system to any
degree [9]. Let denotes a point in -dimen-
sional Euclidian space , where denotes matrix transpose,
and the Euclidian norm of be defined by . The aforemen-
tioned result can thus be expressed in the following lemma.

Lemma 1 [9]: Let and be open sets,
and be compact sets, and be

a -class vector-valued function. For a continuous nonlinear
system in the form of

(3)

with an initial state . Then, for an arbitrary ,
there exists an integer and an RNN in the form (2) with an
appropriate initial state and a small enough arbitrary
such that for any bounded input

holds, where , ,
, is the internal state of the network

output units, is the overall neural state, and is the hidden
neural state.

In this lemma, the nonlinear dynamical system to be ap-
proximated by a continuous RNN is a time-invariant nonlinear
system. For more complicated dynamical time-variant systems,
Lemma 1 can be extended to obtain a more general approxima-
tion result as shown in the next theorem.

Theorem 1: Let and be open sets,
, be compact sets, and be a

-class vector-valued function. For a continuous time-variant
system of the form

(4)

with an initial state . Then, for an arbitrary ,
there exists an integer and an RNN of the form (2) with an
appropriate initial state and a small enough arbitrary
such that for any bounded input

holds, where , ,
, is the internal state of the network

output units, is the overall neural state, and is the hidden
neural state.

Proof: Let , where .
We extend the -dimensional vector in dynamical time-
variant system (4) to -dimensional vector . Then,
the continuous dynamical time-variant system (4) may be rep-
resented as the following time-invariant form:

(5)

where , and
is also a -class vector-valued function. The initial

condition of system (5) is . When ,
we have , .
is a compact subset of , so the time-invariant system (5)
satisfies the conditions of Lemma 1. Then, for an arbitrary

, there exists an integer and an RNN of the form (2) with an
appropriate initial state and a sufficiently small arbitrary

such that, for any bounded input

(6)

holds, where , , , and is
the internal state of the first output units of the network.
Let , then is the internal state of the first
output units of the network. From the definition of the Euclidian
norm , we have

Therefore

(7)

Theorem 1 is proved.
Theorem 1 illustrates that the finite-time trajectories of a

given time-variant continuous system can be approximated by
the first internal state out of the neural units in an RNN
(2). It clearly has more general applications compared to the
results previously obtained in [9]. Fig. 1 shows a diagram of an
RNN (2) with 4 neural units and 1 input. According to Theorem
1, we set the first two units as output units of the RNN and the
other as hidden units if a continuous time-variant system (4)
with one input and two outputs is approximated by the RNN
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Fig. 1. Diagram of RNN (2) with 4 neural units and 1 external input, where ppp , ppp represent the output units’ internal states.

of Fig. 1. The internal states and of the RNN output
units are used to approximate the trajectories of a continuous
time-variant system.

Theorem 1 can be extended to the approximation of contin-
uous time-variant input-output systems by RNN in the following
corollary 1.

Corollary 1: Let , , be open sets, ,
be compact sets, and be

a -class vector-valued function, be a
-class reversible vector-valued function for each . For

a continuous time-variant input-output system of the form

(8a)

(8b)

with an initial state , then, for an arbitrary ,
there exists an integer and an RNN of the form (2) with an
appropriate initial state and a small enough arbitrary
such that for any bounded input

holds, where , , , and is the
internal state of the network output units, is the overall neural
state, is the hidden neural state.

Proof: In the nonlinear system (8), as the vector-valued
function is a -class mapping , and the
vector-valued function is a -class mapping ,
the set of output trajectories of the nonlinear dynamical system
(8) defined as

(9)

forms an open subset of , and the set of initial output

(10)

forms a compact subset of .
From the nonlinear system (8), we have

(11)

Let , then
is a -class vector-valued function, and the

nonlinear system (8) can be represented as

(12)

Also, is a reversible vector-valued function
for each , so , and the nonlinear
continuous system (12) can be further written as

(13)

with an initial state , where
is a -class vector-valued function.

Applying Theorem 1 to the nonlinear system (13), for an ar-
bitrary , there exists an integer and an RNN of the form
(2) with an appropriate initial state and a small enough ar-
bitrary such that for any bounded input

holds, where , , , and is the
internal state of the network output units.

Corollary 1 is proved.
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Based on Theorem 1, we next show that several special forms
of dynamical time-variant systems or trajectories can be approx-
imately realized by the internal state of the output units of an
RNN or a simple RNN.

Corollary 2: Let and be open sets,
, be compact sets, and ,

and be -class vector-valued
functions. For each dynamical time-variant system of the fol-
lowing forms

(14)

(15)

(16)

with an initial state , then, for an arbitrary ,
there exists an integer and an RNN of the form (2) with an
appropriate initial state and a small enough arbitrary
such that for any bounded input

holds, where , , , and is
the internal state of the network’s output units, is the overall
neural state, is the hidden neural state.

Remark: Corollary 2 is a direct result of Theorem 1. For ap-
proximating the special forms of dynamical time-variant sys-
tems or trajectories (15) and (16) with , the RNN (2) is
practically simplified as the following form:

(17)

which resembles a simple form of Hopfield-type continuous
RNN.

Correspondingly, if (8a) has certain special forms, we can also
derive useful results on continuous time-variant input-output sys-
tems. From the above described theorem and corollaries, the ap-
proximation takes place only on a finite closed interval. There is
no information regarding the exact number of hidden neural units
required to achieve such an approximation. However, from [11],
the storage capacity of a fully connected neural network must be
at least the same size as the net. When the approximation interval
becomes longer, the RNN memory requirements for tracking the
trajectory of the given dynamical system increases accordingly.
Therefore, generally speaking, the longer the approximation in-
terval, the larger the number of neural units needed.

IV. SIMULATION RESULTS

Example 1: In order to further verify our approximation the-
orem, a dynamical time-variant second-order system

(18)

with was approximated in a finite time in-
terval [0,1] by the internal state of the RNN output units (2).
The training of the RNN (2) used for the approximation of the
dynamical time-variant system (18) was carried out by means
of a kind of hybrid method that combines Genetic Algorithm
(GA) and another gradient-descent based method called recur-
rent backpropagation algorithm by Pearlmutter [12]. The option

Fig. 2. Outputs of the time-variant system (18) and RNN (2) when excited by
a step input. [Solid line: output of the time-variant system (18); dashed line:
modeling output of the RNN (2).]

Fig. 3. Outputs of the time-variant system (18) and RNN (2) when excited by
a sinusoidal input. [Solid line: output of the time-variant system (18); dashed
line: modeling output of the RNN (2).]

of using only recurrent backpropagation algorithm was deemed
not viable. The implementation of gradient-descent training al-
gorithms is computationally expensive and does not provide an
exhaustive search of the error surface. In our training scheme of
RNN (2), after selecting a set of suitable training data, the GA
was first used to obtain a rough initial point, then the recurrent
backpropagation algorithm was used to bring the total square
training error over a finite time interval to minimum.

In the results presented, the parameter of RNN (2) was set
to 0.01. The number of neurons was set to 5, using stepwise
forward selection with a satisfactory index. The sigmoid non-
linear function was chosen for . For simulation con-
venience, both the time-variant system (18) and RNN (2) were
discretized with a sampling time interval 0.01. Once the net-
work structure was fixed, the GA-based hybrid method was used
to determine the network weights. The initial weights of RNN
(2) were random gaussian values. The first 2 RNN output neu-
rons (2) were initialized to the initial values of the time-variant
system (18) while the rest of the RNN neuron states (2) were
initialized to 0. The number of the initial population involved
in the GA-based algorithm was fixed at 140. This is a resonable
number that provides ample variety of individuals and low com-
putational cost for each generation. The mutation and crossover
probabilities were fixed at 0.001 and 0.8, respectively. When the
GA-based hybrid algorithm converged, the trained weights of
RNN (2) were determined. Figs. 2 and 3 present the modeling
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outputs when system (18) and RNN (2) are excited by a step
input and a sine input, respectively. Their modeling error indices
(total square error) are and , respectively.
This example shows the nonlinear time-variant system (18) can
be approximated by an RNN (2) with 5 neural units to a very
high degree of accuracy.

V. CONCLUSION

This paper proves that dynamical time-variant systems, which
have considerable general applications, can be approximated in
a finite time interval to any accuracy level by using an RNN.
As discussed, the special forms of continuous dynamical time-
variant systems or trajectories can be approximately realized in
a finite time interval by the internal state of the output units
of a simple RNN. In implementing the above approximation,
the connection weight matrices of the RNN must be determined
through an adaptive learning process.
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